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Abstract. In this paper, we show that one can “deep-embed” the Java
bytecode language, a fairly complicated language with a rich semantics,
into the first order logic of ACL2 by modeling a realistic JVM. We show
that with proper support from a semi-automatic theorem prover in that
logic, one can reason about the correctness of Java programs. This rea-
soning can be done in a direct and intuitive way without incurring the
extra burden that has often been associated with hand proofs, or proofs
that make use of less automated proof assistance. We present proofs for
two simple Java programs as a showcase.

1 Introduction

In order to reason about software/hardware artifacts mathematically, we need
to represent the artifacts as mathematical objects. We often formalize them by
assigning a precise semantics to the underlying language constructs or hardware
primitives.

In cases where there exists an axiomatic semantics for the language, we can
reason about the artifact directly using axioms and specialized derivation rules.
A typical example is Hoare logic [7].

However, such an approach makes it hard to use existing general purpose the-
orem provers such as ACL2 [13] and PVS [3], because for each different logical
system, a new computer aided reasoning engine must be constructed. Construct-
ing a specialized theorem prover comparable to current mature general purpose
ones is often time consuming and error prone. Generic theorem proving environ-
ments such as Isabelle [18] prove to be useful in this setting, because Isabelle
can be configured to function as a specialized theorem prover for different for-
malisms. Alternatively, if we can embed the language into the formalism of a
powerful general purpose theorem prover, we can use that theorem prover for
program verification projects. We think that this approach is also practical.

There are two common choices for formalizing a program artifact in the logic
of a theorem prover. In a “shallow embedding” one describes a process by which a
conjecture about a given program may be converted to an “equivalent” formula.
Neither the programs (the original forms in the old syntax) nor the process are
defined within the logic – they are meta-level entities. In a “deep embedding”,



programs and their environments are logical objects that are related by func-
tions and relations formally defined within the logic. Usually, the syntax of the
original programs is preserved. The semantics of the basic language constructs
are formalized instead of the semantics of specific programs.

Each approach has its pros and cons. Shallow embedding requires less logical
infrastructure and often produces simpler conjectures to prove. Deep embedding,
however, allows one to reason formally not just about a given program but about
relations between programs and properties of the semantics itself. For example,
deep embedding a program with a semantics for the underlying programming
language allow the user to reason about properties shared by a set of programs.
Deep embedding also allows the user to derive new proof rules as theorems.
However, much logical manipulation must occur to wade through the details of
the semantics. Automation is highly desirable and brings new capabilities, such
as simulation, symbolic evaluation, and other analysis tools.

It is this paper’s thesis that Java program verification via a deep embedding
of the JVM into the logic of ACL2 is a viable approach. In fact, we believe that
with the proper support from a powerful semi-automatic theorem prover, the
deep embedding approach is better than the shallow embedding approach in the
sense that it brings more assurance of the verification result without incurring
much extra burden.

In section 2, we present our deep embedding of a full featured JVM into
ACL2. The executability of ACL2 models allows one to use such a complete
deep embedding as a JVM simulator. In the section 3, we present correctness
proofs for two simple Java programs to demonstrate the approach and illustrate
some useful techniques in handling a deep embedding. In section 4, we review
other work and comment on the proof effort required by our method and explain
briefly the limitations of our work. We summarize and conclude in section 5.

2 Deep Embedding a JVM in ACL2

We wrote a precise model of the JVM in ACL2 to formally capture the meaning
of Java bytecode programs. The JVM model is based on the JVM specification.
We follow the KVM, a C implementation of the JVM, as a reference model in
our “implementation”1.

ACL2 is an applicative (side-effect free) subset of Common Lisp. Our JVM
model can be executed as a Lisp program. It is implemented with around ten
thousand lines of Lisp (ACL2) in about 25 modules. It implements most features
of a JVM such as dynamic class loading, thread synchronization via monitors,
together with 21 out of the 41 native methods defined in Java 2 Microeditions’s
CLDC library [22]. The features that are missing are the “reflection” capability
in the full JVM, user defined class loaders, floating point arithmetic, and native
methods related to some I/O operations.

