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Abstract. We describe a methodology for proving theorems mechanically about Java
methods. The theorem prover used is the ACL2 system, an industrial-strength version
of the Boyer-Moore theorem prover. An operational semantics for a substantial subset
of the Java Virtual Machine (JVM) has been defined in ACL2. Theorems are proved
about Java methods and classes by compiling them withjavac and then proving the
corresponding theorem about the JVM. Certain automatically applied strategies are
implemented with rewrite rules (and other proof-guiding pragmas) in ACL2 “books”
to control the theorem prover when operating on problems involving the JVM model.

1 Background

The Java Virtual Machine or JVM [27] is the basic abstraction Java [17] implementors are ex-
pected to respect. We speculate that the JVM is an appropriate level of abstraction at which to
model Java programs with the intention of mechanically verifying their properties. The most
complex features of the Java subset we handle – construction and initialization of new ob-
jects, synchronization, thread management, and virtual method invocation – are all supported
directly and with full abstraction as single atomic instructions in the JVM. The complex-
ity of verifying JVM bytecode program stems from the complexity of Java’s semantics, not
generally from implementation details in the JVM.

We model the JVM operationally. That is, we define an interpreter for JVM programs
within a formal logic. At the moment, we model only a subset of the JVM. Our subset does
not include dynamic class loading or exceptions. Our thread model assumes sequential con-
sistency and atomicity at the bytecode level. These simplifications are not indicative of the
limits of our modeling or proof technology, only of the amount of time we have invested in
the model and (in the case of threads) uncertainty in the Java community as to the desired
standard.

We model the JVM in ACL2, AComputational Logic for Applicative Common Lisp, by
Matt Kaufmann and J Moore. ACL2 [25] is the industrial-strength successor to the Boyer-
Moore theorem prover, Nqthm [6]. ACL2 is a first-order applicative programming language
based on Common Lisp. It is also a mathematical logic for which a mechanical theorem-
prover has been implemented in the style of Nqthm. Our JVM model in ACL2 may be thought
of as a functional Lisp implementation of (a subset of) the JVM. It isexecutablein the sense
that given a specific class file and thread schedule, the model can be run in Lisp to determine
the state of the JVM at the end of the schedule.



Theorems can be proved about the execution of a Java method by translating the method
JVM bytecode class file using a standard tool such asjavac of Sun Microsystems, Inc., and
then proving a theorem about the JVM model’s behavior when interpreting that bytecode. The
practicality of this approach to code verification was first demonstrated for a commercially
interesting programming language by Yuan Yu [7]. He verified 21 of the 22 Berkeley C String
Library programs by translating them into machine code for the Motorola 68020, usinggcc
-o , and verifying the resulting binary images with respect to an operational semantics for the
68020. Nqthm was used for the proofs.

We find this approach to code verification appealing for two reasons. First, modeling ma-
chines at the instruction-set architecture (ISA) level can generally be done with more confi-
dence than modeling modern programming languages. This confidence stems in part from the
simplicity of the typical ISA and in part from the precision and completeness of the informal
ISA specifications provided by the manufacturers. Of course, ISAs and their specifications
are not simple, precise or complete; but they exhibit those qualities to a higher degree than
commercially supported programming languages. The second reason we find this approach
appealing is that the practitioner need not assume the correctness of the compiler, be itgcc
or javac , since the code verified is the code executed.

The main drawback of this approach is that the resulting proofs may be complicated by
implementation details. While this phenomenon is real, it can be difficult to measure in the
absence of any comparably precise and detailed formal model of the high level language. In
many languages, side-effects, aliasing, pointer manipulation, order-of-evaluation and other
“implementation details” are in fact standard features of the high-level semantics and are
ignored at the programmer’s peril.

While our approach to verifying Java suffers some unnecessary complexity due to imple-
mentation details in translation to the JVM, the JVM is a well-designed abstract ISA for Java
and introduces few such details. A glaring omission is the absence of structured iteration in
the JVM; but this omission can be remedied by inspection of the Java source.

The outline of our presentation is as follows.
In Section 2 we introduce ACL2 as a logic. In Section 3 we introduce the mechanized

theorem prover for it. In Section 4 we describe our operational semantics of the JVM. In
Section 5 we show a Java factorial method and show the formalization of its bytecode in
detail. Also in that section we illustrate the use of the model as a JVM simulator. In Section
6 we describe how we configure ACL2 to reason about bytecode programs and in Section 7
we illustrate the method by proving the factorial method correct. In Section 8 we explain how
we deal with more complicated examples, including virtual methods, the heap, and object
manipulation. In this section the main example is an applicative linked-list insertion sort
routine coded in Java. We prove that the method returns an ordered permutation of its input,
in a suitable sense.

In Section 9 we describe the proof of a safety property of a multi-threaded Java system.
We deal with a class that spawns an unbounded number of threads, each in contention for a
single object in the heap, and we prove that mutual exclusion is achieved using the JVM’s
monitors.

In Section 10 we very briefly note related, ongoing developments in the ACL2 commu-
nity. We comment on other related work throughout the document. We conclude in Section
11.

We assume the reader is somewhat familiar with Java and comfortable with formal math-
ematical logic. Readers should see the author’s home page,http://www.cs.utexas.-
edu/users/moore for many of the publications cited here. In addition, the ACL2 home
page is linked to the author’s page. The ACL2 files containing our definition of the JVM



model and the proofs discussed here will also be posted under the author’s Publications link.

2 ACL2

To a first approximation, ACL2 is the largest applicative subset of Common Lisp; it is de-
scribed as a mathematical logic with a formal syntax, some axioms, some rules of inference,
and a semantic model. We also provide a mechanized theorem proving system for the logic. A
description of ACL2 – the programming language, the logic, and the theorem proving system
– is provided in [25].

The ACL2 system is distributed without fee under the GNU General Public License from
the ACL2 home page,http://www.cs.utexas.edu/users/moore/acl2 . As of
this writing, the latest release is Version 2.6. The source code, many files of definitions and
lemmas, and online documentation are available under the same terms. In addition, the doc-
umentation may be searched and browsed on the web. See the link from the home page.

To make this paper more self-contained, we briefly discuss ACL2. But a precise descrip-
tion is beyond the scope of this paper. We refer the student to [25] and to the ACL2 system.

ACL2 is a quantifier-free first-order logic with induction and recursive definition.

2.1 The Semantic Domain

TheACL2 objectsare partitioned into five sets.

• numbers, including integers such as123 and-5 , non-integral rationals such as22/7 , and
complex rationals such as#c(1,5) (1 + 5i). We only use integers in this paper.

• characters, including#\A (uppercase “A”)#\a (lowercase “A”), and#\Space (a space).
We do not use character data in this paper, except as the constituents of other data objects
such as strings and symbols.

• strings, including"monitor" and"java.lang.Object" .

• symbols, includingt , nil , x , monitor , top-frame , +, and>=. Typically, symbols con-
sist of finite sequences of alphabetic characters (A–Z), digits (0–9), and certain signs
including+, - , <, and=, that are not conventionally interpreted as numbers. For example
+A1 is a symbol but+81 is a number. Signs do not terminate symbols, e.g.,top-frame
is a symbol, not two symbols,top andframe , separated by a minus sign.

• ordered pairs of ACL2 objects, including("monitor" . 0) and(1 2 3) . The first of
these is the ordered pair containing the string"monitor" as its left item and the integer
0 as its right. The second of these is an ordered pair containing the integer1 as its left
item and the ordered pair(2 3) as its right. The pair(2 3) contains the integer2 as its
left item and the pair(3) as its right. The pair(3) contains the integer 3 as its left item
and the symbolnil as its right. This pair could also be written(3 . nil) . Indeed,(1
2 3) could be written(1 . (2 . (3 . nil))) . Ordered pairs are sometimes called
“conses.” The right item in an ordered pair is said to be the “car” and the left item is said
to be the “cdr.”

Note that these sets are disjoint. In particular, strings are different from symbols, e.g.,
monitor is a different object than"monitor" .

A true-listor linear list is eithernil or an ordered pair whose right item is a true-list.
In this paper, case is unimportant when symbols are written, e.g.,Monitor , monitor ,

andMONITORare the same symbol.



Lisp is unusual in that the objects in the domain above are used to represent the terms
and formulas of the language. The data objects we call symbols are also the symbols of the
syntax, they are our function and variable names.

Symbols are structured objects, containing a “package name” and a “symbol name.” The
“full name” of a symbol is obtained by writing the package name and the symbol name,
separated by two colons. But there is a convention that allows the package name to be omitted
when it is the same as some previously selected “current package.” In this paper, we write as
though the current package were"JVM" . Thus,JVM::top-frame is the “full name” of the
symbol whose “short name” (in this context) istop-frame .

Packages allow authors to have disjoint name spaces. For example,ALICE::swap is a
different symbol thanBOB::swap so Alice can define her symbolswap one way and Bob
can define his another. By selecting"ALICE" as her current package, Alice can refer to her
symbolswap by writing swap. To refer to Bob’s, she must writeBOB::swap .

But authors must frequently refer to symbols from other packages, especially the"LISP"
package where all the primitive symbols are defined. That is, Alice will frequently wish to
refer to the symbolLISP::car . It is inconvenient to have to write the package name of
commonly used symbols. So symbols from one package can be “imported” into another. By
importingLISP::car the"ALICE" package, Alice can refer to it simply ascar while in the
ALICE package.

So the notation for symbols is always relative both to a selected package and to the en-
tire “package structure” – an acyclic directed graph specifying the imports of symbols be-
tween packages. This package structure is fixed for any use of ACL2. In addition to the
"LISP" package, every package structure includes the"KEYWORD"package. Symbols such
asKEYWORD::pcandKEYWORD::stack may be written more simply as:pc and:stack
and are calledkeywords.

For this work we created a"JVM" package and we imported into it most of the commonly
used"LISP" symbols.

Such details are unimportant to the casual reader. But the careful student might otherwise
wonder how we can define the functionstep . Why? The symbolLISP::step is pre-defined
in Common Lisp and symbols cannot be redefined in ACL2. But we select"JVM" as the
current package and we do not importLISP::step into it, so when we definestep we are
actually definingJVM::step , which is initially undefined.

We take for granted the usual mathematical operations and relations on the mathematical
objects we have been discussing. For example, just as we expect the reader to understand
what we mean when we talk about about the sum or product of two numbers or whether two
objects are equal, we also expect the reader to understand what we mean by the car and cdr
of an ordered pair or whether an object is a string or a symbol. A precise semantics for the
ACL2 logic can be described in terms of these mathematical operations and relations. What
is perhaps surprising is that we use these mathematical notions to describe the syntax too.

2.2 Syntax

In the technical treatment of ACL2’s syntax, we define the notion of a “formal term.” The
formal terms are a subset of domain of objects above. The objectτ is a formal termiff τ is
(a) a variable symbol, (b) one of a small number of primitive constants, or (c) a true list of
n+1 elements whose first element is a “function expression” of arityn and whose remaining
elements are formal terms. Afunction expressionis either a function symbol or a lambda
expression of the form(lambda ( v1 . . . vn) β) , where thevi are distinct variable symbols
andβ is a formal term containing no free variables other than thevi. Formal terms of kind (c)



are said to be function or lambdaapplications.
An example formal term is thus(cons x (cons y nil)) . In more traditional systems

this term might be writtencons (x, cons (y, nil )).
Formal terms are relatively simple, which makes it straightforward to define the rules of

inference for manipulating them. But formal terms are too cumbersome for practical use.
Among the limitations are that there is no provision for writing arbitrary constants and every
function must be supplied a fixed number of arguments.

To remedy this we define aterm to be any object in the domain thatabbreviatesa formal
term. We introduce two basic abbreviation mechanisms, one allowing the use of constant
terms and the other allowing the use of macros.

The constant terms are the primitive constants (including0, 1, andnil ), the symbolt ,
the keywords, the numbers, the characters, the strings, and all objects of the form(quote
c) , wherec is any object. Constant terms of the last kind may be written’ c. The constant ab-
breviation convention specifies for each of these constant terms a formal term abbreviated by
the constant. For example, the constant term3 abbreviates the same formal term abbreviated
by (+ 1 1 1) . The constant term’(1 2 3) abbreviates the same formal term abbreviated
by (cons 1 (cons 2 (cons 3 nil))) . Essentially, we give a formal construction for
each object in the ACL2 domain.

The macro convention is as follows. Associated with certain symbols, calledmacro sym-
bols, are functions on true lists of ACL2 objects. Supposem is a macro symbol with as-
sociated functionfm. Then if the object( m o1 . . . on) is used as a term it is understood to
abbreviate the term obtained by applyingfm to theoi. For example,list is a macro symbol
and associated with it is a function that, for example, transforms the linear list(x y) into
the object(cons x (cons y nil)) . That is, when given the list of two elements contain-
ing the symbolsx andy , the function corresponding tolist produces a list of three objects
whose first element is the symbolcons , whose second element is the symbolx , and whose
third element is a list of three elements, namelycons , y andnil , respectively. That is,list
is defined as a list processing function on objects in our domain. But by declaring it a macro
we can then use(list x y) as a term abbreviating(cons x (cons y nil)) . Macros
allow us to abbreviate terms by describing how to compute the terms we mean.

A very commonly used macro iscond , which abbreviates a nest ofif s. For example,
(cond ((equal sync-status ’LOCKED)

(unlock-object th obj-ref (heap s)))
((equal sync-status ’S LOCKED)

(unlock-object th ret-ref (heap s)))
(t (heap s))).

abbreviates
(if (equal status ’LOCKED)

(unlock-object th ref1 (heap s))
(if (equal status ’S LOCKED)

(unlock-object th ref2 (heap s))
(heap s))).

Observe that the conditions tested in acond expression are tested in the order written and the
first true one determines the result. If no condition is true,cond returnsnil . It is conventional
for the last condition to bet , thereby insuring that thecond does not “fall off the end.”

With a little license, we can read theif andcond expressions above as: ifstatus is the
symbolLOCKED, unlockref1 in the heap ofs and return that heap; ifstatus is S LOCKED,
unlock ref2 in the heap ofs and return that heap; otherwise, return the heap ofs . This
reading ignores the role ofth in unlocking.



A formula is either anatomic formulaof the formτ1 = τ2, where theτi are terms, or else
of the form¬φ1, φ1 ∨ φ2, φ1 ∧ φ2, φ1 → φ2, or φ1 ↔ φ2, where theφi are formulas.

2.3 Quantifier-Free First-Order Logic

We define quantifier-free first-order logic in a traditional way with several axiom schemas
and primitive rules of inference. Aformal proofis a finite tree of formulas, each of which is
either an axiom or is derived from its immediate ancestors in the tree by one of the rules of
inference. Atheoremis any formula in a proof, but most especially the root of the tree. We
derive a variety of more elaborate rules of inference, including the tautology theorem (every
propositional tautology has a proof), proof by cases, and substitution of equals for equals.

2.4 Axioms

The axioms of ACL2 characterize the primitive function symbols and constants. Among the
axioms (or easily proved theorems) are the following. We can paraphrase these as saying the
symbolst andnil are distinct, thatequal is the characteristic function for equality, andif
is a 3-place if-then-else that tests againstnil .
Axioms or Basic Theorems:
t 6= nil
x = y → (equal x y) = t
x 6= y → (equal x y) = nil
x = nil → (if x y z) = z
x 6= nil → (if x y z) = y

“Predicates” in ACL2 are Boolean functions that returnt or nil .
We characterize the “propositional functions,” e.g.,not andimplies

Axioms or Basic Theorems:
(not p) = (if p nil t)
(implies p q) = (if p (if q t nil) t)

and we defineand andor as macros that abbreviateif expressions. Thus(and p q r)
abbreviates(if p (if q r nil nil)) .

Among the theorems related to list processing are thatconsp is a Boolean function that
recognizes ordered pairs constructed bycons , thatcons constructs a pair with the appropri-
atecar andcdr , thatcar andcdr returnnil on non-conses, and thatnil is not an ordered
pair.
Axioms or Basic Theorems:
(consp x) = t ∨ (consp x) = nil
(consp (cons x y)) = t
(car (cons x y)) = x
(cdr (cons x y)) = y
(consp x) = nil → (car x) = nil
(consp x) = nil → (cdr x) = nil
(consp nil) = nil

We make the convention that when a termτ is used as a formula it is an abbreviation for
the formulaτ 6= nil . We can then prove the metatheorem that allows us to write any formula
as an “equivalent” term. For example, using convention we might say that
(implies (consp x) (not (symbolp x)))

is a theorem, meaning



(implies (consp x) (not (symbolp x))) 6= nil

is a theorem, which is provably equivalent to the axiom
(consp x) = t → (symbolp x) = nil.

We tend henceforth to exhibit all of our theorems as terms.

2.5 Definitions

Following Gentzen [15], we embed the ordinals up toε0 into our universe by defining a
function that recognizes when certain lists and numbers represent ordinals. For example, the
list (4 2 2 2 . 7) represents the ordinalω4 + ω2 × 3 + 7. We define well-founded “less
than” relation on these ordinals.

We provide a definitional principle that permits us to define new function symbols recur-
sively, provided we can prove that a certain ordinal measure of the arguments decreases in
each recursive call.