1 In the process, we discovered several implementation errors in the KVM. Some were
already known to Sun. Some are forwarded to the KVM development team.



Realistic Java programs can execute on the model. We expect to run a suit-
able subset of some conformance test suite at some point. The details of the
model are described in the paper [12], which we presented in the workshop of
Interpreter, Virtual Machine and Emulator 2003, affiliated with PLDI 2.

2.1 Motivation to embed a JVM

We are interested in applying theorem proving techniques to software verifica-
tions projects. In particular, we are interested in reasoning about the properties
of the Java virtual machine and Java software executing on the JVM.

This is one of the reasons that we decided to deep-embed the Java bytecode
language via a JVM model. The other reason is that we feel more confident
in our ability to formalize the semantics of the bytecode language of the Java
Virtual Machine than our ability to correctly assign meanings to specific Java
programs or the Java programming language.

Like most imperative programming languages, the semantics of Java are hard
to formalize directly. The object oriented features such as method overriding,
dynamic method resolution, access permissions, and constructs such as inner
classes present significant challenges.

As expressed in our position paper [11], the JVM bytecode is simpler and
more precisely defined than Java. We therefore define the semantics of the byte-
code language with an operational JVM interpreter. We reason about Java pro-
grams by reasoning about the corresponding bytecode program via javac on the
JVM model. This approach was demonstrated by Yu [1] using the predecessor
of ACL2, Nqthm to reason about C via gcc and a model of the Motorola 68020.

Because the model is formally defined in the logic, we can also reason about
it independent of the consideration of any particular program. This allows us to
derive new proof rules from the semantics, as well as to explore the implications
of semantics, i.e. properties of the JVM itself. Both activities increase our under-
standing of and confidence in the semantics; and both activities are supported by
machine-checked reasoning rather than informal reasoning. Finally, the bytecode
analyzed is more closely related to what is actually executed than the original
Java. In summary, we regard deep embedding as offering higher assurance than
shallow embedding.

2.2 The JVM Model in ACL2

The completeness of our JVM embedding determines the range of Java programs
that we can reason about as well as the relevance of our formal statements
about the Java programs. Our model is fairly complete — it is a realistic JVM
simulator that executes most Java programs that do not use I/O nor floating
point operations.

2 A revised version was accepted for publication in a special issue of the journal “Sci-
ence of Computer Programming” for IVME’03



Since ACL2 is applicative, we have to model the JVM state explicitly. All
aspects of the machine state are encoded explicitly in one logical object denoted
by a term. A JVM state in this model is a seven-tuple consisting of a global
program counter, a current thread register, a heap, a thread table, an internal
class table that records the runtime representations of the loaded classes, an
environment that represents the source from which classes are to be loaded, and
a fatal error flag used by the interpreter to indicate an unrecoverable error.

The thread table is a table containing one entry per thread. Each entry has
a slot for a saved copy of the global program counter, which points to the next
instruction to be executed the next time this thread is scheduled. Among other
things, the entry also records the method invocation stack (or “call stack”) of the
thread. The call stack is a stack of frames. Each frame specifies the method being
executed, a return pc, a list of local variables, an operand stack, and possibly a
reference to a Java object on which this invocation is synchronized.

The heap is a map from addresses to instance objects. The internal class
table is a map from class names to descriptions of various aspects of each class,
including its direct superclass, implemented interfaces, fields, methods, access
flags, and the byte code for each method.

All of this state information is represented as a single Lisp object composed of
lists, symbols, strings, and numbers. Operations on state components, including
determination of the next instruction, object creation, and method resolution,
are all defined as Lisp functions on these Lisp objects.

As a concrete example of how a piece of state is represented, the following
entry is taken from an actual thread table when we used our model to exe-
cute a multi-threaded program for computing factorial. A semicolon (;) begins
a comment extending to the end of the line.

(THREAD 0 ; thread id is 0

(SAVED-PC . 0) ; slot for saved pc

(CALL-STACK

(FRAME (RETURN PC . 7) ; pc to return to

(OPERAND-STACK) ; empty operand stack

(LOCALS 104)

(METHOD-PTR "FactHelper" "<init>" ...)

(SYNC-OBJ-REF . -1))

(FRAME (RETURN PC . 18)

...

(METHOD-PTR "FactHelper" "compute"...)

(SYNC-OBJ-REF . -1))

...)

(STATUS THREAD ACTIVE) ; thread state

(MONITOR . -1) ; lock

(MDEPTH . 0) ; entering count

(THREAD-OBJ . 55)) ; object rep in heap



Each thread table entry has slots for recording a thread id, a pc, a call stack,
a thread state, a reference to the monitor, the number of times the thread has
entered the monitor, and a reference to the Java object representing the thread
in the heap.

The semantics of the JVM instructions are modeled operationally as state
transition functions. Here is the state transition function for the IDIV instruction.

(defun execute-IDIV (inst s)

(let ((v2 (topStack s))

(v1 (secondStack s)))

(if (equal v2 0)

(raise-exception "java.lang.ArithmeticException" s)

(advance-pc

(pushStack (int-fix (truncate v1 v2))

(popStack (popStack s)))))))

Here, inst is understood to be a parsed IDIV instruction. Advance-pc is a
Lisp macro to advance the global program counter by the size of the instruction.
PushStack pushes a value on the operand stack of the current frame (the top
call frame of the current thread) and returns the resulting state. When the
item on the top of the operand stack of the current frame is zero, the output
of execute-IDIV is a state obtained from s by raising an exception of type
java.lang.ArithmeticException. If the top item is not zero, the resulting state
is obtained by changing the operand stack in the current frame and advancing
the program counter. The operand stack is changed by pushing a certain value
(described below) onto the result of popping two items off the initial operand
stack. The value pushed is the twos-complement integer represented by the low-
order 32-bits of the integer quotient of the second item on the initial operand
stack divided by the first item on it. In ACL2, the function truncate returns
an integer quotient rounded toward 0.

The top level interpreter loop is modeled as following:

(defun run (sched s)

(if (endp sched) s ; end of schedule

(let ((nid (car sched)) ; else

(cid (current-thread s)))

(if (equal cid nid)

(run (cdr sched) (step s)) ; execute one step

(run (cdr sched)

(loadExecutionEnvironment

nid ; proper thread context switch

(storeExecutionEnvironment s)))))))))

Our JVM model takes a “schedule” (a list of thread ids) and a state as the
input and repeatedly executes the next instruction from the thread as indicated
in the schedule, until the schedule is exhausted.



The scheduling policy is thus left unspecified. Any schedule can be simulated.
However to use the model as an execution engine without providing a schedule
list explicitly, we have implemented some simple scheduling policies. One of them
is a not-very-realistic round-robin scheduling algorithm, which does a reschedul-
ing after executing each bytecode instruction.

Before concluding this section, we observe that the defun of run (and of each
of the other functions shown above) can be thought of in either of two ways. First,
it defines a side-effect free Lisp program which can be executed on concrete
data. Second, it introduces a new logical definitional equation which can be
used to prove theorems about the newly defined function symbol. Preserving the
view that we are “merely” defining an executable model often provides valuable
clarity. Executing the model often provides assistance in the search for true
statements about programs and in the search for proofs. In some sense, the
“embedding” is so direct that it is transparent, i.e. we are reasoning about the
JVM directly.

3 Java Program Verification

With our choice of a deep embedding of the Java bytecode language, reason-
ing about any Java bytecode program implies that we need to deal with the
complexity of the JVM in addition to the program itself. The task seems to be
formidable. This additional complexity is considered one of the major drawbacks
of the deep embedding approach.

We acknowledge that deep embedding adds extra complexity in the verifi-
cation of programs. But if one can accomplish the program verification task at
this level, we believe that additional confidence is gained.

The central remaining question is whether one can reduce the “extra” com-
plexity to an acceptable level. It is our experience with the JVM and ACL2
that one can achieve this reduction by configuring the rewriting engine of ACL2
using lemma libraries. Such configuration needs to be done only once for a class
of programs.

In this section, we present proofs of two simple programs to show how we
manage the complexity in ACL2. We show the proof for the first program in
some detail and refer readers to the actual proof scripts for comments and other
details in the supporting material [6].