Here are three definitions.
(defun push (obj stack) (cons obj stack))
(defun top (stack) (car stack))
(defun pop (stack) (cdr stack))

These definitions the following axioms.
Definitional Axioms:
(push obj stack) = (cons obj stack)
(top stack) = (car stack)
(pop stack) = (cdr stack)

Clearly, we are representing stacks as lists. The top of a stack is its car and the rest of the
stack is its cdr. The stack obtained by pushing4 4 onto the stack(3 2 1) might be written
(push 4 ’(3 2 1)) . We can prove the theorem:
Theorem:
(push 4 ’(3 2 1)) = ’(4 3 2 1)

The proof of this theorem illustrates how we can use the axioms tocomputethe values of or
evaluatecertain terms. Note thatpush does notchangethe list (3 2 1) into the list(4 3
2 1) . In a logical setting, that remark is as unnecessary as saying that adding 4 to 3 does not
change 3 to 7.

Some other simple theorems about these stack manipulation functions are:
Theorems:
(top ’(3 2 1)) = 3
(pop ’(3 2 1)) = ’(2 1)
(top (pop ’(3 2 1))) = 2
(pop (pop (pop ’(3 2 1)))) = nil

We can also prove the following important theorems
Theorems:
(top (push x stack)) = x
(pop (push x stack)) = stack

These proofs are obvious from the definitions ofpush , top , andpop and the axioms about
cons , car , andcdr .



Other axioms permit us to prove that whentop andpop are applied to the empty stack
or a non-list, the result isnil . If an empty stack or non-list is popped,nil is returned.

Here is another definition.
(defun popn (n stack)

(if (zp n)
stack
(popn (- n 1) (pop stack))))

This one involves recursion and so a measure argument is necessary. The predicate(zp n)
is true whenn is 0 or whenn is not a natural number. Thus, the first argument,n, is decreased
each time the recursive branch is taken. Once this argument is made, the function definition
for popn is admittedand a new axiom is added.
Definitional Axiom:
(popn n stack)

=
(if (zp n)

stack
(popn (- n 1) (pop stack)))

Clearly,popn is the function that pops a stackn times. If the stack is insufficiently deep,nil
is returned.

It is convenient at this point to display a few other recursively defined functions. We
choose to display some that are manipulate a very common data structure in our JVM model-
ing work: association lists. Anassociation listor alist is a list of pairs,( k . v) . Each such
pair is said tobind its key, k, to itsbindingor valuev. The association list is treated as a table.
The first pair binding a given key in a table specifies the value of that key in the table. For
example,((A . 1) (C . 3) (B . 2)) bindsA to 1, B to 2, andC to 3.

To look up a key, we use the functionassoc-equal , which actually returns the pair
binding the given key. Here is the recursive definition.
(defun assoc-equal (key alist)

(cond ((endp alist) nil)
((equal key (car (car alist))) (car alist))
(t (assoc-equal key (cdr alist)))))

The functionendp returnst if its argument isnil or any other non-cons. Thus, the definition
above may be paraphrased as follows: ifalist is empty, returnnil ; if key is the key of the
first pair inalist , return that pair; else, look forkey in the cdr ofalist . It is not uncommon
for us to abbreviation(car (car alist)) as(caar alist) ; combinations ofcar and
cdr are often so abbreviated.

The two functions
(defun bound? (key alist) (assoc-equal key alist))
(defun binding (key alist) (cdr (assoc-equal key alist)))

determine whetherkey is bound inalist and, when it is, what its binding is, respectively.
The following function “changes” the binding ofk to v in alist . To be more precise, it

constructs a new alist in whichk is bound tov and the bindings of all other keys are preserved.
(defun bind (k v alist)

(cond ((endp alist) (list (cons k v)))
((equal k (car (car alist)))

(cons (cons k v) (cdr alist)))
(t (cons (car alist) (bind k v (cdr alist))))))

The function unnecessarily puts the binding fork “in the same place” in the alist. For exam-
ple,



(bind ’B
22
’((A . 1) (C . 3) (B . 2)))

is ((A . 1) (C . 3) (B . 22)) .

2.6 Induction

We provide an induction principle that permits us to prove a conjecture by splitting it into
cases and inductively assuming instances of the conjecture that are smaller according to some
ordinal measure. For example, to prove(p x y) it suffices, by induction, to prove
(and (implies (not (consp x)) (p x y)) ; base case

(implies (and (consp x) ; induction step
(p (cdr x) y))

(p x y)))

Here the ordinal measure is the number of conses inx . Our induction principle is quite general
and would permit us to also assume, as an induction hypothesis,(p (car x) y) , since the
number of conses in(car x) is less than that inx whenx is a cons. We could also assume
(p (cdr x) (+ y 3)) – indeed, we can assume the theorem for as many instances ofy
as we wish, as long asx is replaced by something with fewer conses.

We could choose to induct using a different measure, e.g., the difference betweenx andy
when x is bigger. The induction would be:
(and (implies (not (and (integerp x) ; base case

(integerp y)
(< y x)))

(p x y))
(implies (and (integerp x) ; induction step

(integerp y)
(< y x)
(p x (+ y 1)))

(p x y))).

Recall the functionpopn .
(defun popn (n stack)

(if (zp n)
stack
(popn (- n 1) (pop stack))))

Here is another recursive function. It computes the length of a list (or depth of a stack).
(defun len (x)

(if (consp x)
(+ 1 (len (cdr x)))
0))

Len is admissible because the number of conses inx decreases each time the recursive branch
is taken.

Here is a theorem relatinglen andpopn .
Theorem:
(<= (len (popn n stack)) (len stack))

This theorem is easily proved by the following induction argument:
(and (implies (zp n)

(<= (len (popn n stack)) (len stack)))
(implies (and (not (zp n))



(<= (len (popn (- n 1) (pop stack)))
(len (pop stack))))

(<= (len (popn n stack)) (len stack))))

Note how the induction is suggested by the recursion inpopn . The proof of each case follows
easily, expanding the definitions ofpopn and len and simplifying, using properties of<=.
In fact, the mechanical theorem prover will select this induction and do the simplification
automatically.

3 ACL2 as a Mechanical Theorem Prover

3.1 Simplistic Models of the System

We provide a theorem prover for the ACL2 logic. The ACL2 theorem prover is an industrial-
strength version of the Boyer-Moore Nqthm prover, adapted to the ACL2 logic. ACL2 is the
work of Kaufmann and Moore.

A grossly inaccurate but still useful model of the theorem prover is as follows. Totry to
provea formula,φ, “simplify” the formula toφ′. If φ′ is t , thenφ is a theorem. Otherwise,
use the recursive functions occurring inφ′ to suggest an induction scheme producing new
subgoalsφ1 . . . φn. If no scheme is suggested, the proof attempt fails. Otherwise, recursively
try to prove eachφi.

A grossly inaccurate model ofsimplificationis that it is just the exhaustive, inside-out
rewriting of the formula, with axioms, definitions, and user-supplied but previously proved
theorems.

Recall the main axiom aboutcar .
(car (cons x y)) = x

The rewrite rule generated causes the following behavior. When the rewriter encounters a
term,τ , that is an instance of the left-hand of the rule under some variable substitutionσ, it
replacesτ by theσ instance of the right-hand side. The termτ is called thetargetof the rule
and the rule is said to havefiredon the target. So for example, the simplifier would transform
(p (car (car (cons (cons a b) c)))) first to (p (car (cons a b))) and then
to (p a) by firing first on the innercar expression and then on the outer.

Every time a definition is made or a theorem is proved, rules are generated from the
formula. There are about a dozen kinds of rules. The user specifies which kinds of rules to
generate from a formula. Each rule is initiallyenabled, meaning it is available for automatic
use by the system. But the user candisablea rule to prevent it from firing automatically.
By default,rewrite rulesare generated from each definition and theorem. We will limit our
discussion here to rewrite rules.

3.2 Rewrite Rules

Recall the definition ofbind . It is used as a rewrite rule to replace applications ofbind by
the instantiated body ofbind . We call thisopeningor expandingthe application ofbind .
For example,(bind key val (cons (cons a b) c)) can be expanded to
(if (equal key a)

(cons (cons key val) c)
(cons (cons a b) (bind key val c)))

using the definition ofbind and the axioms aboutcar , cdr , andcons . Note that the result
still contains an application ofbind and that application could be expanded, replacing it
with the definition ofbind . Sincebind is recursive, this expansion could go on forever; the



system has heuristics to control the use of recursive functions. In some particular proof, the
user may not wantbind expanded. In that case, the user will disable the rule generated from
the definition ofbind .

Here is a theorem aboutbind . The syntax shown below includes thedefthm command
used to pose and name the conjecture. If the equality below is proved, a rewrite rule is gener-
ated from it and given the namebind-bind .
(defthm bind-bind

(equal (bind x v (bind x w a))
(bind x v a)))

The effect of the rule is to replace every instance of the left-hand side,(bind x v (bind x
w a)) , by the corresponding instance of the right,(bind x v a) . The left/right orientation
of the rule is that given in the statement of conjecture. That orientation is irrelevant to the
proof of the rule – equality is symmetric and the theorem prover “knows” that – but the user
must be aware of how the expression of a conjecture affects the rules generated from it.

Before we leavebind-bind , it is worth pointing out what it means semantically. We can
read the composition of the two bind expressions as chronological sequencing. That is, if the
binding ofx is changed towand then it is changed tov , the effect is as thoughx was set tov .

Typically, the ACL2 theorem prover fails to simplify the input conjectureφ to t and
induction is inappropriate. The user inspects the output of simplification,φ′, and looks for
compositions that are “unnecessarily complex,” as is the left-hand side ofbind-bind . The
user then proves a theorem likebind-bind that shows a simpler form of the offending term
and gets the theorem prover to prove it, recursively solving whatever problems arise in the
process. When the simplifying theorem is finally proved, the user then tries to proveφ again,
expecting to see the new rule fire and simplifyφ′. The iterated invention of new theorems that
give rise to rules for proving a given goal is calledThe Methodand is the most common way
user’s interact with ACL2.

Bind-bind is an example of an unconditional rewrite rule. ACL2 supports conditional
rewriting too. Here is a theorem from which a conditional rule is produced.
(defthm binding-append1

(implies (bound? key a)
(equal (binding key (append a b))

(binding key a))))

Hereappend is the function that concatenates two lists. The theorem says that ifkey is bound
in a, then the binding ofkey in the concatenation ofa andb is just the binding ofkey in a.
The rewrite rule generated from this theorem causes the following behavior by the rewriter.
Suppose the rewriter encounters a potential target term that is aσ instance of(binding key
(append a b)) . Then the rewriterbackchainsto theσ instance of(bound? key a) and
tries, recursively, to rewrite it tot . If successful, it replaces the target by theσ instance of
(binding key a) . Otherwise, the rule does not fire. A more succinct way to read this rule
is: replace(binding key (append a b)) by (binding key a) , provided(bound?
key a) rewrites tot .

There is a dual theorem we could prove:
(defthm binding-append2

(implies (and (alistp a)
(not (bound? key a)))

(equal (binding key (append a b))
(binding key b))))

The rule can be read: replace(binding key (append a b)) by (binding key b) ,
provided(alistp a) and (not (bound? key a)) rewrite to t . The hypothesis thata
be analist , a true list of pairs, is necessary for this to be a theorem.



Some ACL2 users might prefer the following rule instead ofbinding-append1 and
binding-append2 .
(defthm binding-append

(implies (alistp a)
(equal (binding key (append a b))

(if (bound? key a)
(binding key a)
(binding key b)))))

This rule rewrites(binding key (append a b)) to the indicatedif -expression, pro-
vided(alistp a) rewrites tot . Theif expression introduces into the conjecture the ques-
tion (bound? key a) . This if will cause a case split, unless the question can be settled by
rewriting.

Note thatbinding-append combines the other twobinding /append rules shown. In a
way, it is more powerful than either of those rules: it can fire even if thebound? question can-
not be settled by rewriting. But it is not strictly more powerful because there are circumstances
under whichbinding-append will not fire while binding-append1 would fire: if the
bound? question rewrites tot but(alistp a) cannot be rewritten tot . That is, thealistp
hypothesis actually weakensbinding-append in the case wherebinding-append1 fires.

It is up to the user to decide which behavior is desired: that induced bybinding-append
or that induced by the combination of the other two rules. It is possible the user might prove
all three rules and switch between the two behaviors by enabling and disabling rules.

It is possible to attach pragmatic advice to a rule. The theorem below is logically equiv-
alent tobinding-append above because the functionforce is logically defined to be the
identity function.
(defthm forced-binding-append

(implies (force (alistp a))
(equal (binding key (append a b))

(if (bound? key a)
(binding key a)
(binding key b)))))

But the rule generated from it will fire even if(alistp a) does not rewrite tot . When
that backchaining fails,(alistp a) is assumedand the rule is fired anyway! If the main
proof succeeds, the theorem prover starts aforcing roundduring which it brings all of its
power to bear on proving (the appropriate instance of)(alistp a) (under the assumptions
governing the occurrence of the target). For example, induction might be used. Users often
forcehypotheses that aretype-like. If we believe thatbinding is always applied to an alist,
then that hypothesis “should” not prevent the rule from firing. If the main proof succeeds but
the forcing round fails, it indicates a possible “type” violation.

More arbitrary heuristic advice may be attached to a rule using the functionsyntaxp .
Syntaxp is logically defined to be the constant function that returnst . The theorem below
is logically equivalent toforced-binding-append andbinding-append .
(defthm forced-binding-append-on-locals

(implies (and (force (alistp a))
(syntaxp (equal a ’(locals (top-frame s)))))

(equal (binding key (append a b))
(if (bound? key a)

(binding key a)
(binding key b))))).

But it will only fire on targets in which the instance ofa is literally the term(locals
(top-frame s)) . Syntaxp allows the user to use ACL2 as a programming language to



query the context in which the potential target occurs and to there decide whether to fire the
rule.

3.3 Books

Collections of definitions and theorems (and the rules they generate) can be assembled into
files calledbooks. The user can include a book in a session and thereby extend the database
with all the rules in that book. It is also possible to include selected rules from a book and to
include multiple books.

It is via books that we have implemented a variety of proof techniques for the JVM.

4 Our Formal Model of the JVM

We model the JVM operationally. Formally modeling computing machines operationally has
a long tradition. McCarthy [31] said “The meaning of a program is defined by its effect on
the state vector.”

The first mechanized formal model of the JVM was Cohen’s “defensive JVM” [10] in
ACL2. Cohen’s machine includes type tags on all data objects so that type errors can be
detected and signaled at runtime. It was designed for use in verifying the bytecode verifier.
Cohen’s machine does not include as many bytecodes as the model described here, nor does
it include threads.

The model described here is the fifth machine in a series of models developed, with Co-
hen’s help, so that the author could teach an undergraduate course at the University of Texas at
Austin on modeling the JVM in ACL2. The series starts with a simple machine for executing
straight-line stack-based integer code. Successively more complicated machine models are
then introduced, adding new control and primitive data instructions, a subroutine call, a heap
with instance objects, method resolution and invocation, and threads. The machine described
here is named M5 and is the last machine in the series above.

A sequential predecessor of M5, named M3, is discussed in [33], including how we use
ACL2 to prove theorems about sequential bytecode programs. (M4 was a multi-threaded
version that supported only a few bytecodes.) That paper briefly presents some of the ideas
discussed here at greater length.

M5 is an incomplete and inaccurate model of the JVM. M5 omits support for syntac-
tic typing (including the role of method signatures in method resolution), field and method
access modes, class loading and initialization, exception handling, and errors. In addition,
our semantics for threading is interleaved bytecode operations (and thus assumes sequential
consistency). We are working on elaborations of M5 to remedy these omissions.

To describe our JVM model, we start by describing the representation of JVM states in
ACL2. The state is an ACL2 object. In this paper, we capitalize the word “object” when
referring to a Java instance Object and we use lowercase when referring to an ACL2 object.
Thus, every Java Object is represented by an ACL2 object, in fact, a list. Every Java item of
primitive type, e.g., eachchar andint , is also represented by an ACL2 object.

After presenting our representation of states, we discuss our models of several impor-
tant bytecode instructions. M5 includes models of 138 instructions. Each is modeled by a
“semantic function” that describes the state transition induced by executing a given bytecode
instruction. We then explain how we deal with thread scheduling and the execution model. We
conclude this section with a brief summary of related modeling work. The full M5 model can
be found athttp://www.cs.utexas.edu/users/moore/publications/m5 .



4.1 States

A state is a triple, containing a thread table, a heap, and a class table. The accessors for the
components of a state are

• thread-table – a map from thread identifiers to threads.

• heap – a map from heap addresses to instance objects.

• class-table – a map from class names to class declarations.

All of the maps in question are represented as alists. We discuss each component in turn in
the following subsections.

The functions for constructing and accessing the components of states are shown below.
The functionnth fetches the element at a given position in a list.
(defun make-state (thread-table heap class-table)

(list thread-table heap class-table))
(defun thread-table (s) (nth 0 s))
(defun heap (s) (nth 1 s))
(defun class-table (s) (nth 2 s))

We define these four functions for reasons of abstraction and convenience. We could simply
write cons , car , andcdr expressions.

4.1.1 Thread Table

The thread table is a map from thread identifiers to threads. This map is represented as an alist.
Thus,(binding th (thread-table s)) is the standard idiom for fetching the thread as-
sociated with a given thread identifier,th , in a states . Thread identifiers are natural numbers.