3.1 ADD1 Program

The first program is trivial.

public class First {
public static void main(String[] args) {

int i=1;

int j=i+1;

i=j;

return;}}



The main method is straight line code that only modifies the operand stack
and local variables in the current call frame, i.e. the top most activation record
from the call stack of the current thread. With this example, we illustrate how
we can reason about programs and segments of programs which only manipulate
the current call frame.

Our tool jvm2acl2 transforms the First.class into the following format,
which directly corresponds to the class file format [23].

’(class "First" ; class name is First

"java.lang.Object" ; Superclass is java.lang.Object

....

(fields) ; list of field definitions

(methods ; list of method definitions

(method "<init>"

....)

(method "main" ; method name.

(parameters (array (class "java.lang.String")))

(returntype void)

(accessflags *class* *public* *static* )

(code

(max stack 2) ...

(parsedcode

(0 (iconst 1)) ;; *Note: (0 (iload 2))

(1 (istore 1))

(2 (iload 1))

(3 (iconst 1))

(4 (iadd))

(5 (istore 2))

(6 (iload 2))

(7 (istore 1))

(8 (return))

(endofcode 9))

(Exceptions )

(StackMap )))))

....)

This logical constant represents the First.class file. A list of such class
constants together with the JVM interpreter gives the semantics of the original
Java program. For this program, the semantics of the main method only depends
on the JVM interpreter and this particular class itself; for more complicated
programs, the meaning of a user-defined class often depends on other classes.



To make the example slightly more interesting, we change by hand the first
instruction, (0 (iconst 1)), to (0 (iload 2))3. We prove that by starting in
a state where the pc is 0 and executing 7 steps according to a round robin
scheduling algorithm, we produce a state in which the value in the second slot
of the locals is increased by one from its original value. We describe what is
essential to configure ACL2 in deriving this.

The first step is to identify the appropriate abstractions of JVM executions
and formalize those concepts properly. For example, consider the intuitive un-
derstanding of what the “next instruction” is. In our JVM model, such a concept
is complex because the state is complex. The next instruction of a given state is
the instruction that resides at a certain offset within the bytecode of the current
method, where the offset is given as the value of the pc field of the state; and
the current method is identified by consulting the current class table using the
method identifier in the activation record of the current thread. One must also
consider special conditions, such as when the current thread does not exist or
has been stopped by another thread. Such complexity is reduced by defining a
named function of state, next-inst, and using it consistently within the model
so that the above details are not exposed. We regard this as just good model-
ing practice. We typically configure ACL2 so as not to expand the definitions
of these abstractions (“disabling” the associated rules in ACL2’s database). We
will rely only on a set of properties of these operations on “states of interest”,
which we prove before we disable the definition.

The reason that the intuitive informal notion of “next instruction” appears
simpler is probably because the user evaluates it only on symbolic states for
which next-inst returns constants. That is, when considering the verification
of a particular program in thread 0 informally, we do not contemplate whether
there can be a context switch to a thread, or whether the current activation
record corresponds to the program of interest.

In the second step, we formalize the concepts that capture the identified
domain, i.e. “states of interest”. We prove that in the identified domain, compli-
cated primitive operations have the simple behavior as expected. To formalize
this we introduce an equivalence relation on states, equiv-state, that means,
roughly, “the states are executing the same program.” We are more precise below.
ACL2’s rewrite engine can use arbitrary equivalences and congruence lemmas
(which establish that certain functions cannot distinguish “equivalent” input) to
descend through the subterms of a term and replace occurrences of target terms
by equivalent terms.

To cause the next instruction concept to expand only on the states of interest
we prove the following lemma and then disable the definition of next-inst

(defthm equiv-state-init-state-next-inst

(implies (equiv-state s (init-state))

(equal (next-inst s)

3 In fact, this makes the class file fail to pass bytecode verification. Here we are trying
to make the proof a little bit more interesting by proving an assertion in form of
∀i, P (i).



(inst-by-offset (pc s) (theMethod)))))

The theorem asserts that for any state running the program of interest (that
in the constant (init-state)), the next instruction can be computed by looking
at a certain offset of the program of interest. This is a trivial theorem to prove.
On states equivalent to (init-state) the body of next-inst can be reduced
to a constant, namely, the next instruction. Thus, by proving this lemma and
disabling next-inst, ACL2 will reduce (next-inst s) to a constant instruction
if s is running the program of interest, but will not change the next-inst term
otherwise.

In order to use the just established theorem to rewrite (next-inst s) into
a simpler form, where s is a (round-robin-run s n) term, we need to reason
about the run function th a round robin scheduler. In particular, we need to prove
that there is no context switch as the program steps from one instruction to the
next. To prove there is no context switch, we proved three types of theorems
around the equivalence relation that we identified:

– A congruence on the equivalence relation equiv-state, which asserts that
the round robin scheduler always picks the same thread if two states are
equiv-state.

(defthm round-robin-schedule-equal-in-equiv-state

(implies (equiv-state s s-equiv)

(equal (round-robin-schedule s-equiv)

(round-robin-schedule s)))

:rule-classes :congruence)

– A theorem that states the properties of the initial state. In this case, the
round robin scheduler picks the thread 0 to execute in the initial state.

(defthm round-robin-schedule-init-state

(equal (round-robin-schedule (init-state)) 0))

– Theorems that state equivalence is preserved by executing each primitive,
e.g., pushStack.

(defthm pushStack-preserves-equiv-state

(equiv-state (pushStack v s) s))

Having so configured ACL2 by proving these lemmas, JVM execution of straight
line code can be expanded into a composition of primitives by ACL2 automati-
cally. For example,

(defthm round-robin-run-expansion-example

(implies (and (equiv-state s1 (init-state))

(equal (pc s1) 2))

(equiv-state (round-robin-run s1 4)

(init-state))))



is proved automatically. The theorem prover expands the (round-robin-run

s1 4) symbolically step by step using the rewrite rules derived from the proven
theorems.

In this example, starting from pc equals 2, (round-robin-run s 4) executes
(iload 1)), (iconst 1), (iadd), and (istore 2) in sequence. Because ev-
ery instruction is one byte. Executing 4 instructions shall result in a term of the
following form, where pc is 6.

(state-set-pc 6 ;#

(popStack ;#

(state-set-local 2 (topStack ..) ;# cf. ISTORE 2

(state-set-pc 5 ;*

(pushStack ;*

(int-fix (binary-+ ...)) ;*

(popStack (popStack ;* cf. IADD

(state-set-pc 4 ....))))))))

;% cf. ICONST 1

;$ ILOAD 1

Compare this expected form to one of the intermediate goals generated by ACL2:

Subgoal 1’5’

(IMPLIES

(AND (EQUIV-STATE S1 (INIT-STATE))

(EQUAL (PC S1) 2) ; pc = 2 in starting state

(EQUAL 0 (CURRENT-THREAD S1)))

(EQUIV-STATE

(POPSTACK ;*

(POPSTACK ;* cf. partial IADD

(STATE-SET-PC ;%

4 ;%

(PUSHSTACK 1 ;% cf. ICONST 1

(STATE-SET-PC 3 ;$

(PUSHSTACK (LOCAL-AT 1 (LOCALS (CURRENT-FRAME S1)))

S1)))))) ;$ cf. ILOAD 1

(INIT-STATE))).

In Subgoal 1’5’, ACL2 has reduced

(equiv-state (state-set-pc 6 (popStack (state-set-local 2 ...)))

(init-state))

into

(equiv-state (popStack (popStack (state-set-pc 4 ...)))

(init-state))

after “peeling off” some outer primitives such as (state-set-pc 6 ...).
This shows that reasoning about (next-inst s) is entirely automatic. The

theorem prover “knows” enough to determine the next instruction and then to



execute it as a symbolic execution engine. A formula involving the round-robin-run
is thus reduced to a composition of primitives, such a pushStack, popStack,
state-set-pc. The structure of the composition of primitives can be traced
back to the instructions in the original bytecode sequence.

The third configuration step is to arrange for the theorem prover to reason
about compositions of different primitives. This is closely related to the second
step – identifying conditions under which the primitives behave according to our
intuitions.