A thread is a triple.

• call-stack – sometimes called the method invocation stack, this is a stack of frames.
Each frame records the invocation of one method and the top frame is the currently run-
ning method in the thread. Each other frame is suspended awaiting the termination of
some method invoked by it.

• call-stack-status – eitherSCHEDULEDor UNSCHEDULED.

• call-stack-rref – a reference to an object in the heap representing the current thread.
We discuss this reference later (see page 16).

In our model it is rare for a function to have a thread “in hand” and need to fetch one of
these components. But it is very common for a function to have a thread identifier and state
“in hand” and need one of these components for the corresponding thread. So the standard
idiom for accessing the call stack of threadth in states is (call-stack th s) .
(defun call-stack (th s)

(nth 0 (binding th (thread-table s))))

The call stack of a thread is a stack of frames. Each frame other than the deepest corre-
sponds to the invocation of a method by the method in the frame below it. The deepest frame
is typically executing therun method of the thread. The top frame of a call stack is that for
the currently active method. We use it so frequently we define a function for accessing it.
(defun top-frame (th s) (top (call-stack th s)))

Each frame contains six components.



• pc – a natural number that is the byte offset of the current bytecode instruction in the
method body of the method being executed.

• program – a list of the bytecode instructions of the current method

• locals – a list specifying the values of the method’s local variables. In the JVM, lo-
cals are referenced positionally. For example, local 0 is the “self” Object (this ) for an
instance method, local 1 is the first formal parameter, etc., local variables other than pa-
rameters are included at the end. Theith element of thelocals list of a frame holds
the object representing the value of theith local variable. Our model supports double
word variables (which consume two positions) by using one slot to hold the entire object
representing the value and the other slot to hold an irrelevant dummy value.

• stack – sometimes called the “operand stack” to distinguish it from the call stack, this
is a stack objects used in the evaluation of expressions and to pass arguments to other
methods.

• sync-flg – one of three symbols,LOCKED, S LOCKED, orUNLOCKED, indicating whether
the invocation of the current method locked the self Object (in the case of an instance
method), the method’s class Object (in the case of static method) or neither.

• cur-class – the name of class in which the current method was defined.

In the actual JVM, programs are just sequences of bytes; most instructions are one byte
long but some are longer. TheALOADinstruction, which pushes the value of thenth local
variable onto the operand stack, is coded as two successive bytes, the byte for the opcode
ALOADand a byte forn. In our representation, this instruction is represented in parsed form
by the object(ALOAD n) . We discuss the bytecode instructions at length below.

4.1.2 Heap

In Java and the JVM, new Objects are allocated in a heap. Pointers to these Objects, called
“references,” are passed around in JVM programs.

In our model, theheap of a state is a map, represented as an alist, from heap addresses to
objects representing instance Objects. Ifa is the heap address of an object representing some
Object, then(REF a) is the object representing a reference to that Object.

Our standard idiom for retrieving the representation of the instance Object at a given
referenceref in the heap of a states is (deref ref (heap s)) , where
(defun deref (ref heap) (binding (cadr ref) heap)).

We use natural numbers to represent heap addresses. This allows a simple scheme for
generating new heap addresses: as Objects are allocated, they are assigned successive natural
numbers as heap addresses. Thus, in a sequential process, the heap addresses indicate the
order in which Objects were created. This makes the definition of certain heap invariants and
other properties easier to express, because arithmetic on heap addresses can be used in the
specification language (ACL2).

Natural numbers are also used to represent the int primitive type in Java. But our repre-
sentation is unambiguous. If, in our model, a JVM method finds27 on top of the operand
stack, it represents the int 27. If a method finds(REF 27) on top of the stack, it represents a
reference to the object with heap address27.

It is not logically necessary to garbage collect our heap.



The concreteness of this representation of heap addresses may offend some readers. But
heap addresses have to be represented bysomeACL2 objects, since they must somehow
be involved in references, and referencesmustbe objects since they are part of the state.
What other ACL2 objects might we have used for heap addresses? We could have used lists,
symbols, strings, or numbers of some kind, e.g., any objects chosen from some infinite set of
ACL2 objects. But natural numbers have the advantages discussed above. They should not be
thought of as connected in any way to the physical addresses at which an implemented JVM
allocates an object. While we can use arithmetic on them in the specification language, Java
and JVM programs cannot exploit their arithmetic properties. Heap addresses and references
are just abstractions.

We have explained that the heap is a map from heap addresses to objects representing
instance Objects. We now explain how we represent the latter.

An instance Object is represented as a map from class names to maps from field names
to values. Suppose, for example, that the classPoint extends the built inObject class
and has fields namedx-coord , y-coord , andradius . Suppose thatColoredPoint ex-
tendsPoint and has fields namedcolor and radius . Then the object representing a
ColoredPoint looks like this
(( "ColoredPoint" . (( "color" . v1)

( "radius" . v2)))
( "Point" . (( "x-coord" . v3)

( "y-coord" . v4)
( "radius" . v5)))

( "java.lang.Object" . ( . . . )))

where thevi are the values of the indicated fields and we have elided away the fields for the
primitive "Object" class. We call the object above aninstance object. Observe that there
are two fields with name"radius" in the instance object above. One is the"radius" field
of the "ColoredPoint" class, which has valuev2, and the other is the"radius" field of
the"Point" class, which has valuev5.

Here are the functions for accessing and setting the fields of an instance object.
(defun field-value (class-name field-name instance)

(binding field-name
(binding class-name instance)))

(defun set-instance-field
(class-name field-name value instance)
(bind class-name

(bind field-name value
(binding class-name instance))

instance))

For example, if the variableinstance has as its value the instance object above, then
(field-value "Point" "radius" instance) is equal tov4. The term(set-instance-field
"Point" "radius" v′

4 instance) returns an instance object just like the one above, but
with v4 replaced byv′

4.
In our model, arrays are represented as though they were ordinary instance Objects ex-

tendingObject with one field named"<array>" . However, the contents of this field is a
4-tuple consisting of the constant symbol*array* , an array type, an array bound, and the
array content. The last is a list of objects.

We now explain thecall-stack-rref field of a thread. In Java, threads are Objects
in the heap, references to them are created bynew and those references can be passed to
methods, such as thestart method. But threads are also processes. Our model uses the
heap to store the “object manifestation” of a thread and the thread table to store the “process
manifestation”. To every thread in the thread table (except the first one), there corresponds



a unique"java.lang.Thread" object in the heap. Thecall-stack-rref of the thread
contains the reference to that thread object.

For example, supposenew is used to create a new object in the heap. The object con-
tains the fields specified by its class hierarchy and is allocated to some heap addressa and
has reference(REF a) . But if the object is aThread , i.e., if the class hierarchy includes
"java.lang.Thread" , thennew also creates a new entry in the thread table and stores
(REF a) in its call-stack-rref component. JVM programs pass(REF a) to refer to the
Thread object, but when it is necessary to determine what is the corresponding process, we
can search the thread table for the thread with thatcall-stack-rref .

4.1.3 Class Table

Theclass-table component of a state is a map from class names to class declarations. This
map is represented by an alist. Class declarations are 7-tuples. The components are briefly
described below.

• class-decl-name – the name of the class, which is always some ACL2 string.

• class-decl-superclasses – the list of superclass names, from most specific to least.
The class name"java.lang.Object" is always the last element of the list.

• class-decl-fields – the list of field names for instance objects in this class. Field
names are always ACL2 strings.

• class-decl-sfields – the list of static field names associated with this class.

• class-decl-cp – the constant pool for the class. In our model, the constant pool is a
list of objects, each of which is either of the form(INT n) , wheren represents an int, or
(STRING (REF a) string) , wherestring is an ACL2 string anda is either-1 or the
heap address at which a"java.lang.String" instance object has been allocated. The
"java.lang.String" class contains a field called the"strcontents" and if a is a
heap address then the object at that address containsstring in its "strcontents" field.

• class-decl-methods – a list of the methods associated with this class. See below.

• class-decl-heapref – the reference to the object in the heap representing this class.

A method declaration has four components.

• method-name – the name of the method, a string.

• method-formals – a list of types in 1:1 correspondence with the formals of the method.

• method-sync – t or nil indicating whether the method is synchronized.

• method-program – the list of bytecode instructions in the method body.

Normally we would represent such a tuple as( name formals sync program) but in this
case we use( name formals sync . program) .

A method is said to benativeif its program is(nil) .
(defun method-isNative? (m)

(equal ’(NIL) (method-program m)))



4.2 Constructing Modified States

For each JVM bytecode instruction in our subset, we define a state transition function that
takes the instruction, a thread identifier, and a state, and returns the new state produced by
executing the given instruction in the given thread of the given state. Typically, the new state
is just like the old state except a few fields of the top frame of given thread are changed.

We define a macro to make it it easy to read and write such state transitions. Rather than
define the macro here — which would require a digression into the fine points of macro
definition — we merely show how the macro expands in common uses.

The expression(modify th s :pc pc) is equivalent to
(make-state

(bind th
(make-thread

(push (make-frame pc
(locals (top-frame th s))
(stack (top-frame th s))
(program (top-frame th s))
(sync-flg (top-frame th s))
(cur-class (top-frame th s)))

(pop (call-stack th s)))
’SCHEDULED
(call-stack-rref th (thread-table s)))

(thread-table s))
(heap s)
(class-table s))

That is, the result is a state that is likes except for the top frame of the call stack of thread
th , which in the new state has the program counterpc instead of its old value. In addition,
the status of threadth is set toSCHEDULED. It might have been more appropriate to leave the
status flag unchanged, but in fact it will always beSCHEDULEDwhen the thread is executing.

The modify macro takes a variety of keywords to indicate which slot of the state to
change. Their order does not matter.

The term
(modify th s

:heap heap
:pc pc
:sync-flg flg
:stack stk)

is equivalent to
(make-state

(bind th
(make-thread

(push (make-frame pc
(locals (top-frame th s))
stk
(program (top-frame th s))
flg
(cur-class (top-frame th s)))

(pop (call-stack th s)))
’SCHEDULED
(call-stack-rref th (thread-table s)))

(thread-table s))
heap
(class-table s))



and the term
(modify th s :heap heap :call-stack cs)

is equivalent to
(make-state

(bind th
(make-thread cs

’SCHEDULED
(call-stack-rref th (thread-table s)))

(thread-table s))
heap
(class-table s))

Not all combinations of keywords make sense. For example, it makes no sense to set the
:call-stack of the thread and also set the:pc of the top frame of the old call stack.

4.3 Bytecode Instruction Semantics

We are now ready to characterize the effects of each bytecode instruction in our subset. For
each instruction class we will define an ACL2 function, called thesemantic function, which
describes the state change caused by executing a given instruction in a given thread of a given
state. After reading a few it should be straightforward to read the entire list of 138.

4.3.1 AALOAD

The following description of theAALOADbytecode instruction is taken verbatim from [27].

aaload
Operation

Load reference from array
Format

aaload
Forms

aaload = 50 (0x32 )
Operand Stack

...,arrayref, index⇒ ...,value
Description

The arrayref must be of type reference and must refer to an
array whose components are of type reference. Theindexmust be
of type int . Botharrayref andindexare popped from the operand
stack. The referencevaluein the component of the array atindexis
retrieved and pushed onto the operand stack.
Runtime Exceptions

If arrayref is null , aaload throws aNullPointerException .
Otherwise, ifindex is not within the bounds of the array refer-

enced by arrayref, the aaload instruction throws an
ArrayIndexOutOfBoundsException .



In Java, every data item is either of a primitive type or is a reference (to some Object).
JVM instructions are typed in the sense that it is possible to determine, for example, the type
of object on top of the operand stack after each instruction.

The meaning of the informal specification ofaaload is as follows. First, we are told that
it leaves a reference on top of the stack. Then we are told it is a one-byte instruction whose
opcode is 50 (32 in hexadecimal). When it is executed, two items are expected on the operand
stack, anindexand anarrayref, with the index on top. The top item is a 32-bit integer, and the
next item is a reference to an array Object in the heap. Furthermore, the elements of the array
are themselves references. The two items are popped off the operand stack, the item, called
value, at positionindex is fetched from the array indicated byarrayref andvalue is pushed
onto the operand stack. Certain exceptions are caused if the expectations are not met. Our
current model of the JVM does not deal with exceptions, though we are working on a model
that does.

Our formalization of the specification above is shown below. This is thesemantic function
for AALOAD.
(defun execute-AALOAD (inst th s)

(let* ((index (top (stack (top-frame th s))))
(arrayref (top (pop (stack (top-frame th s)))))
(array (deref arrayref (heap s))))

(modify th s
:pc (+ (inst-length inst) (pc (top-frame th s)))
:stack (push (element-at index array)

(pop (pop (stack (top-frame th s))))))))

It takes as its arguments anAALOADinstruction,inst , a thread identifier,th , and a state,s .
It returns a modified state.

The let* expression above is a convenient abbreviation in ACL2. It sequentially binds
the local variablesindex , arrayref , andarray to the values of the corresponding ex-
pressions and then returns the modified state. The meaning of the definition above should be
obvious by now. Note that we advance thepc , even though the informal specification omitted
mention of it.

4.3.2 AASTORE

Here is theAASTOREinstruction pops three items from the stack, treats the top one as a
reference and stores it into the array position indicated by the other two.
(defun execute-AASTORE (inst th s)

(let* ((value (top (stack (top-frame th s))))
(index (top (pop (stack (top-frame th s)))))
(arrayref (top

(pop
(pop (stack (top-frame th s)))))))

(modify th s
:pc (+ (inst-length inst) (pc (top-frame th s)))
:stack (pop (pop (pop (stack (top-frame th s)))))
:heap (bind (cadr arrayref)

(set-element-at value
index
(deref arrayref (heap s))
(class-table s))

(heap s)))))

The term(cadr arrayref) is the heap address,a, inside the reference(REF a) .



4.3.3 IADD

TheIADD instruction pops twoint s off the operand stack and pushes their sum. According to
[27], “The result is the 32 low-order bits of the true mathematical result in a sufficiently wide
two’s-complement format, represented as a value of typeint .” The int input is represented
in ACL2 by integers satisfying the predicateintp .
(defun intp (x)

(and (integerp x)
(<= (- (expt 2 31)) x)
(< x (expt 2 31))))

The result is the true mathematical sum of the two integers “fixed” with the functionint-fix .
(defun s-fix (x n)

(let ((temp (mod (ifix x) (expt 2 n))))
(if (< temp (expt 2 (1- n)))

temp
(- temp (expt 2 n)))))

(defun int-fix (x)
(s-fix x 32))

The functionifix above is an ACL2 primitive; it is the identity function on integers and
returns0 on all other objects. We use it ins-fix to insure that the output is an integer,
regardless of the input’s type. We uses-fix to manipulate 8-bit and 16-bit data also.

Here is the semantic function forIADD. The other arithmetic instructions are similar.
(defun execute-IADD (inst th s)

(modify th s
:pc (+ (inst-length inst) (pc (top-frame th s)))
:stack (push (int-fix

(+ (top (pop (stack (top-frame th s))))
(top (stack (top-frame th s)))))

(pop (pop (stack (top-frame th s)))))))

4.3.4 GETFIELD

TheGETFIELD instruction is a 3-byte instruction. In the actual JVM it consists of the opcode
(180) and two bytes, which together form an index into the constant pool of the current class.
The object at that location in the constant pool “gives the name and descriptor of the field as
well as a symbolic reference to the class in which the field is to be found.” In our formaliza-
tion, we let theGETFIELD instruction take three operands,class-name , field-name , and
long-flag . These values can be determined statically from the indices of the instruction
and the current class. Thelong-flag indicates whether the type of the field (included in its
“descriptor”) is a double word item. The instruction pops a reference off the operand stack,
dereferences it through the heap to an instance object, fetches the value of theclass-name
field namedfield-name , and pushes it onto the operand stack.
(defun execute-GETFIELD (inst th s)

(let* ((class-name (arg1 inst))
(field-name (arg2 inst))
(long-flag (arg3 inst))
(instance (deref (top (stack (top-frame th s)))

(heap s)))
(field-value (field-value class-name field-name

instance)))
(modify th s



:pc (+ (inst-length inst) (pc (top-frame th s)))
:stack (if long-flag

(push 0
(push field-value

(pop (stack (top-frame th s)))))
(push field-value

(pop (stack (top-frame th s))))))))

4.4 MONITORENTER

Each Object in Java has amonitor and anmcount field inherited from primitive class
java.lang.Object . These fields are used to provide synchronization between threads. The
monitor of an Object is either set to0 or the thread identifier of the thread that “owns”
the “lock” on the Object. Themcount of an Object is the number of times the Object
has been locked (reentrant locking is allowed). Special instructionsMONITORENTERand
MONITOREXIT, are available for manipulating these fields.
(defun execute-MONITORENTER (inst th s)

(let* ((obj-ref (top (stack (top-frame th s))))
(instance (deref obj-ref (heap s))))

(cond
((objectLockable? instance th)

(modify th s
:pc (+ (inst-length inst) (pc (top-frame th s)))
:stack (pop (stack (top-frame th s)))
:heap (lock-object th obj-ref (heap s))))

(t s))))

This instruction increments the lock on the Object on top of the operand stack, if it is
not already owned by another thread. Note that if the lock is owned by another thread, the
instruction is a no-op: we return the given states . Thus, thepc continues to point to the
MONITORENTERinstruction, which will be executed again when the thread is next scheduled.