For example, we have an understanding of the effects of the push and pop
operations on a stack. The following should obviously be true.

(popStack (pushStack v s)) = s

However the above is not so obvious in a Java program without some implicit
hypothesis. PushStack pushes a value onto the operand stack of the topmost call
frame of the current thread. For the above to be true, we need to explicitly show
(or configure the theorem prover to automatically recognize), no other part of
the state is changed. The similar problem manifests itself in other places such
as showing that setting the program counter does not affect the operand stack.
This is the pattern called the “frame” problem in AI research. To describe the
effect of an operation, we not only need to be explicit about what is changed,
but also be explicit about what does not change.

Our current solution is built around equivalences and associated congruence
rules. We identify what is not changing and introduce an equivalence that groups
the states that share the unchanged part. We prove that primitive operations
preserve those equivalences. We prove other properties of those equivalences in
the form of congruence rules.

In this ADD1 program proof, we recognize that the program is straight line
code that only modifies the operand stack and the locals. We defined the state
equivalence to capture the following: if the only difference between two states
are the operand stack and locals of their respective current frame, they are
equivalent.

This strategy has worked well. However we can foresee limitations in our
approach. When dealing with more complicated operations such as the ones that
manipulate the heap, we may face the need to define a hierarchy of equivalence
relations to characterize differences between different operations.

The following is the final theorem we proved about the ADD1 program4. The
current proof script in ACL2 is about 2000 lines with over 140 user typed lem-
mas5.

(defthm first-is-correct

(let ((old (local-at 2 s1)))

(implies (and (equiv-state s1 (init-state))

(current-thread-exists? s1)

4 ACL2 has implicit universal quantifiers over all free variables appearing in a formula.
5 This proof script represents a first cut at the problem. It can be improved. The proof

is available as part of the supporting material [6].



(wff-state-regular s1)

(wff-thread-table-regular (thread-table s1))

(wff-call-frame-regular (current-frame s1))

(unique-id-thread-table (thread-table s1))

(equal (pc s1) 0)

(integerp old))

(equal (local-at 2 (round-robin-run s1 7))

(int-fix (+ 1 old))))))

The apparent complexity in the statement is partly inherent in the JVM spec-
ification. Others result from our particular choice in implementation. Almost all
efforts in this proof are devoted for defining a proper domain and configuring our
theorem prover to reason about interactions between primitives in that domain.

One can argue that we could have saved effort by reasoning about this pro-
gram at a higher level. We agree with this view. However, the effort expended
to configure ACL2 to reason about this simple program does not have to be
repeated. We have developed an ACL2 “book” (a file containing definitions and
lemmas) that codifies the necessary “concepts” and “knowledge”, and config-
ures ACL2 to reason about straight-line programs automatically. We thus have
high confidence in our semantics and can reason about it without difficulty. In
fact, we have proved properties of a different piece of straight line program that
computes (int-fix (+ 4 (* 2 old))), with 100 lines6.

3.2 Recursive Factorial Program

In this section, we briefly discuss our experience with a second proof effort that
reuses the definitions and lemmas developed in the ADD1 program proof. The
program computes the factorial of its input, or, to be more precise, it computes
the signed integer representation of the low order 32-bits of the mathematical
factorial.

The program of interest is as follows

(class "Second"

....

(method "fact"

(parameters int)

(returntype int)

....

(code

....

(parsedcode

(0 (iload 0))

(1 (ifgt 6)) ;;to TAG 0

(4 (iconst 1))

6 Details are available from the supporting materials.



(5 (ireturn))

(6 (iload 0)) ;;at TAG 0

(7 (iload 0))

(8 (iconst 1))

(9 (isub))

(10 (invokestatic (methodCP "fact" "Second" (int) int)))

(13 (imul))

(14 (ireturn))

....))))