The two important functions used above are shown below.
(defun objectLockable? (instance th)

(let* ((obj-fields (binding "java.lang.Object" instance))
(monitor (binding "monitor" obj-fields))
(mcount (binding "mcount" obj-fields)))

(or (zp mcount)
(equal monitor th))))

(defun lock-object (th obj-ref heap)
(let* ((obj-ref-num (cadr obj-ref))

(instance (binding (cadr obj-ref) heap))
(obj-fields (binding "java.lang.Object" instance))
(new-mcount (+ 1 (binding "mcount" obj-fields)))
(new-obj-fields

(bind "monitor" th
(bind "mcount" new-mcount obj-fields)))

(new-object
(bind "java.lang.Object" new-obj-fields

instance)))
(bind obj-ref-num new-object heap)))



4.4.1 INVOKEVIRTUAL

The most complicated JVM instruction is probablyINVOKEVIRTUAL, which invokes a method
on an Object and passes it some actuals. The Object and the actuals are pushed onto the
operand stack of the caller beforeINVOKEVIRTUAL is executed. If there aren actuals, then
the Object is the item at depthn + 1 on the operand stack. In the semantic function below,n
is callednformals . The top item on the operand stack is the last of the method’s actuals.

The format of ourINVOKEVIRTUALinstruction is
(INVOKEVIRTUAL" class " " method-name " " nformals ).

In implemented JVMs, the instruction includes indices into the constant pool through which
the machine can determineclass, method-name, and the type signature of each formal and the
result. In our current model we ignore types; we abstract the signature information merely to
the number of formals involved.

The method invoked depends upon the class hierarchy of Object and uponnameand
nformals. Recall that each class contains method definitions and superclasses; this gives rise
to a hierarchy of alternative method definitions (some of which may have the same name)
associated with the class of the Object. Roughly speaking,INVOKEVIRTUAL searches this
hierarchy for the first (or “closest”) method with the given name and type signature. The
reason the instruction format includes aclassis that the search can be optimized by means of
a “method dispatch vector,” but the result of that optimization must be as specified below.

Once a particular method definition is identified, the Object and the actuals are popped
from the operand stack of the caller, a new frame is constructed containing the bytecode for
the identified method and local variable bindings containing the Object and the actuals, and
that frame is pushed onto the call stack of the thread in question.

There are myriad details, of course. These details include the possibility that the method
is “native,” which means bytecode for it is not available. In an implemented JVM, native
methods are usually coded in machine code. But two native methods are especially important
and “ought” to be part of the JVM:start andstop , the methods for beginning and ending
the life of a thread Object as a process. They are handled specially below. Recall that each
thread created byNEWhas a object manifestation in the heap and a process manifestation
in the thread table. Upon creation, the process manifestation has the statusUNSCHEDULED
which may be thought of as meaning “not allowed to run.” Thestart method is invoked on
the reference to the object manifestation, it identifies the corresponding entry in the thread
table and sets its status toSCHEDULED.

Another detail is that of synchronization. Some method definitions specify that the Ob-
ject on which they are to be invoked must be locked upon invocation. These “synchronized
methods” are also handled specially below. Thet clause of thecond below describes the
“normal” case of unsynchronized method invocation.

The semantic function below constructs its answer state in two steps. First, the input state
s is transformed tos1 and thens1 is transformed to the answer. States1 may be thought
of ass with the program counter of the caller’s frame advanced past theINVOKEVIRTUAL
instruction and the Object and actuals removed from the operand stack.

Do not be put off by the length of the definition below. Each part should be clear now.
(defun execute-INVOKEVIRTUAL (inst th s)

(let* ((method-name (arg2 inst))
(nformals (arg3 inst))
(obj-ref

(top (popn nformals (stack (top-frame th s)))))
(instance (deref obj-ref (heap s)))
(obj-class-name



(class-name-of-ref obj-ref (heap s)))
(closest-method

(lookup-method method-name
obj-class-name
(class-table s)))

(prog (method-program closest-method))
(s1

(modify th s
:pc (+ (inst-length inst)

(pc (top-frame th s)))
:stack (popn (+ nformals 1)

(stack (top-frame th s)))))
(tThread (rrefToThread obj-ref (thread-table s))))

(cond
((method-isNative? closest-method)

(cond ((equal method-name "start")
(modify tThread s1 :status ’SCHEDULED))

((equal method-name "stop")
(modify tThread s1

:status ’UNSCHEDULED))
(t s)))

((and (method-sync closest-method)
(objectLockable? instance th))

(modify th s1
:call-stack
(push

(make-frame 0
(reverse

(bind-formals (make-list (+ nformals 1))
(stack (top-frame th s))))

nil
prog
’LOCKED
(arg1 inst))

(call-stack th s1))
:heap (lock-object th obj-ref (heap s))))

((method-sync closest-method)
s)

(t
(modify th s1

:call-stack
(push

(make-frame 0
(reverse

(bind-formals (make-list (+ nformals 1))
(stack (top-frame th s))))

nil
prog
’UNLOCKED
(arg1 inst))

(call-stack th s1)))))))

4.4.2 NEW

We briefly deal with theNEWinstruction. The basic idea is to construct a new instance object
of a given class, assign it a heap address,new-address , (namely, the length of the current
heap), and push a reference to that address on the operand stack. The reference is, of course,



constructed by(list ’REF new-address) . The construction of the instance object itself
is done by the functionbuild-an-instance .
(defun build-class-field-bindings (field-names)

(if (endp field-names)
nil

(cons (cons (car field-names) 0)
(build-class-field-bindings (cdr field-names)))))

(defun build-immediate-instance-data (class-name class-table)
(cons class-name

(build-class-field-bindings
(class-decl-fields

(bound? class-name class-table)))))
(defun build-an-instance (class-names class-table)

(if (endp class-names)
nil

(cons (build-immediate-instance-data (car class-names)
class-table)

(build-an-instance (cdr class-names)
class-table))))

The last function takes a list of classes (the class to build and its superclass chain) and a class
table and constructs an alist mapping each class to an alist mapping each field of the class to
the initial value0. The object thus constructed is assigned tonew-address in the new heap.

TheNEWinstruction is complicated, however, by the need to create the process manifesta-
tion of any new thread Object and store it in the thread table. The semantics of Java specifies
that when a new thread is created the process should invoke therun method of the class.
Thus, in building the new thread table entry,NEWresemblesINVOKEVIRTUAL. The reference
to the new object is passed as the0th formal (aka “this ”) to the run method and that refer-
ence is also stored as the entry’scall-stack-rref . The entry’s status isUNSCHEDULED.
(defun execute-NEW (inst th s)

(let* ((class-name (arg1 inst))
(class-table (class-table s))
(closest-method

(lookup-method "run" class-name class-table))
(prog (method-program closest-method))
(new-object

(build-an-instance
(cons class-name

(class-decl-superclasses
(bound? class-name class-table)))

class-table))
(new-address (len (heap s)))
(s1

(modify th s
:pc (+ (inst-length inst) (pc (top-frame th s)))
:stack (push (list ’REF new-address)

(stack (top-frame th s)))
:heap (bind new-address new-object (heap s)))))

(if (isThreadObject? class-name class-table)
(modify nil s1

:thread-table
(addto-tt

(push
(make-frame 0

(list (list ’REF new-address))
nil
prog



’UNLOCKED
class-name)

nil)
’UNSCHEDULED
(list ’REF new-address)
(thread-table s1)))

s1)))

4.5 Execution

We have defined semantic functions for 138 instructions in the style shown above. Now we
put it all together as a state transition function for the JVM.

The function, namedstep , takes a thread identifier and a state and returns the next state.
(defun step (th s)

(if (equal (call-stack-status th s) ’SCHEDULED)
(do-inst (next-inst th s) th s)
s))

If the thread to be stepped has statusSCHEDULED, then it is eligible for running. In that
case,step usesnext-inst to fetch the next bytecode instruction from the thread.
(defun next-inst (th s)

(index-into-program (pc (top-frame th s))
(program (top-frame th s))))

Of course,next-inst just uses the program counter and program in the top frame of the
thread’s call stack and fetches the appropriate instruction. The functionindex-into-program
counts the length of each instruction in bytes.

Once the next instruction is obtained,step usesdo-inst to execute the appropriate
semantic function.Do-inst is just a bigcase -statement on the opcode of the instruction.
(defun do-inst (inst th s)

(case (op-code inst)
(AALOAD (execute-AALOAD inst th s))
(AASTORE (execute-AASTORE inst th s))
. . . . . .
(otherwise s)))

Unrecognized opcodes are treated as no-ops in our model.
We definerun to take a schedule and a state and return the state obtained by stepping

as per the schedule. In our model, a schedule is just a list of thread identifiers indicating the
order in which the threads are to be stepped.
(defun run (sched s)

(if (endp sched)
s
(run (cdr sched) (step (car sched) s))))

Observe that we do not model thread scheduling; like garbage collection, that is up to the
JVM implementor and not specified by [27]. Suppose thats0 is defined as a function that
takes some input,n, and returns some initial state poised to run some method on inputn.
Suppose also thatp is some predicate. Then if
(p n (run sched (s0 n)))

is a theorem, then every state reachable from the initial state(s0 n) has the propertyp.



More commonly, we might prove a theorem of the form
(implies (good-sched sched n) (p n (run sched (s0 n))))

which says that all states reachable under “good schedules” have propertyp. Heregood-sched
formalizes some constraint on the schedules we consider. Typical constraints might say that
a given thread is executed a certain number of times or that every thread is executed at least a
certain number of times. The latter constraint is a finite approximation to fairness.

Finally, we might also prove the special case
(p n (run (sched n) (s0 n)))

which says that(sched n) produces a schedule sufficient to drive(s0 n) to a state satis-
fying p. This is actually the form of a typical program correctness theorem in this setting. For
example, imagine thats0 constructs a state poised to execute the factorial method onn and
thatp checks thatn! is the top item on the operand stack of top-frame of the call stack of a
certain thread.

Some readers might be tempted to abstract the theorem above to
∃a (p n (run a (s0 n))).

and be content that some schedule is sufficient to make(s0 n) compute the desired result.
In ACL2, this statement is not easily made, because the logic does not provide quantifiers.1

But in fact we prefer the exhibition of a total recursive function,sched , for delivering the
alleged schedule. This is a much stronger result than the existentially quantified one. Consider
the program that runs forever, generating successively allint values. The bytecode for this
program is
((ICONST 0) ; push 0

(ICONST 1) ; loop: push 1
(IADD) ; pop two and push sum
(GOTO -2)) ; goto loop

We call this the “universalint program,” largely in jest. The universalint program has the
property that for any givenint , there exists a schedule that makes the program leave that
int on top of the stack. Thus, if one is content with existential scheduling, the universalint
program computes all possibleint -valued functions — you just have to know when to look
at the answer.

We return to this point later.

4.6 Omissions and Inaccuracies

We now reiterate the ways in which our model is incomplete and inaccurate. We are working
on improving the accuracy of our model.

• The current model omits support for floating point data. ACL2 has been used extensively
to do floating-point verification work [14, 41, 40, 39, 34] and adding floating-point to our
JVM model would not be difficult.

• The current model omits support for syntactic typing but we currently have a proto-
type model that addresses this problem. In the model, class declarations have additional
components that contain the type signatures of fields and methods; and data in locals,
the operand stacks, and the heap is tagged to indicate its type. This allows us to rede-
fine lookup-method — our function for finding the closest method — to do signature

1Actually, support for quantification exists. See the online documentation ofdefchoose and
defun-sk (“define Skolem function”).



matching, as required in Java method resolution. In addition, it allows us to define two
JVM models, a “defensive” one that does runtime “type checks” and one (like this one)
that does not. The defensive machine signals a type violation and halts when the runtime
checks fail. It is possible to prove that when no violation is signaled, the two machines
return the same state. Using the defensive machine, it is possible to investigate the formal
correctness of the bytecode verifier: code approved by the verifier, when run on well-typed
input, will not signal a type violation. Major parts of this proof have been checked with
ACL2, under the direction of Hanbing Liu, a UT Austin graduate student. Liu continues
to work on the project.

• Java permits fields and methods to have access modes limiting their use outside the defin-
ing class. We have not implemented them; the outline of the required modification should
be clear.

• Class loading and initialization are not addressed. The formal model must have as an
argument (or somehow accessible otherwise) the class descriptions of all classes that
might be loaded, along with socket information to formalize the restrictions of the security
manager. Class loading and initialization would move class declarations from this data
structure to our class table.

• The current model ignores the notion of exception handling in Java and the JVM. This is
a major omission and we are working on its addition. Hanbing Liu is also managing this
effort. The JVM’s facilities for exception handling are clearly specified but will affect our
method declarations — which should include exception tables — as well as the handling
of returns from method invocations.

• Our JVM model provides a sequentially consistent memory model. The official JVM
memory model, which is described in Chapter 17 of [27], does not require this and prob-
ably will not require it for arbitrary programs. The official JVM memory model is under
revision [30] and will probably require that any execution of a “correctly synchronized”
program must be equivalent to some interleaved bytecode execution. The memory model
is under revision . For details seewww.jcp.org/jsr/detail/133.jsp .

4.7 Related Work

We have already mentioned the ground breaking work of Rich Cohen [10] on the defensive
JVM (dJVM) model, the first formal model of a significant portion of the JVM. That work
was done at Computational Logic, Inc., where ACL2 was also first developed, and ACL2 was
the modeling language used. As previously noted, the machine described here was evolved,
with Cohen’s help, from the dJVM.

ACL2 was also used to model the Rockwell JEM1 microprocessor, the world’s first silicon
JVM, now marketed by aJile Systems, Inc. The ACL2 model was at the microarchitectural
level, not the higher level shown here, and was used as the standard test bench on which
Rockwell engineers tested the chip design against the requirements by executing compiled
Java programs. The ACL2 model executed at approximately 90% of the speed of the pre-
viously used C model [20, 21]. Greve, Wilding, and Hardin describe how microprocessor
models in ACL2 are made to execute fast [19]. The model there executes at approximately
3 million simulated instructions per second on a 728 MHZ Pentium III host running Allegro
Common Lisp.

At Rockwell not only are ACL2 models used for simulation purposes but microarchitec-
tural models are related to one another by ACL2 proofs. See [18].



Similar work is being conducted at Advanced Micro Devices. For example, an executable
ACL2 model of the RTL for the AMD AthlonTM floating-point square root was tested on
80 million floating-point vectors. The model computed the same answers as AMD’s RTL
simulator and this fact helped establish confidence in the formal model. ACL2 was then used
to prove that the RTL for each elementary floating-point operation on the Athlon is compliant
with the IEEE 754 floating-point standard [39].

We now turn to related mechanized formal JVM work other than that by the ACL2 com-
munity.

The Extended Static Checker (ESC) [11] is an example of a formal, practical and mecha-
nized tool for establishing certain simple assertions about Modula-3 programs. It is the basis
of the ESC/Java verifier [26] for Java, developed at the Compaq (now HP) Systems Research
Center (SRC) in Palo Alto, CA. ESC/Java is being extended in a tool named Calvin, by Shaz
Qadeer, at SRC, to support assume-guarantee style reasoning about Java [private communi-
cation].

The Java PathFinder [8, 44] (JPF) is an explicit-state model-checker for programs written
in Java. It can check certain kinds of invariants and deadlock. A tool with similar functional-
ity is Bandera [13]. Both of these model-checking tools have been used to check properties of
a Java version of the DEOS real-time operating system kernel, a program involving approxi-
mately 20 classes, 6 threads, 91 methods, 41 instance fields, and 51 static fields. The property
was a complex time-partitioning requirement. See our paper [35] for a discussion of the use
of JPF to check a theorem also proved by ACL2.

There are other theorem-proving based approaches to Java verification. One such tool is
the LOOP tool [2, 43] which translates Java and JML (a specification language tailored to
Java) classes into their semantics in higher order logic. As such, LOOP can be used as a front
end for such theorem provers as PVS [37] and Isabelle [36]. However, LOOP currently deals
only with sequential Java.

Other related work include [38, 1], where models of the JVM are formalized in Isabelle
and Coq [12]. In both efforts, the correctness of the bytecode verifier is addressed and the
JVM models are largely concerned with type correctness rather than full functionality.

5 An Example

In this section we display some simple Java, the class file produced from it, the representation
of that data in terms of a state object, and the use ofrun on that data.

5.1 Factorial in Java

In Figure 1 we show a Java file namedDemo.java .
Themain method is trivial: it computesfact on5 and stores the result,120 , in the static

class variableans . It would be more common to print the result, but we have not formalized
i/o, which is handled by native methods.

The result of running the Sun Java compiler,javac , on Demo.java and displaying the
results with the Sun utilityjavap -c is shown in Figure 2.

The ifle instruction at pc1 in Method int fact(int) is a branch instruction to pc
13 when the top of the stack is less than or equal to0. The javap utility displays the jump
targets as absolute program counters. But the actual JVMifle instruction takes an offset
from the current pc as its operand. Thus, this line ought to read1 ifle 12 to faithfully
display the bytecode.



class Demo {
static int ans;
public static int fact(int n) {

if (n>0)
{return n*fact(n-1); }

else return 1;
}
public static void main(String[] args) {
int k = 4;
ans = fact(k+1);
return;
}
}

Figure 1: A Recursive Factorial Method

Compiled from Demo.java
synchronized class Demo extends java.lang.Object

/* ACC SUPER bit set */
public static int fact(int);
public static void main(java.lang.String[]);
Demo();

Method int fact(int)
0 iload 0
1 ifle 13
4 iload 0
5 iload 0
6 iconst 1
7 isub
8 invokestatic #4 <Method int fact(int)>

11 imul
12 ireturn
13 iconst 1
14 ireturn

Method void main(java.lang.String[])
0 iconst 4
1 istore 1
2 iload 1
3 iconst 1
4 iadd
5 invokestatic #5 <Method int fact(int)>
8 putstatic #4 <Field int ans>

11 return
Method Demo()

0 aload 0
1 invokespecial #3 <Method java.lang.Object()>
4 return

Figure 2: The Class File for Demo.java



The bytecode for thefact method should be obvious. Push local0 (i.e.,n) on the operand
stack and test it against0. If it less than or equal to 0, branch to pc 13, push1 on the operand
stack and return thatint . Otherwise (at pc 4), pushn on the stack, pushn on the stack again,
push1, pop the top twoint s and push their difference. Now we haven andn − 1 on the
stack, with the latter on top. Recursively invokefact at pc 8. That will pass then− 1 as the
actual and leave anint result on the stack when it returns. Then, at pc 11, multiply the two
int s on top of the stack and return thatint .

The bytecode for themain method is also obvious. Push the constant4 onto the operand
stack. Pop and store it into local variable1. Push the value of local variable1. Push the
constant1. Pop twoint s and push their sum. (Now5 is the only item on the operand stack.)
Invoke thefact method on5, leaving120 on the stack. Pop it and store it into the static field
namedans (in the"Demo" class). Finally, return.

5.2 A State

The constant*Demo-state* , below, is a JVM state about to execute themain method of
theDemo.java . To explain it, we must explain its thread table, heap, and class table. These
components are defined below as individual constants so that we can discuss them one by
one.
(defconst *Demo-state*

(make-state *Demo-thread-table*
*Demo-heap*
*Demo-class-table*))

Here is the thread table. There is one thread, with thread identifier0. The call stack of the
thread has one frame, poised to execute themain method of theDemoclass. The thread is
SCHEDULEDand has anil rref because the main thread is not a heap object.
(defconst *Demo-thread-table*

(list
(cons 0 ; thread identifier

(make-thread ; thread
(push ; call stack

(make-frame ; frame
0 ; pc
nil ; locals
nil ; operand stack
’((ICONST 4) , ; program

(ISTORE 1)
(ILOAD 1)
(ICONST 1)
(IADD)
(INVOKESTATIC "Demo" "fact" 1)
(PUTSTATIC "Demo" "ans" nil)
(RETURN))

’UNLOCKED ; sync flag
"Demo") ; current class

nil) ; end of call stack
’SCHEDULED ; thread status
nil)))) ; thread rref

The single frame haspc 0. Thelocals is nil , but when values are stored there it will grow.
The operandstack is nil. Theprogram is that formain . The frame isUNLOCKEDand comes
from the"Demo" class.



Here is the heap. Each instance object in this heap is the object manifestation of a class.
We have not discussed these objects but they are to the class table what the object mani-
festations of threads are to the thread table. These objects are used by synchronized static
methods.
(defconst *Demo-heap*

’((0 . (("java.lang.Class"
("<name>" . "java.lang.Object"))

("java.lang.Object"
("monitor" . 0)
("mcount" . 0)
("wait-set" . 0))))

. . .
(5 . (("java.lang.Class"

("<name>" . "Demo")
("ans" . 0))

("java.lang.Object"
("monitor" . 0)
("mcount" . 0)
("wait-set" . 0))))))

The instance object with heap address0 corresponds to the"java.lang.Object" class. It
is an object of class"java.lang.Class" extending class"java.lang.Object" . It has
the field"<name>" from its immediate class and inherits the fields"monitor" , "mcount"
and"wait-set" from theObject class.

The elided entries in the heap are the instance objects for the primitive classesARRAY,
java.lang.Thread , java.lang.String , andjava.lang.Class .

The instance object with heap address5 corresponds to the"Demo" class. Its structure is
analogous to the other instance object shown except that it has one static field, named"ans" .2

Here is the class table for theDemoclass. Again, we have elided the entries for primitive
classes above. The"java.lang.Object" class has no superclasses — it is the only such
class. It declares three instance field names,"monitor" , "mcount" , and"wait-set" , and
no static field names. It has an empty constant pool. It declares only one method, the<init>
method. The method declaration lists the name, the formals, the synchronization flag, and
then the bytecode. In this case, the name is"<init>" , the list of formals is empty, the
synchronization flag isNIL , and the bytecode program is just a list containing the single
bytecode instruction(RETURN). We discuss a more interesting bytecode example later. The
“object in heap” entry is a reference to the instance object representing this class in the heap.
We have previously seen that the class corresponds to the object with heap address 0.
(defconst *Demo-class-table*

’(("java.lang.Object" ; Object class
NIL ; superclasses
("monitor" "mcount" "wait-set") ; instance fields
NIL ; static fields
NIL ; constant pool
(("<init>" () NIL (RETURN))) ; methods
(REF 0)) ; object in heap

. . .
("Demo" ; Demo class

("java.lang.Object") ; superclasses
NIL ; instance fields
NIL ; static fields
NIL ; constant pool

2We intend to change this representation of static fields in future versions, so that they do not appear as
instance fields of the object but are buried within some built in field comparable to"<name>" .



(("<init>" NIL NIL ; methods
(ALOAD 0)
(INVOKESPECIAL "java.lang.Object" "<init>" 0)
(RETURN))

("fact" (INT) NIL
(ILOAD 0)
(IFLE 12)
(ILOAD 0)
(ILOAD 0)
(ICONST 1)
(ISUB)
(INVOKESTATIC "Demo" "fact" 1)
(IMUL)
(IRETURN)
(ICONST 1)
(IRETURN))

("main" (java.lang.String[]) NIL
(ICONST 4)
(ISTORE 1)
(ILOAD 1)
(ICONST 1)
(IADD)
(INVOKESTATIC "Demo" "fact" 1)
(PUTSTATIC "Demo" "ans" nil)
(RETURN)))

(REF 5)))) ; object in heap

Note in particular the methods declared in the"Demo" class. Three methods are declared,
named"<init>" , "fact" , and"main" . Each declaration is of the form( name formals

sync . program) . That is, each declaration lists three elements, the method name, its for-
mals, and whether it is synchronized, and then concludes with a list of the bytecodes in the
program for the method.

The<init> method is the initializer for an instance object of the class. It has no formals
and is not synchronized. This initializer just invokes the initializer for the superclass.

The fact method takes one formal, of typeint , and is not synchronized. The bytecode
for fact corresponds exactly to whatjavap displayed (given the caveat aboutjavap dis-
playing branch targets as absolute rather than relative addresses).

Themain method takes one formal, of typejava.lang.String[] , and is not synchro-
nized. Its bytecode is as previously discussed.

It is convenient to define the constant*fact-def* to be the method declaration for
fact . We have added comments to indicate the byte address of each instruction.
(defconst *fact-def*

’("fact" (INT) NIL
(ILOAD 0) ;;; 0
(IFLE 12) ;;; 1
(ILOAD 0) ;;; 4
(ILOAD 0) ;;; 5
(ICONST 1) ;;; 6
(ISUB) ;;; 7
(INVOKESTATIC "Demo" "fact" 1) ;;; 8
(IMUL) ;;; 11
(IRETURN) ;;; 12
(ICONST 1) ;;; 13
(IRETURN))) ;;; 14



5.3 A Schedule

It is useful to execute a model to corroborate it against requirements, informal expectations
or other experiments. But to execute our state,*Demo-state* , we must have a suitable
schedule.

The code in*Demo-state* will run in thread0. So we content ourselves with a list of
0’s sufficiently long to step that thread until we have returned frommain . While we could try
successively longer lists until the returned state stops changing, we prefer to be more analytic.
How long should the schedule be?

Let us start withfact . How long does it take to computefact on some integern? Let
us count instructions, starting with theINVOKESTATIC instruction that initiates the compu-
tation. If n is 0 (or less), we will take5 steps, namely the initiatingINVOKESTATIC, the
ILOAD 0 at pc0, the IFLE at pc1, the ICONST 1 at pc13, and theIRETURNat pc14. By
similarly tracing the code we see that ifn is greater than0 then7 steps will bring us to the re-
cursiveINVOKESTATICof "fact" onn−1 at pc8 and when we return from that invocation,
we will execute two more steps, theIMUL at pc11 and theIRETURNat pc12.

The recursive construction just described can be formalized as follows. If"fact" is
running on inputn in threadth , then the following function computes a suitable schedule. In
our state,th will be 0.
(defun fact-sched (th n)

(if (zp n)
(repeat th 5)
(append (repeat th 7)

(fact-sched th (- n 1))
(repeat th 2))))

The term(repeat th 5) makes a list containing five occurrences ofth . (The order of the
arguments in thisrepeat is the opposite of that used in our previous work.)

Given fact-sched it is easy to compute a suitable schedule formain running in thread
th .
(defun main-sched (th)

(append (repeat th 5)
(fact-sched th 5)
(repeat th 2)))

For example(main-sched 0) is a list of fifty-seven0s.

5.4 Execution

To test our model, we can use ACL2’s read-eval-print loop to evaluate the expression(run
(main-sched 0) *Demo-state*) and inspect the resulting state. We would expect to
find 120 in the static fieldans associated with the object manifestation of the class"Demo"
in the heap. We can actually phrase this expectation as a theorem if we wish.
(defthm example-execution

(equal (static-field-value "Demo" "ans"
(run (main-sched 0) *Demo-state*))

120)
:rule-classes nil)

This commands ACL2 to try to prove the indicated equality and, if successful, give it the name
example-execution , and generate no rules from it. This equality is “trivial” to prove: it
reduces tot by evaluation of the functions.



We quote the word trivial above because many theorem provers do not support evaluation,
much less the scale of evaluation required here. The JVM model is quite large and so are the
constants representing the fifty-seven successive states. One important aspect of ACL2 is the
engineering that we have put into doing evaluation. As our evaluations go, this is a relatively
small scale problem.

It is easy to define the functionfact-test for testing thefact method on arbitrary input
n: compute a schedule and a state poised to executefact on n, run them, and fetch the re-
sult. (fact-test 17) requires a schedule of length 161. The final answer is-288522240 .
Why is our factorial method returning a negative answer? A still larger test is(fact-test
1000) , which requires a schedule of length 9008. The answer is 0. Why?

In the larger runs we can time the execution. The execution of(fact-test 1000)
requires 0.16 seconds on a 728 MHz Pentium III running GCL under Redhat Linux. (This
does not count the time taken to compute the schedule.) This means our model executes at
about 56000 JVM bytecodes per second.

6 The Proof Methodology

Mechanically analyzing programs with respect to a formally defined operational semantics
has a long tradition in the Boyer-Moore community, dating back to the 1970’s when we used
an early version of the Boyer-Moore theorem prover to formalize part of the Bendix 930
avionics processor and tried to prove a property of a snippet of machine code implementing
context switching in SRI’s software implemented fault-tolerance (SIFT) computer. Our “mi-
nority report” in the SIFT final report made it clear that the semantics of the Bendix 930 were
not sufficiently clear to permit accurate modeling and, in addition, that the capacity of the
theorem prover in the late 1970s was inadequate for such an undertaking.

But we persisted in trying to model machines operationally, largely because of the ad-
vantages already discussed: (a) such models have a clear correspondence to the artifact being
studied, so discrepancies might be easier to spot, (b) such formal models are executable and
so can be used as pre-fabrication simulation engines, and (c) with sufficient development of
theorem proving strategies it ought to be possible to reason directly about such models and
their interpretation of programs.

During the 1980s and 1990s the Boyer-Moore community modeled several microproces-
sors and other computing machines and developed techniques for managing proofs [22, 3,
46, 4, 23, 7, 45, 9]. The techniques are described in [5]. A good example of the application of
these techniques to another commercial language is provided by Yu’s work [7] in which 21
of the 22 Berkeley C String Library subroutines were verified by mechanically analyzing the
binary code produced bygcc -o for a Motorola 68020 model in Nqthm. Those techniques,
adapted to the JVM model, are the ones we use today.

In this paper we focus entirely on the use of ACL2 to prove theorems about bytecode
programs.

6.1 Arithmetic

No serious software verification application can be undertaken without devoting significant
resources to arithmetic, especially integer arithmetic modulo powers of 2. ACL2 has several
good integer arithmetic libraries and we are always trying to improve them. In the work
reported here we use two of the standard libraries distributed with ACL2, namely
books/arithmetic/top-with-meta and
books/ihs/quotient-remainder-lemmas .



In addition, we prove a few lemmas establishing basic properties ofintp andint-fix .
Then we disable those functions so that we never seemodor other low level arithmetic func-
tions introduced by elementaryint operations likeIADD, IMUL, etc.
(defthm int-lemma0

(implies (intp x)
(integerp x)))

(defthm int-lemma1
(intp (int-fix x)))

(defthm int-lemma4a
(implies (and (integerp x)

(integerp y))
(equal (int-fix (* x (int-fix y)))

(int-fix (* x y)))))

6.2 Structures

Another important step in managing these proofs is to keep the data abstractions in place
during the proof process. For example, if left to its own heuristics, the theorem prover will
expand(make-state tt h c) to (cons tt (cons h (cons c nil))) and will ex-
pand(class-table s) to (car (cdr (cdr s))) . Disablingmake-state and its ac-
cessors likeclass-table will prevent this expansion, but will also prevent the simplifica-
tion of (class-table (make-state tt h c)) to c . Obviously, the appropriate action
is to prove the theorems illuminating the relations between these functions and then to disable
the functions.
(defthm states

(and (equal (thread-table (make-state tt h c)) tt)
(equal (heap (make-state tt h c)) h)
(equal (class-table (make-state tt h c)) c)))

(in-theory
(disable make-state thread-table heap class-table))

We take similar steps for the frame constructor,make-frame , and its accessorspc ,
locals , stack , program , sync-flg , andcur-class , and for the stack constructorpush
and its accessorstop andpop .

Despite these arrangements, we sometimes seecar s andcdr s in our proofs. For example,
binding could be considered an accessor for alists, but we prefer to see it expand into acdr
of anassoc-equal because we think ofassoc-equal as the basic primitive for accessing
alists.

The standard ACL2 bookdata-structures/structures.lisp provides a conve-
nient way to define structures and automatically obtain the appropriate rewrite rules to pre-
serve the abstractions. Thestructures book was not used in this work for pedagogical
reasons.

6.3 Mappings

Alists are used for a variety of things in our representation. But the two most important are
the representation of instance objects and the allocation of instance objects to heap addresses.
Many bytecode instructions either access or change these alists.



As noted, we regardassoc-equal as the primitive function for accessing alists. It is
used by bothbinding andbound? , both of which are allowed to expand away. Alists are
built by bind . We have to relate these functions.
(defthm assoc-equal-bind

(equal (assoc-equal key1 (bind key2 val alist))
(if (equal key1 key2)

(cons key1 val)
(assoc-equal key1 alist))))

(defthm bind-bind
(equal (bind x v (bind x w a))

(bind x v a)))

These theorems are proved automatically by induction. The first lemma “explains” how to
determine the value of a key — field name or heap address —after an assignment to some
(other?) key. The second lemma allows us to simplify alist expressions by removing obsolete
assignments. There are other algebraic laws for manipulating alists, e.g.,bind is “commuta-
tive” if the keys are bound, but we do not need them here.

6.4 Semi-Ground Terms

ACL2 contains heuristics for expanding recursive functions. Basically, these heuristics ex-
pand a function if the recursive calls are simpler in some built-in sense. But the heuristics fail
to allow some expansions that we consider “obviously smart.” These expansions typically
deal with functions in which the “controlling” argument is a constant or “nearly” so.

Here is the first of four theorems generating such rules.
(defthm bind-formals-opener

(implies (and (integerp n)
(<= 0 n))

(equal (bind-formals (+ 1 n) stack)
(cons (top stack)

(bind-formals n (pop stack))))))

To explain what the rule generated from this lemma does for us, imagine that we are applying
the INVOKEVIRTUALsemantic function to a method with3 formals. Inside the body of the
semantic function we will encounter the expression
(reverse

(bind-formals (+ nformals 1)
(stack (top-frame th s))))

representing the value of thelocals component of the new frame being constructed. The
rewriter will simplify this from the inside out. Thus,(+ nformals 1) will reduce to4.
The (stack (top-frame th s)) expression will typically reduce to some expressionα
that represents the operand stack of the caller. Typically,α will be something like(push v3

(push v2 (push v1 (push obj . . .)))) because the caller would have pushed the object
obj on which the virtual method is to be invoked, as well as the three actuals, onto the operand
stack. In any case, after simplifying the interior subterms, thelocals expression above
becomes(reverse (bind-formals 4 α)) . The definition ofbind-formals is such
that (bind-formals 4 α) could be expanded to(cons (top α) (bind-formals 3
(pop α))) using the definition. But whether it does this expansion is a heuristic decision,
since it involves a recursive call ofbind-formals . In making that decision, ACL2 rewrites
the (pop α) expression and then decides whether the recursive call is “simpler.” Ifα is the
typical push expression, thepop expression will be simpler. But if it is not, it may not be —
indeed, it will probably be(pop α) which is more complicated thanα.