This program is still very simple conceptually but much more complicated
than the ADD1 program. We proved the following theorem

(defthm second-is-correct

(implies (and (poised-for-execute-fact s)

(wff-state-regular s)

(wff-thread-table-regular (thread-table s))

(no-fatal-error? s)

(integerp n)

(<= 0 n)

(intp n)

(equal n (topStack s)))

(equal (simple-run s (fact-clock n))

(state-set-pc (+ 3 (pc s))

(pushStack (int-fix (fact n))

(popStack s))))))

The theorem may be read as follows. Let s be a state poised to invoke our fact
method, i.e., whose next instruction is an invokestatic of fact. Suppose the
state is in some suitable sense well-formed, that n is a nonnegative 32-bit inte-
ger and that n is on top of the stack. Run s a certain number of steps, namely
(fact-clock n). The result is a state that could be alternately obtained by
incrementing the pc of s by 3 (the number of bytes in the invokestatic in-
struction), popping the stack (to remove n), and pushing the int representation
of (fact n). Here fact is defined in the logic as the standard mathematical
factorial.

What is new in the program is that it involves the method invocation that
changes the call stack of the current thread.

What may at first be surprising is that the second proof is much shorter than
the proof about the ADD1 program. One reason is because in the first proof we
reasoned about a round robin scheduler. However, the more essential reason is
that we reused our results from the first proof about straight line code.

To explain, it is necessary to describe how ACL2 works. ACL2 is a semi-
automatic theorem prover. The user submits definitions, and formulas that are
asserted to be theorems. The system attempts to establish the legality of each
definition and the validity of each alleged theorem. When a formula is proven to
be a theorem it is converted into a rule and stored in the database. In most cases,
a rewrite rule is generated. By submitting an appropriate sequence of lemmas



the user can configure ACL2 to prove theorems with certain strategies. The
sequence of interactions is called a session. The file containing the definitions
and lemmas is called a “book.” Subsequent sessions may begin by including
books taken “from the shelf.” The ACL2 distribution contains many standard
books on arithmetic, sets, vectors, floating point, etc. Using the ADD1 program
as a “challenge” problem, we created a book that codifies how to reason about
straight-line programs that modify only the operand stack and locals.

To prove fact correct we start with the basic ADD1 book (or just continue
the ADD1 session) and follow the same strategy. We introduce the abstraction
of pushFrame, popFrame; we introduce a new state equivalence that captures
what does not change during a call stack manipulation; and we prove theorems
to guide ACL2 reasoning about compositions of operand stack primitives with
call stack primitives.

The surprise in this proof effort is that the semantics of invoking a method
in JVM (and Java) is rather rich. It involves dynamic class resolution, which in
turn relies on primitives that load a class. Moreover, loading a class is related
to creating objects dynamically in the heap. Thread synchronization and class
initialization are also involved. We spend a major part of our efforts in reasoning
about those primitives. In the final theorem, we assume s is a state in which
the class is already loaded by asserting the starting state is “equivalent” to
some constant state where the “Second” class is loaded. More details and some
explanations are available in the supporting material [6] for this paper.

4 Review and Related Work

The challenge in using a deep embedding of a realistic programming language
like JVM bytecode is managing the complexity at proof-time. We presented two
proofs to show that the apparent complexity involved in the deep embedding can
be alleviated by introducing the necessary abstractions and proving properties
of those primitives in an identified domain.

Identifying the appropriate abstractions is relatively simple. Most work in-
volves correctly identifying the domain where the primitives behave according
to the intuition of the user. Another major effort is establishing properties of
the abstract primitives and configuring the theorem proving engine to use them
(typically, but not exclusively) as rewrite rules.

The main limitation of the current work is that we have not yet developed a
good and concise set of primitives and their properties. Even though the proof of
the ADD1 program is automatic, it is quite long. On the other hand, our experience
with the factorial program proof shows that even with the non-optimized set of
lemmas, one can still benefit from the support of the computer aided reasoning
tool. In developing the lemmas for the factorial program proof we do not have
to think about how to reason about straight-line code — a problem solved once
and for all in the ADD1 proof. In the factorial proof we focus on the primitives
that manipulate the call stack.



We have not explored proofs about more complicated JVM operations in our
model, such as allocation of new objects in the heap or synchronization using
monitors. Programs using such primitives have been verified with ACL2 using a
simpler JVM model that does not include our modeling of dynamic class loading
and exceptions [16].