But thebind-formals-opener rule, shown above, actually avoids all heuristic matters.
It says “if the first argument to bind-formals is a positive integer, expand the function.” Given
inside-out rewriting that means that thelocals expression becomes
(reverse

(cons (top α)
(cons (top (pop α))

(cons (top (pop (pop α)))
(cons (top (pop (pop (pop α))))

nil)))))

which is further reduced to
(cons (top (pop (pop (pop α))))

(cons (top (pop (pop α)))
(cons (top (pop α))

(cons (top α)
nil))))

by expandingreverse . If α is the typicalpush expression this is actually just
(cons obj

(cons v1

(cons v2

(cons v3

nil)))).

In any case, the rewrittenlocals expression is now normalized so that as we symbolically
execute the bytecodes of the invoked method we can determine the values of the locals.

We similarly force open several other functions that are used this way.
(defthm nth-opener

(implies (and (integerp n)
(<= 0 n))

(equal (nth (+ 1 n) lst)
(nth n (cdr lst)))))

(defthm popn-opener
(implies (and (integerp n)

(<= 0 n))
(equal (popn (+ 1 n) stack)

(popn n (pop stack)))))
(defthm repeat-opener

(implies (and (integerp n)
(<= 0 n))

(equal (repeat th (+ 1 n))
(cons th (repeat th n)))))

We also prove
(defthm run-opener

(and (equal (run nil s) s)
(equal (run (cons th sched) s)

(run sched (step th s))))
:hints (("Goal" :in-theory (disable step))))

There are two unusual things about thedefthm above: it is a conjunct and hints on how to
prove it are provided. The conjunct will generate two rules. The first says “expandrun when
the first argument isnil .” The second says “expandrun when the first argument is acons
(even though you may introduce the more complicatedstep ).” The second of these two
rules is of the kind we have seen above. But why did we provide the first rule forrun ? More
precisely, why did we not provide a comparable rule forbind-formals , nth , popn , and



repeat saying how they behave when the first argument is0? We did not have to because
we leave those functions enabled and so the definition expansion heuristic takes care of the
“base cases.” But we do not leaverun enabled.

If we did, then the first rule would not be necessary. But the cost would be tremendous
because everyrun expression would be considered for expansion under the definition expan-
sion heuristic. The rewriter would tentatively rewrite thestep expression inside eachrun ,
at great cost, and then reject the expansion for reasons of complexity. It is faster simply never
to consider expanding the definition ofrun . But if we do that, we need the first rule to take
care of the base case.

The second oddity in thedefthm is that we provided a hint. The hint says “prove this
theorem without expandingstep . If left to its own, the theorem prover would expand the
step expression — producing 139 cases on the unknown next instruction — during the
proof attempt. But there is no need to know anything aboutstep to prove this theorem.

6.5 The Model

This brings us to the biggest problem in dealing with a model the size of the JVM. The
expansion ofstep produces a huge case split in which every possible next instruction is
considered. We do not want to expandstep unless we know what the next instruction is. We
therefore prove the following odd theorem — odd because it is just the definition ofstep
with an unnecessary hypothesis!
(defthm step-opener

(implies (consp (next-inst th s))
(equal (step th s)

(if (equal (call-stack-status th s)
’SCHEDULED)

(do-inst (next-inst th s) th s)
s)))

:hints (("Goal" :in-theory (disable do-inst))))

After proving this, we disablestep . Thus, the only timestep is expanded is if we can
show that the next instruction is acons . Pragmatically what happens is this. The rewriter
encounters an instance of(step th s) . This is the only rule that matches it and so the
rewriter backchains to the hypothesis. Rewriting inside-out, it rewrites(next-inst th s) .
If we know enough aboutth anss to resolvenext-inst to some particular instruction, the
consp is rewritten tot and the rule fires. Otherwise, the rule does not fire.

Finally, we need to deal with compositions of schedules. The following beautiful theorem
is the key.
(defthm run-append

(equal (run (append sched1 sched2) s)
(run sched2 (run sched1 s))))

This theorem is proved automatically, by induction.

7 A Simple Correctness Proof

In this section we discuss the proof of correctness of thefact method in classDemo, pre-
sented in Section 5 (page 29).



7.1 The Specification

Clearly, the specification for ourfact method must be that it computes the mathematical
factorial function, in some sense. Here is the familiar mathematical function in ACL2.
(defun factorial (n)

(if (zp n)
1

(* n (factorial (- n 1)))))

If we view thefact method as a list of bytecodes, then it is really the JVM that computes
factorial, in some sense, when interpreting that bytecode. We must specify pre- and post-
conditions and we must phrase them in terms of JVM states and the state transformation
described byrun .

Our correctness statement for thefact method is shown below.
(defthm fact-is-correct

(implies (poised-to-invoke-fact th s n)
(equal

(run (fact-sched th n) s)
(modify th s

:pc (+ 3 (pc (top-frame th s)))
:stack (push (int-fix (factorial n))

(pop (stack (top-frame th s)))))))
:hints . . .)

The theorem says that if the next instruction in threadth of states is (INVOKESTATIC
"Demo" "fact" 1) and anint n is on top of the operand stack, then the result of run-
ning s according to(fact-sched th n) will modify s by advancing thepc over the
INVOKESTATIC, poppingn off the operand stack, and pushing theint representation of
(factorial n) .

This is a remarkable theorem. It is very similar to a semantic function for thefact
method. If, in any state, we encounter an(INVOKESTATIC "Demo" "fact" 1) instruc-
tion with n on the stack, and the schedule is as given above, we can simply advance over
theINVOKESTATICand modify the operand stack appropriately. We need never consider the
bytecode offact again nor need we think about the new frames it actually pushes on the call
stack of threadth .

The preconditionpoised-to-invoke-fact is a little more complicated than we have
sketched.
(defun poised-to-invoke-fact (th s n)

(and (equal (call-stack-status th s) ’SCHEDULED)
(equal (next-inst th s)

’(INVOKESTATIC "Demo" "fact" 1))
(equal n (top (stack (top-frame th s))))
(intp n)
(equal (lookup-method "fact" "Demo" (class-table s))

*fact-def*)))

The five conjuncts assert that the threadth is scheduled (otherwise, stepping it would be a
no-op), the next instruction is the indicatedINVOKESTATIC, n is on top of the stack,n is an
int , and the resolution of"fact" in the "Demo" class is the bytecode we showed earlier.
The last condition is sometimes forgotten. Note that we do not require that the class-table of
s be completely specified or even that the"Demo" class be the one shown.



7.2 Use of the Specification

Before provingfact-is-correct it is helpful to illustrate its use, to drive home the point
that the correctness theorem is a powerful abstract tool.

Consider the following program.
((ICONST 2) ; push constant 2

(ILOAD 3) ; push local var 3
(ICONST 1) ; push constant 1
(IADD) ; add the top two
(INVOKESTATIC "Demo" "fact" 1) ; invoke fact
(IMUL) ; multiply the top two
(ISTORE 3)) ; store into var 3

What does this program do? This corresponds to the snippet of Java
k = 2 * fact(k+1);

wherek is allocated into local variable 3.
Here is a schedule for executing this program in thread 0.

(append (repeat 0 4)
(fact-sched 0 (+ 1 v3))
(repeat 0 2))

We can easily prove that executing the program with the given schedule sets local variable
3 to
(int-fix (* 2 (factorial (+ 1 v3))))

provided(+ 1 k) is anint . Here is the theorem.
(defthm symbolic-computation

(implies
(intp (+ 1 k))
(equal

(nth 3
(locals

(top-frame
0
(run (append (repeat 0 4)

(fact-sched 0 (+ 1 k))
(repeat 0 2))

(make-state
(make-tt

(push
(make-frame

0
(list v0 v1 v2 k)
stk
’((ICONST 2)

(ILOAD 3)
(ICONST 1)
(IADD)
(INVOKESTATIC "Demo" "fact" 1)
(IMUL)
(ISTORE 3))

’UNLOCKED
"Test")

nil))



*demo-heap*
*demo-class-table*)))))

(int-fix (* 2 (factorial (+ 1 k)))))))

It is important that we understand how this proof goes. So we will will work through it
carefully. To make the presentation more succinct it is convenient to introduce the following
definition.
(defun alpha (pc locals stk)

(make-state
(make-tt

(push (make-frame pc
locals
stk
’((ICONST 2)

(ILOAD 3)
(ICONST 1)
(IADD)
(INVOKESTATIC "Demo" "fact" 1)
(IMUL)
(ISTORE 3))

’UNLOCKED
"Test")

nil))
*demo-heap*
*demo-class-table*))

Thus, therun expression in the theoremsymbolic-computation is just
(run (append (repeat 0 4) ; [1]

(append (fact-sched 0 (+ 1 k))
(repeat 0 2)))

(alpha 0 (list v0 v1 v2 k) stk)).

Note that(append a b c) is just an abbreviation for(append a (append b c)) . We
will rewrite [1] to
(alpha 9 ; [12]

(list v0 v1 v2 (int-fix (* 2 (factorial (+ 1 k)))))
stk)

using the rules shown earlier. It is easy to show that local3 of the top-frame of thread0 in
[12] is (int-fix (* 2 (factorial (+ 1 k)))) .

The rewriting shown below is essentially a single-pass of ACL2’s inside-out, left-to-right
rewriter. We say “essentially” because some steps are commuted or omitted for simplicity but
the end result is the same. The justifications below just mention the main rules used.
(run (append (repeat 0 4) ;;; [1]

(append (fact-sched 0 (+ 1 k))
(repeat 0 2)))

(alpha 0 (list v0 v1 v2 k) stk))
= ;;; [2] {repeat-opener }
(run (append ’(0 0 0 0)

(append (fact-sched 0 (+ 1 k))
’(0 0)))

(alpha 0 (list v0 v1 v2 k) stk))
= ;;; [3] {run-append }
(run ’(0 0)

(run (fact-sched 0 (+ 1 k))



(run ’(0 0 0 0)
(alpha 0 (list v0 v1 v2 k) stk))))

= ;;; [4] {run-opener }
(run ’(0 0)

(run (fact-sched 0 (+ 1 k))
(step 0

(step 0
(step 0

(step 0
(alpha 0 (list v0 v1 v2 k) stk)))))))

= ;;; [5] {step-opener }
(run ’(0 0)

(run (fact-sched 0 (+ 1 k))
(step 0

(step 0
(step 0

(alpha 1 (list v0 v1 v2 k) (push 2 stk)))))))
= ;;; [6] {step-opener }
(run ’(0 0)

(run (fact-sched 0 (+ 1 k))
(step 0

(step 0
(alpha 2 (list v0 v1 v2 k) (push k (push 2 stk)))))))

= ;;; [7] {step-opener }
(run ’(0 0)

(run (fact-sched 0 (+ 1 k))
(step 0

(alpha 3
(list v0 v1 v2 k)
(push 1 (push k (push 2 stk)))))))

= ;;; [8] {step-opener }
(run ’(0 0)

(run (fact-sched 0 (+ 1 k))
(alpha 4

(list v0 v1 v2 k)
(push (+ 1 k) (push 2 stk)))))

= ;;; [9] {fact-is-correct }
(run ’(0 0)

(alpha 7
(list v0 v1 v2 k)
(push (int-fix (factorial (+ 1 k)))

(push 2 stk))))
= ;;; [10] {run-opener }
(step 0

(step 0
(alpha 7

(list v0 v1 v2 k)
(push (int-fix (factorial (+ 1 k)))

(push 2 stk)))))
= ;;; [11] {step-opener }
(step 0

(alpha 8
(list v0 v1 v2 k)
(push (int-fix (* 2 (factorial (+ 1 k))))

stk)))
= ;;; [12] {step-opener }
(alpha 9

(list v0 v1 v2 (int-fix (* 2 (factorial (+ 1 k)))))
stk)



There are three key transformations occurring in this proof.
The first is the use ofrun-append (page 39), at equality [3], to decompose long runs into

compositions of short ones. The form we choose for the schedule expression determines this
decomposition. Schedule expressions can often be written in many equivalent ways. The one
above is equal to(append (repeat 0 6) (fact-sched 0 (+ 1 k))) , but we chose
to write it as we did to decompose the proof into the three separaterun s on the right hand
side of [3].

The second is the repeated use ofstep-opener (page 39) Consider the first use of
step-opener at equation [5]. On the left hand side of the equation we have
(step 0 (alpha 0 (list v0 v1 v2 k) stk)).

Applying step-opener , we backchain to
(consp (next-inst 0 (alpha 0 (list v0 v1 v2 k) stk))).

But thenext-inst expression simplifies to’(ICONST 2) because thepc of the state is0
and the0th instruction in theprogram is ’(ICONST 2) , which is a cons. Since the hypothesis
is true, we apply the rule and expand the semantic function forICONST 2. This advances the
pc to 1 and pushes2 onto the operand stack, as shown on the right side of the equality at [5].
This symbolic executionproceeds as long as we have astep expression and can determine
what the next instruction is.

The third key transformation is the use offact-is-correct (page 40) at line [9]. The
run expression on the left side of the equality matches the left-hand side of thefact-is-correct
rule. Observe also that thepc in the state is4, which points to theINVOKESTATIC instruc-
tion. Backchaining leads to thepoised-to-invoke-fact hypothesis and it rewrites to
true in this context. Thus, we applyfact-is-correct , advance thepc to 7, just past the
INVOKESTATIC, pop the(+ 1 k) off the operand stack and push(int-fix (factorial
(+ 1 k))) . We can then continue with symbolic execution of thestep expressions.

One last point is worth making. We proved that [1] is [12]. But we actually derived the
state expression at [12] using our rules. That is, rather than prove a theorem, we could use the
rewriter to compute the symbolic form of the state created by executing a certain schedule.

7.3 Contrasting the Universal Int Program

Recall the universalint program.
((ICONST 0) ; push 0

(ICONST 1) ; loop: push 1
(IADD) ; pop two and push sum
(GOTO -2)) ; goto loop

Let (poised-to-invoke-universal th s i) be defined to check that threadth in s
is about to invoke this program (on no arguments) and thati is an arbitrary natural number.

We can prove the following theorem.
(defthm universal-is-correct

(implies (poised-to-invoke-universal th s i)
(equal (top

(stack
(top-frame th

(run (universal-sched th i) s))))
(int-fix i))))



This theorem states that if the states is run a certain number of steps, then(int-fix i) is
left on top of the stack.

It is possible also to prove that anyint can be produced by supplyingint-fix with a
suitable natural number.

Thus, we can define a universal state, here called*universal-state* , poised to invoke
the universalint program in thread0 and then prove that iff is any int -valued function,
then there exists a time at which we will find(f x) on top of the stack.
(defthm universal-computes-f

(equal (top
(stack

(top-frame 0
(run (universal-schedule x)

*universal-state*))))
(f x)))

Note that in ACL2 it is possible, using theencapsulate mechanism, to constrainf to be a
one argument function satisfying the axiom(intp (f x)) .

We can use this theorem to prove that the universalint program computes factorial, in a
suitably twisted sense. To be precise, we can prove
(defthm universal-computes-factorial

(equal (top
(stack

(top-frame 0
(run (universal-factorial-schedule n)

*universal-state*))))
(int-fix (factorial n)))).

Of course, we could prove analogous results establishing that the universalint program sums
the natural numbers belown and that it computes theint-fix of thenth prime.

What is wrong? In particular, what is wrong with the use of the universalint program to
compute factorial?

Somewhat troubling is the fact that careful inspection of
universal-factorial-schedule would reveal that the value of(factorial n) is
used to determine “when to look for the answer.” However, it is often the case that the perfor-
mance of a program is closely related to the value delivered by the program.

But the theorem above does not tell us that invoking the universalint program eventually
returns us to the caller. Ourfact-is-correct does tell us that, though it does it in a subtle
way.
(defthm fact-is-correct

(implies (poised-to-invoke-fact th s n)
(equal

(run (fact-sched th n) s)
(modify th s

:pc (+ 3 (pc (top-frame th s)))
:stack (push (int-fix (factorial n))

(pop (stack (top-frame th s)))))))
:hints . . .)

It says that thepc is advanced, the answer is on the stack, and nothing else (including
the rest of the caller’s frame, its caller’s frame, etc) has changed. In particular, we can use
fact-is-correct to reason about a method that callsfact . But we cannot use
universal-computes-factorial to reason about such a method.



7.4 Proof

The key to provingfact-is-correct is to do the right induction. Everything else is “au-
tomatic” in the sense that the rules we have discussed suffice to complete the proof.

Here is the theorem we wish to prove.
(defthm fact-is-correct

(implies (poised-to-invoke-fact th s n)
(equal

(run (fact-sched th n) s)
(modify th s

:pc (+ 3 (pc (top-frame th s)))
:stack (push (int-fix (factorial n))

(pop (stack (top-frame th s)))))))
:hints . . .)

Let (p th s n) be defined to be the formula above. It is clear that an inductive proof is
necessary (thefact method and the specification function,factorial , are both recursive)
and the induction is onn (the method and the specification recur onn by subtracting1). Here
is a sketch of an appropriate induction scheme.
(and (implies (zp n) (p th s n)) ;;; Base Case

(implies (and (not (zp n)) ;;; Induction Step
(p th s (- n 1))) ;;; Induction hyp

(p th s n))) ;;; Induction concl

The induction step is conditioned on the test(not (zp n)) , n is not0. The induction hy-
pothesis is the conjecture we are trying to prove, withn replaced by(- n 1) . But in the
display above we writeth ands for the occurrences ofth ands in the induction hypothesis.
Why? The answer is that ACL2’s induction principle we are permitted to assume the induc-
tion hypothesis for arbitrary values of the variables other than the one(s) we are inducting
upon.3

What values ofth ands do we wish to use? What is the induction hypothesis supposed
to tell us? It is supposed to tell us that the recursive invocation offact “works” when it is
applied to(- n 1) . The choice forth is clear: we should assume the recursive call “works”
when it is running in the same thread as the conclusion,th . What is the states the ma-
chine will be in when the recursive call of fact is invoked? The answer can be gotten simply
by runnings to the recursive call! That is we produces by symbolically simplifying(run
(repeat th 7) s) , under the hypotheses that threadth in s is poised to invokefact on
n and thatn is non-0.

This construction ofs can be seen quite clearly if we consider the induction conclusion,
(p th s n) . This contains(run s (fact-sched th n)) . If n is non-0, then by the
definition of fact-sched this is equal to
(run s (append (repeat th 7) ;;; [1]

(fact-sched th (- n 1))
(repeat th 2)))

which is, byrun-append , just
(run (repeat th 2) ;;; [1a]

(run (fact-sched th (- n 1)) ;;; [1b]
(run (repeat th 7) s))). ;;; [1c]

Note we have threerun expressions, [1a]-[1c]. The middlerun expression, [1b], is running

3The legitimacy of this is obvious from the standard induction principle and the observation that all our
variables are universally quantified.



with the recursively obtained schedule for(- n 1) . Notice the state, [1c], in which thatrun
starts. That iss and it is determined entirely by the schedule generator we wrote forfact .

Here then is our choice ofs, obtained by simplifying [1c] under the hypotheses given.
(make-state ;;; [1c’], akas

(modify-tt
th
(push

(make-frame 8
(list (top (stack (top-frame th s))))
(push (- (top (stack (top-frame th s))) 1)

(push (top (stack (top-frame th s)))
nil))

(method-program *fact-def*)
’UNLOCKED
"Demo")

(push (make-frame (+ 3 (pc (top-frame th s)))
(locals (top-frame th s))
(pop (stack (top-frame th s)))
(program (top-frame th s))
(sync-flg (top-frame th s))
(cur-class (top-frame th s)))

(pop (call-stack th s))))
’scheduled
(thread-table s))

(heap s)
(class-table s))

Observe that(poised-to-invoke-fact th s (- n 1)) is true. In particular,pc 8 in
the top frame ins points to anINVOKESTATICof fact and(- n 1) is on top of the operand
stack in that top frame. (Many people are surprised by the fact that the top frame ofs is not
the top frame ofs . The former is running thefact bytecode, while the latter is running some
arbitrary caller.)

Hence, the induction hypothesis tells us that [1b](run (fact-sched th (- n 1))
s) , is justs with thepc advanced to11, the(- n 1) popped, and(int-fix (factorial
(- n 1))) pushed. That is, the induction hypothesis tells us that [1b] is
(make-state ;;; [1b’]

(modify-tt
th
(push

(make-frame 11
(list (top (stack (top-frame th s))))
(push (int-fix

(factorial
(- (top (stack (top-frame th s)))

1)))
(push (top (stack (top-frame th s)))

nil))
(method-program *fact-def*)
’UNLOCKED
"Demo")

(push (make-frame (+ 3 (pc (top-frame th s)))
(locals (top-frame th s))
(pop (stack (top-frame th s)))
(program (top-frame th s))
(sync-flg (top-frame th s))
(cur-class (top-frame th s)))

(pop (call-stack th s))))



’scheduled
(thread-table s))

(heap s)
(class-table s))

If we use the induction hypothesis by substituting [1b’] for [1b] in [1a], we reduce [1a]
to (run (repeat th 2) [1b’] ) . We therefore take two symbolic execution steps. The first
executes theIMUL at pc 11 in [1b’], which pops the two items off the operand stack and
pushes their product. Given the definition offactorial and properties ofint-fix , we
see that the top item on the operand stack after theIMUL is (int-fix (factorial n)) .
The second step is theIRETURNat pc 12 . This throws away the top frame of the call stack
and pushes the top item of that discarded frame onto the operand stack of the newly exposed
frame. The result is
(make-state ;;; [1c’]

(modify-tt
th
(push

(make-frame (+ 3 (pc (top-frame th s)))
(locals (top-frame th s))
(push (int-fix

(factorial
(top (stack (top-frame th s)))))

(pop (stack (top-frame th s))))
(program (top-frame th s))
(sync-flg (top-frame th s))
(cur-class (top-frame th s)))

(pop (call-stack th s)))
’scheduled
(thread-table s))

(heap s)
(class-table s))

But this is just
(modify th s

:pc (+ 3 (pc (top-frame th s)))
:stack (push (int-fix (factorial n))

(pop (stack (top-frame th s)))))

as required by(p th s n) .
We have just done the proof of the induction step offact-is-correct . The base case

is just five steps of symbolic execution.
ACL2 carries out the proof offact-is-correct in 20.93 seconds on a 728 MHz Pen-

tium III running GNU GCL under Redhat Linux.
The most important lesson here is that even though we described the proof operationally,

all the symbolic manipulation was done strictly with the definitions of the semantics, the
specifications, and our previously proved lemmas. No special-purposes machinery is being
used here, other than a powerful theorem prover.

We now turn to a technical matter: how to tell ACL2 to do the induction we just described.
Is that required? Yes. ACL2’s heuristics use the recursive functions in the conjecture to sug-
gest inductions. But the heuristics do not lead to the induction above. (They lead to a simple
induction onn without instantiation ofth or s .) The user has to tell ACL2 what induction to
do in this case. That is done with the:hints argument to thedefthm event, which we have
previously elided away. Here is the full command used to provefact-is-correct .



(defthm fact-is-correct
(implies (poised-to-invoke-fact th s n)

(equal
(run (fact-sched th n) s)
(modify th s

:pc (+ 3 (pc (top-frame th s)))
:stack (push (int-fix (factorial n))

(pop (stack (top-frame th s)))))))
:hints (("Goal"

:induct (induction-hint th s n))))

:Induct hints are just terms that suggest the induction the user wants. The function
induction-hint is a recursively defined function that is introduced by the user for the sole
purpose of suggesting this induction in this hint. The value of the function is unimportant;
all that matters is how it breaks down the cases and how it recurses. The well-foundedness
arguments made when the function is admitted under the definitional principle are sufficient
to justify the induction it suggests.

Here is theinduction-hint function, where we have writtens in place of themake-state
expression [1c’] above.
(defun induction-hint (th s n)

(if (zp n)
s
(induction-hint th s (- n 1))))

We conclude this section with a minor observation. Many users would specifyfact with
this theorem.
(defthm weak-version-of-fact-is-correct

(implies (poised-to-invoke-fact th s n)
(equal (top

(stack
(top-frame

th
(run (fact-sched th n) s))))

(int-fix (factorial n)))))

That is, all that is required is that it leave the appropriateint on top of the stack. By itself, this
specification is not only too weak to be proved by induction but it is too weak to permitfact
to be used as a subroutine by some other method. Consider the possibility thatfact cleared
the operand stack or the local variables. As a matter of fact, those kinds of side-effects on the
caller’s frame cannot be achieved on the JVM byINVOKESTATIC. One could prove general
theorems establishing the preservation of the rest of the frame and then cope with this weaker
correctness statement. However, our approach is to prove the stronger theorem because the
proof is so elegant, and then we can derive the weaker version, if desired, immediately.

8 More Complicated Examples

In this section we briefly describe two other Java-related proofs. The first is the correctness
of an iterative version of factorial and the second is the correctness of an applicative method
for sorting a linked list with insertion sort.



8.1 Iterative Factorial

Here is an iterative factorial program in Java.
public static int ifact(int n) {

int temp = 1;
while (0<n) {

temp = n*temp;
n = n-1;

}
return temp;

}

The associated bytecode produced byjavac as displayed byjavap -c is shown below with
the ACL2 version printed to the right.
Method int ifact(int)

0 iconst 1 ; (ICONST 1)
1 istore 1 ; (ISTORE 1)
2 goto 13 ; (GOTO 11)
5 iload 0 ; (ILOAD 0)
6 iload 1 ; (ILOAD 1)
7 imul ; (IMUL)
8 istore 1 ; (ISTORE 1)
9 iload 0 ; (ILOAD 0)

10 iconst 1 ; (ICONST 1)
11 isub ; (ISUB)
12 istore 0 ; (ISTORE 0)
13 iload 0 ; (ILOAD 0)
14 ifgt 5 ; (IFGT -9)
17 iload 1 ; (ILOAD 1)
18 ireturn ; (IRETURN)

Observe that thewhile loop starts atpc 13 , where the0 local is loaded onto the stack, and
proceeds around throughpc 5 and back to13. Local variable1 is being used to accumulate
the final product. It is initialized to1 at pc 1 , before the loop is entered, and is put on the
stack atpc 17 to be returned by the instruction atpc 18 .

We can prove the following about thisifact method,
(defthm ifact-main-result

(implies (poised-to-invoke-ifact th s n)
(equal

(run (ifact-sched th n) s)
(modify th s

:pc (+ 3 (pc (top-frame th s)))
:stack
(push (int-fix (factorial n))

(pop (stack (top-frame th s))))))))

wherepoised-to-invoke-ifact is as expected and shown below.
(defun poised-to-invoke-ifact (th s n)

(and (equal (call-stack-status th s) ’SCHEDULED)
(equal (next-inst th s)

’(invokestatic "IterativeDemo" "ifact" 1))
(equal n (top (stack (top-frame th s))))
(intp n)
(equal (lookup-method "ifact"

"IterativeDemo"
(class-table s))



*ifact-def*)))

There are two interesting things about this proof. The first is that we have to handle a
loop. We describe that below.

The second is that instead of proving that it computesfactorial we prove that it com-
putes another function,ifactorial , which is defined in a way to mimic the computation
above.
(defun ifactorial (n temp)

(if (zp n)
temp

(ifactorial (- n 1) (int-fix (* n temp)))))

The use ofifactorial allows us to factor the proof into two parts: showing that the byte-
code computesifactorial and showing thatifactorial is “the same as”factorial
in a suitable sense.

The analysis of the loop is done, of course, with induction. As usual, the schedule we
define identifies the loop.
(defun ifact-loop-sched (th n)

(if (zp n)
(repeat th 3)

(append (repeat th 10)
(ifact-loop-sched th (- n 1)))))

(defun ifact-sched (th n)
(append (repeat th 4)

(ifact-loop-sched th n)
(repeat th 1)))

The key idea is that the schedule generated byifact-loop-sched is designed to start
when control reaches the top of the loop (pc 13 ) and to drive the machine right through the
termination of the loop, leaving thepc at theIRETURNat pc 18 .

Ifact-sched then takes care of the invocation (building another frame), initializing the
temp and getting control to the top of the loop. Then it usesifact-loop-sched to finish
the loop, and has one morestep to execute theIRETURN, popping the frame it built and
returning the value. So the key is handling the loop.

There are two interesting things about this. One is that the “poised” predicate now talks
about where thepc is, rather than the next instruction. The other is that the induction hy-
pothesis must exhibit the new values ofn andtemp one iteration later. The state (called “s”
earlier) is obtained the same way: by the symbolic execution of the program once around the
loop.

Here is the loop property we proved.
(defthm ifact-loop-is-correct

(implies
(poised-at-ifact-loop th s n)
(equal

(run (ifact-loop-sched th n) s)
(modify

th s
:pc 18
:locals
(if (zp n)

(locals (top-frame th s))
(update-nth 0 0

(update-nth 1



(int-fix
(ifactorial

n
(nth 1 (locals (top-frame th s)))))

(locals (top-frame th s)))))
:stack
(push (int-fix

(ifactorial
n
(nth 1 (locals (top-frame th s)))))

(stack (top-frame th s))))))
:hints (("Goal"

:induct (ifact-loop-induction-hint th s n))))

The notion of being poised at the top of the loop is defined as follows.
(defun poised-at-ifact-loop (th s n)

(and (equal (call-stack-status th s) ’SCHEDULED)
(equal (pc (top-frame th s)) 13)
(equal (program (top-frame th s))

(method-program *ifact-def*))
(equal n (nth 0 (locals (top-frame th s))))
(intp n)
(intp (nth 1 (locals (top-frame th s))))))

8.2 Insertion Sort

So far we have not dealt with methods that modify the heap or virtual methods. See [33] for
the basic work on these topics, in the context of the simpler M3 machine.

Our next M5 proof concerns an applicative implementation of insertion sort in Java. We
will represent lists as linked objects, created by the static methodcons . Each such object has
a car and acdr field. The former will always be anint ; the latter will be the null reference
or acons . Conses are implemented in theCons class.

Then we define theListProc (list processing) class. In this example it only includes
two methods, one for inserting anint into a linked list by copying the list down to the first
element greater than theint , and one that uses the insertion method to implement sorting.

Here are the two classes.
class Cons {

int car;
Object cdr;
public static Cons cons(int x, Object y) {

Cons c = new Cons();
c.car = x;
c.cdr = y;
return c;

}
}
class ListProc extends Cons {

public static Cons insert(int e,Object x) {
if (x==null)

{return cons(e,x); }
else if (e <= ((Cons)x).car)

{return cons(e,x); }
else return cons(((Cons)x).car,

insert(e,((Cons)x).cdr));



}
public static Object isort(Object x) {

if (x==null)
{return x; }

else return insert(((Cons)x).car,
isort(((Cons)x).cdr));

}
}

Here is our bytecode forcons . It is exactly as created byjavac .
(defconst *cons-def*

’("cons" (int java.lang.Object) nil
(NEW "Cons")
(DUP)
(INVOKESPECIAL "Cons" "<init>" 0)
(ASTORE2)
(ALOAD 2)
(ILOAD 0)
(PUTFIELD "Cons" "car")
(ALOAD 2)
(ALOAD 1)
(PUTFIELD "Cons" "cdr")
(ALOAD 2)
(ARETURN)))

This is the first method we have dealt with that writes to fields in the heap.
Here is our bytecode forinsert . It is as created byjavac with one exception: we have

deleted threecheckcast instructions because they are not supported by our model at the
moment (and, in this method, never throws an exception).
(defconst *insert-def*

’("insert" (int java.lang.Object) nil
(ALOAD 1)
(IFNONNULL 9) ;;; if nonnull goto label1
(ILOAD 0)
(ALOAD 1)
(INVOKESTATIC "Cons" "cons" 2)
(ARETURN)

;;; label1
(ILOAD 0)
(ALOAD 1)

;;; checkcast "Cons" omitted
(GETFIELD "Cons" "car")
(IF ICMPGT 9) ;;; if gt goto label2
(ILOAD 0)
(ALOAD 1)
(INVOKESTATIC "Cons" "cons" 2)
(ARETURN)

;;; label2
(ALOAD 1)

;;; checkcast "Cons" omitted
(GETFIELD "Cons" "car")
(ILOAD 0)
(ALOAD 1)

;;; checkcast "Cons" omitted
(GETFIELD "Cons" "cdr")
(INVOKESTATIC "ListProc" "insert" 2)
(INVOKESTATIC "Cons" "cons" 2)



(ARETURN)))

Here is the bytecode forisort .
(defconst *isort-def*

’("isort" (java.lang.Object) nil
(ALOAD 0)
(IFNONNULL 5) ;;; if nonnull goto label
(ALOAD 0)
(ARETURN)

;;; label
(ALOAD 0)

;;; checkcast "Cons" omitted
(GETFIELD "Cons" "car")
(ALOAD 0)

;;; checkcast "Cons" omitted
(GETFIELD "Cons" "cdr")
(INVOKESTATIC "ListProc" "isort" 1)
(INVOKESTATIC "ListProc" "insert" 2)
(ARETURN)))

Again, we have omitted twocheckcast instructions.
A crucial concept in dealing with the heap is the idea of “chasing pointers” through it. In

particular, we definederef* so that if given a reference to acons (or null ) and a heap it
returns the ACL2 list obtained by consing together the successivecar s of thecons es encoun-
tered byderef and recursivelyderef ing thecdr s. We call thisrecursive dereferencing.

In order for the operation just described to be well-defined,deref* must not encounter
circular pointer references. We define an invariant on the heap that precludes this possibility
and we prove that the heap generated bycons , insert , andisort preserves the invariant.
In particular, this tells us that every reference in thecdr of a cons is to an address smaller
than the address of thecons . The definition ofderef* is shown below.
(defun deref* (xref heap)

(declare (xargs :measure (ref-measure xref)))
(cond

((nullrefp xref) nil)
((not (and (heap-invariantp heap)

(ok-refp xref heap)))
nil)

(t (cons (car-heap xref heap)
(deref* (cdr-heap xref heap) heap)))))

Car-heap andcdr-heap fetch the corresponding fields of thecons object indicated by the
given reference.