The sample proofs presented here are proofs for complete correctness. The
lemma library about primitives can be reused for proving partial correctness of
Java programs. In his CHARME 2003 paper [15], Moore shows that Floyd-Hoare
style assertion based program proofs can be constructed directly from the formal
operational semantics with little extra logical overhead, i.e. with no need to write
a verification condition generator or other meta-logical tools. To make effective
use of the operational semantics in place of a conventional verification condition
generator, ACL2 needs to be configured to simplify the compositions of JVM
primitives. Thus the present work may be viewed as a follow-up to Moore’s
work on Floyd-Hoare style proofs for bytecode programs on a very complete
JVM model.

In addition to using our model to verify properties of bytecode programs,
we are using it to explore the correctness of the JVM bytecode verifier. In our
approach, defining a realistic JVM is one of the necessary steps in that effort.
This is an additional justification for the choice of a deep embedding: it allows
us to state and prove “meta-level” properties. For existing works on formalizing
bytecode verification, the special issue on Java bytecode verification from the
Journal of Automated Reasoning is a good reference [17].

The collection of “Formal syntax and semantics of Java” edited by Alves-
Foss contains many early works in formalizing the Java programming language
[4]. The Java Language Specification [10] provides the informal specification.
Although we feel it is hard to formalize a complex language by designing an
axiomatic semantics, the LOOP project [21] has formalized the semantics of
Java and a Java annotation language JML based on coalgebra. They are also
deriving proof rules in the style of Hoare logic for embedding Java into PVS [8].

To us, a more feasible method is to give Java an operational semantics. In
[9], Attali et.al. present an operational semantics for Java using the structural
operational semantics approach [19]. We think that our operational semantics
given by state transformation appeals to human intuition better than the opera-
tional semantics based on structural transformation. This in turn makes it easier
to validate the formal semantics against informal specifications and benchmark
implementations. In addition, we feel that a structural operational semantics
would be awkward to support in ACL2.

Börger et. al use abstract state machines for modeling the dynamic semantics
of Java [20]. This work seems close to our work at the JVM level. The work by
T. Nipkow, et. al., on µJava [24] and the Bali project[5] embeds a subset of Java
and the Java bytecode language into the theorem prover Isabelle/HOL to reason
about the type safety of those languages. Recently, J. Meseguer’s group in UIUC
has used the rewriting logic and engine Maude [2] to formalize the semantics of
Java and the JVM [14].



In contrast to the above efforts, our work presented in this paper is focused
on modeling an executable JVM and reasoning about Java program via the
direct and intuitive state transformation semantics of its corresponding bytecode
program on the JVM model.

5 Conclusion

To use a general purpose theorem prover in formal program verification the
semantics of a program to be verified must be expressed in the language of the
theorem prover’s logic.

In this paper, we show that one can deeply embed the Java bytecode lan-
guage, a fairly complicated language with rich semantics, into the first order
logic of ACL2 by modeling a realistic JVM. We reason “about Java programs”
by compiling them with Sun’s javac and then reasoning about the bytecode.

We claim that this is a viable approach in doing Java program verification.
One of the obvious advantages of deep embedding is that its operational nature
makes the semantics correspond closely to informal descriptions in the JVM
specification and with benchmark implementations, increasing one’s confidence
in the model. The behavior of programs under the model and properties of
the model are then derived by the theorem proving engine, increasing one’s
confidence that the reasoning is sound.

The central question is whether we can effectively deal with the complexity
introduced by this approach. We show that with the support of a user guided,
semi-automatic computer proof assistant, the user can reason about programs
at a fairly intuitive level. In a system like ACL2 the necessary support can be
arranged by defining appropriate abstractions and proving lemmas about them
for automatic use by the system. We demonstrate this by covering two concrete
proofs, with the later one reusing the results of the first one as a lemma library.

We feel the limitation of the current work is that our lemma libraries for
reasoning about Java programs are still unoptimized and only cover selected
JVM primitives. Our current focus has been in formalizing the correctness of
the Java bytecode verifier. We are looking forward to extending our work to
provide a full-fledged Java verification system.
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