Here is an execution ofisort , demonstrating it sorting the list(3 2 1) into the list(1
2 3) .
(defthm isort-3-2-1

(let* ((s0
(make-state

(list
(cons 0

(make-thread
(push

(make-frame
0
’((REF -1))
nil
’((BIPUSH 3)



(BIPUSH 2)
(BIPUSH 1)
(ALOAD 0)
(INVOKESTATIC "Cons" "cons" 2)
(INVOKESTATIC "Cons" "cons" 2)
(INVOKESTATIC "Cons" "cons" 2)
(INVOKESTATIC "ListProc" "isort" 1)
(HALT))

’UNLOCKED
"ListProc")

nil)
’SCHEDULED
nil)))

*isort-heap0*
*isort-class-table*))

(s1
(run (append (repeat 0 4)

(cons-sched 0)
(cons-sched 0)
(cons-sched 0))

s0))
(sched (isort-sched 0

(top (stack (top-frame 0 s1)))
(heap s1)))

(s2 (run sched s1)))
(and (equal (deref* (top (stack (top-frame 0 s1)))

(heap s1))
’(3 2 1))

(equal (len sched) 188)
(heap-invariantp (heap s2))
(equal (deref* (top (stack (top-frame 0 s2)))

(heap s2))
’(1 2 3))

(equal (next-inst 0 s2) ’(HALT))))
:rule-classes nil)

The theorem, which is proved by execution, constructs an initial states1 that has the list(3
2 1) built in the heap and is poised to invokeisort on a reference to that list. Then we build
a schedule,sched , suitable for evaluating the call ofisort . We then creates2 by running
s1 . The conclusion of the theorem makes certain observations. Thederef* of the input is
(3 2 1) . The schedule has length188 . The heap invariant holds of the final heap ins2 . The
deref* of the output ofisort is (1 2 3) . The next instruction is the(HALT) instruction.

Of course, the theorem above is not very interesting except to illustrate the execution of a
formal specification.

But here is a much more interesting theorem. Roughly speaking, it says thatisort pro-
duces an ordered permutation of its input.
(defthm main-isort-theorem

(let ((x0 (top (stack (top-frame th s))))
(heap0 (heap s)))

(implies (poised-to-invoke-isort th s x0 heap0)
(let* ((sched (isort-sched th x0 heap0))

(s1 (run sched s))
(x1 (top (stack (top-frame th s1))))
(heap1 (heap s1)))

(let ((list0 (deref* x0 heap0))
(list1 (deref* x1 heap1)))

(and (ordered list1)



(perm list1 list0))))))
:rule-classes nil)

Supposex0 is the object on top of the stack in states and heap0 is the heap of states .
Suppose threadth is poised to invokeisort onx0 . Let sched be a suitable schedule. (Note
that the schedule is a function of the reference and the heap, since we have to chase pointers
to determine how longisort will run.) Let s1 be the result of runnings . Let x1 be the
item left on top of the stack at the end of the run and letheap1 be the final heap. Letlist0
be the result of dereferencingx0 recursively with respect to its heap,heap0 . Let list1 be
the result of dereferencingx1 recursively with respect to its heapheap1 . Thenlist1 is an
ordered permutation oflist0 .

We proved this theorem by proving first that the execution ofisort bytecode produced
the heap created by the following function.
(defun isort-heap (xref heap)

(declare (xargs :measure (ref-measure xref)))
(cond

((nullrefp xref)
heap)

((not (and (heap-invariantp heap)
(ok-refp xref heap)))

heap)
(t

(insert-heap (car-heap xref heap)
(if (nullrefp (cdr-heap xref heap))

’(ref -1)
(list ’ref

(- (len (isort-heap
(cdr-heap xref heap)
heap))

1)))
(isort-heap (cdr-heap xref heap)

heap)))))

This function is to theisort method whatifactorial is to ifact : an expression of an
algorithm.

And then we proved the following theorem relating this heap to a simple insertion sort
function in ACL2.
(defthm deref*-isort-heap

(implies (and (heap-invariantp heap)
(ok-refp xref heap)
(not (nullrefp xref)))

(equal (deref*
(list ’ref

(- (len (isort-heap xref heap)) 1))
(isort-heap xref heap))

(isort (deref* xref heap)))))

Consider the heap created by(isort-heap xref heap) and the reference to its biggest
address. We call these two quantities the output heap and the output reference. The theorem
above says that the result of recursively dereferencing the output reference in the output heap
is the same list produced by sorting the result of recursively dereferencing input reference in
the input heap. Here, the functionisort , is defined simply as shown below.
(defun isort (x)

(if (endp x)
nil
(insert (car x)



(isort (cdr x)))))

It is then a simple matter to prove thatisort returns an ordered permutation of its input.
The two-step methodology mentioned here is crucial. To verify code, first prove that im-

plements some algorithm that simply abstracts away from the control (and possibly data) of
the particular computational paradigm or programming language. Then verify that the algo-
rithm has the desired properties.

Despite the brevity with which we presented it, theisort proof is an interesting chal-
lenge, because the schedules are a function of the heap. It should be noted that the majority
of the work, however, was in creating a useful set of lemmas making it easy to establish that
methods that modify the heap only with ourcons method preserve the invariant and that once
the invariant is known, it is relatively easy to maintain the isomorphism between methods on
the heap and functions manipulating the data represented.

9 Multi-Threading

class Container {
public int counter;

}
class Job extends Thread {

Container objref;
public Job incr () {

synchronized(objref) {
objref.counter = objref.counter + 1;

}
return this;

}
public void setref(Container o) {

objref = o;
}
public void run() {

for (;;) {
incr();

}
}

}
class Apprentice {

public static void main(String[] args) {
Container container = new Container();
Container bogus = new Container();
for (;;) {

Job job = new Job();
Job.setref(bogus);
job.start();
job.setref(container);

}
}

}

Figure 3: A Bad Apprentice

In this section we will deal briefly with a multi-threaded application and we will describe
the proof of a safety progress involving mutual exclusion. The proof involves reasoning about
arithmetic, infinite loops, the creation and modification of instance objects in the heap, in-
cluding threads, the inheritance of fields from superclasses, pointer chasing and smashing,



the invocation of instance (virtual as opposed to static) methods (and the concomitant dy-
namic method resolution), use of thestart method on thread objects, the use of monitors
to attain synchronization between threads, and consideration of all possible interleavings (at
the bytecode level) over an unbounded number of threads. The proof is described in detail in
[35].

Readers familiar with monitor-based proofs of mutual exclusion will recognize our proof
as fairly classical. The novelty here comes from (i) the complexity of the individual opera-
tions on the abstract machine, (ii) the dependencies between Java threads, heap objects, and
synchronization, (iii) the bytecode-level interleaving, (iv) the unbounded number of threads,
(v) the presence in the heap of incompletely initialized threads and other objects, and (vi) the
proof engineering permitting automatic mechanical verification of code-level theorems.

Figure 3 shows little system of Java classes. Themain program in theApprentice class
spawns an unbounded number of threads, each of which is running aJob . EachJob is in an
infinite loop applying theincr method to the self object (the heap manifestation of theJob ).
The incr method locks the object in theobjref field of the self object and then proceeds to
increment acounter field within that locked object.

As shown in Figure 3, theApprentice main program puts the same object in the
objref field of everyJob . But it does it in a strange way. It sets theobjref field to a
“bogus” container, then it starts theJob , and then it sets the field to the “good” container. So
we have an unbounded number of threads in eternal contention for a couple of objects and
each is attempting to lock the object before modifying it.

Does thecounter of the object go up? Obviously, the counter wraps around, because it
is a 32-bitint . But, with the caveat about wrapping around, one might think the counters
in both containers increase monotonically since the object is locked before it is modified in
incr . In particular, the line

synchronized(objref) {
objref.counter = objref.counter + 1;

}

is pretty reassuring.
But the bytecode for theincr method is shown below.

("incr" ; incr method
nil ; parameters (none)
nil ; synchronization flag
(ALOAD 0) ; 0
(GETFIELD "Job" "objref") ; 1
(ASTORE1) ; 4
(ALOAD 1) ; 5
(MONITORENTER) ; 6
(ALOAD 0) ; 7 *
(GETFIELD "Job" "objref") ; 8 *
(ALOAD 0) ; 11 *
(GETFIELD "Job" "objref") ; 12 *
(GETFIELD "Container" "counter") ; 15 *
(ICONST 1) ; 18 *
(IADD) ; 19 *
(PUTFIELD "Container" "counter") ; 20 *
(ALOAD 1) ; 23 *
(MONITOREXIT) ; 24 *
(GOTO 8) ; 25
(ASTORE2) ; 28
(ALOAD 1) ; 29
(MONITOREXIT) ; 30
(ALOAD 2) ; 31



(ATHROW) ; 32
(ALOAD 0) ; 33
(ARETURN))

When incr is invoked, the heap manifestation of theJob instance is passed into local
variable0. So the first three instructions store the current contents of theobjref field into
local 1. This will either be the bogus container or the good container, depending on whether
main method ofApprentice has reset theobjref field yet. Assume it is the bogus con-
tainer.

In the next two instructions (pc 5 andpc 6 ), incr gets the lock on the value of local1,
the bogus container. It then enters its critical section, the body of thesynchronized block,
marked with* above.

Note which container it increments: the one in theobjref field of local0, not necessarily
the one on which it is holding the lock. Local1 is only used when it releases the lock.

The reassurance gained by looking casually at
synchronized(objref) {

objref.counter = objref.counter + 1;
}

is completely bogus.
The counter of the good container can decrease under some schedules. For example,

run thread0 just enough to create and start the firstJob (in thread1). Then run thread1
enough to lock the bogus container. Now run thread0 again so that it resets theobjref of
the firstJob to the good container. Now run thread1 again to execute instructions7 through
19. This will leave it ready to write a1 into thecounter field of the good container. But the
Job is holding a lock on the bogus container. So, next, schedule thread0 to create a second
Job , set itsobjref to the bogus container, start theJob , and set itsobjref to the good
container. Then schedule thread2, the secondJob to run thousands of steps, incrementing
thecounter field of the good container to a large positive integer. Finally, schedule thread1
to execute its next instruction, thePUTFIELD at 19. It will write a 1 where just before there
was a large positive integer: thecounter field of the good container can decrease.

The sense in which the reassurance of thesynchronized block is bogus is that we
must inspect the entire system and investigate how theobjref fields of Job s are being
manipulated. That is, the mutual exclusion we might have thought we were getting from the
synchronized block actually depends on the disciplined but un-enforced handling of the
Job objects themselves. The synchronization is occurring on objects in the heap, not static
variables, and those objects can be changed.

If we changeApprentice so that it reads
class Apprentice {

public static void main(String[] args) {
Container container = new Container();
for (;;) {

Job job = new Job();
job.setref(container);
job.start();

}
}

then we can prove that thecounter field of container increases monotonically (modulo
wraparound). This proof is described in detail in [35].

The theorem we prove is shown below.
(defthm Monotonicity



(let* ((s1 (run sched *a0*))
(s2 (step th s1)))

(implies (not (equal (counter s1) nil))
(or (equal (counter s1)

(counter s2))
(equal (int-fix (+ 1 (counter s1)))

(counter s2)))))
. . .)

In this theorem,*a0* is the JVM state constant obtained by mechanically translating the
Java classesContainer , Job and (the corrected)Apprentice , into our formalism. The
*a0* state contains only one thread,0, poised to begin execution of themain program of
Apprentice . Its initial heap contains only the heap manifestations of the built in and de-
clared classes.

The theorem letss1 and s2 be two successive states and makes a claim about them.
The first state,s1 , is an arbitrary reachable state, that is, is the state reached from*a0* by
executing an arbitrary schedulesched . The second state,s2 , is the successor tos1 obtained
by stepping any threadth .

The claim is that if thecounter value ins1 is non-nil — i.e., sched has executed
thread0 enough to have created and initialized theContainer — then either thecounter s
in s1 ands2 are the same or else thecounter in s2 is one greater than thecounter in s1
(moduloint arithmetic).

This is not an easy theorem to prove. It requires the definition of an invariant on states
characterizing the reachable states. We call the invariantgood-statep . The basic idea is
that theobjref field of every scheduledJob points to the container and that if any thread
is in the critical section of itsincr thread then that thread holds the lock on the container.
These obvious requirements must then be propagated so that they are preserved. For example,
just before a thread executes theMONITORENTER, the object on top of the stack must be the
container.

Once we have definedgood-state we prove four lemmas.
(defthm [1]

(good-state *a0*)
. . .)

(defthm [2]
(implies (good-state s)

(good-state (step th s)))
. . .)

(defthm [3]
(implies (good-state s)

(implies (not (equal (counter s) nil))
(or (equal (counter s)

(counter (step th s)))
(equal (int-fix (+ 1 (counter s)))

(counter (step th s))))))
. . .)

(defthm [4]
(good-state (run sched *a0*)))

[1] and [2] (and an easy inductive lemma) are used to prove[4] . [3] and [4] can be
combined to getMonotonicity .

The crux of the proof is, of course,[2] , which states thatgood-state is invariant under
step s by an arbitrary threadth . The proof of[2] is divided up into three lemmas depending
on th . The first lemma,[2a] , deals with the case whereth is 0 (themain thread). The second



lemma,[2b] , deals with the case thatth is the thread of a scheduledJob . The third lemma,
[2c] , deals with all the other cases (i.e., whenth is unscheduled or is a non-existent thread).

The proofs of[2a] and [2b] are very similar. Symbolic execution is used: start from
any possiblegood-state (consider the cases), symbolically execute the next instruction,
and check thatgood-state approves.

In all, 39 defun s are made to formalize the problem (includinggood-state and its
sub-functions) and 75 theorems are proved leading toMonotonicity .

10 Ongoing ACL2 Work

Space does not permit the discussion of much ongoing ACL2 work related to the JVM. How-
ever, we will briefly note some of it. All of the people mentioned below are graduate students
at the University of Texas at Austin. Except where noted, all are in the Computer Sciences
department.

Hanbing Liu is working on verifying the bytecode verifier with respect to a model like
this one but with runtime error checks. This work is also driving the creation of a still-more
authentic model of the JVM, including support for exceptions and other features.

Jeff Golden is working on tools to help create schedule functions and invariants to make
code verification easier.

Jeff Golden and Sandip Ray are working on the correctness proof for thein situ Java
quicksort method provided in the standard Java API. They are essentially lifting a proof done
earlier by Rob Sumners (ECE Department and AMD) and Ray on thein situ quicksort algo-
rithm [42].

Rob Sumners is also using methods similar to those described in [29] to obtain a progress
property for theApprentice system based on the invariant proved.

In [28] we describe a method for introducing tail-recursive functions that do not nec-
essarily terminate. Such functions can be used to model single-threaded machines without
introducing the notion of a “clock” or “schedule” and without having to count the number of
instructions executed. But our schedules in M5 do more than just provide instruction counts.
They allow us to deal with the nondeterminism inherent in multi-threading by specifying
which thread steps next. It is not clear that the methods of [28] will aid the formal analysis of
multi-threaded code. In addition, our schedules (and the analogous “clock functions” we use
in single-threaded models) allow us to structure inductive proofs.

Finally, work reported in [32] suggests a way we might approach the verification of multi-
threaded code by lifting the view of the system to a single-threaded machine in which “spon-
taneous” changes are visited upon the shared resources visible to the thread in question. We
have not yet tried to apply that work to M5.

11 Conclusion

We have presented a detailed operational model of a significant subset of the Java Virtual
Machine. We have used the model to execute certain Java programs by compiling them into
bytecode. We have described how the ACL2 theorem prover can be configured to help prove
theorems about bytecode programs. We have illustrated correctness proofs of several Java
methods, including recursive and iterative factorial (over theint s), the implementation of
cons and linked lists in Java and the use of that class to implement insertion sort, and a
multi-threaded application that spawns an unbounded number of threads in contention for a
shared object in the heap.



Our correctness theorems generally provide a constructive measure of how long the pro-
grams run, as a function of the input data. We have shown how these schedule functions
can be composed to give constructive schedules for larger methods. In some instances the
constructive schedules can be eliminated entirely.

Our model and our theorems probably appear “too concrete” to many readers. This is in
part due to the constructive logic in which we work and perhaps to the unfamiliar notation
we use. But find the detail and authenticity appealing.

Most importantly, we believe that work like this — and the improved theorem proving
capacity it demands — is crucial to the adoption of formal mechanized tools for facilitating
code proofs.

We see two reasons. First, programming languages come and go. The work involved in
building a verification system for one of them is enormous and that work is error-prone and
obscure. Techniques such as those described here will eventually enable general purpose
theorem provers such as ACL2, Coq [12], HOL [16], or PVS [37], to be used as special-
purpose reasoning engines for particular programming languages. In principle, it should be
possible to develop a code verification system for a given language merely by formalizing the
programming language and then reasoning with a general-purpose tool. This is not only safer
— avoiding as it does the possibility of bugs in the special-purpose verification engine — but
should make it easier to produce code-verification tools for new or niche-market languages.

Second, these methods will allow to “verify the verifiers” if special-purpose verifiers are
built for a given language. This is already happening with the investigations into the Java
bytecode verifier.

Third, the direct application of a general-purpose theorem prover to problems of this
scale and complexity is an excellent way to drive theorem-proving research and increase our
capabilities and capacities for mechanically checked formal reasoning.
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