
An ACL2 Tutorial

Matt Kaufmann and J Strother Moore

Department of Computer Sciences, University of Texas at Austin,
Taylor Hall 2.124, Austin, Texas 78712
{kaufmann,moore}@cs.utexas.edu

Abstract. We describe a tutorial that demonstrates the use of the ACL2
theorem prover. We have three goals: to enable a motivated reader to
start on a path towards effective use of ACL2; to provide ideas for other
interactive theorem prover projects; and to elicit feedback on how we
might incorporate features of other proof tools into ACL2.

1 Introduction

The name “ACL2” [14] stands for “A Computational Logic for Applicative Com-
mon Lisp” and refers to a functional programming language, a formal logic, and
a mechanized proof system. It was developed by the authors of this paper, with
early contributions by Bob Boyer, and is the latest in the line of “Boyer-Moore”
theorem provers [2, 3] starting with the 1973 Edinburgh Pure Lisp Prover’ [1].

The ACL2 logic and programming language are first-order and admit total
recursive function definitions, and are based on a non-trivial purely functional
subset of the Common Lisp [20] programming language. Thus, ACL2 can be built
on many Lisp platforms. We have extended this subset in some important ways,
in no small part because ACL2 is written primarily in itself! Extensions include
additional primitives; a program mode that avoids proof obligations; a state with
applicative semantics supporting file I/O and global variables; and applicative
property lists and arrays with efficient under-the-hood implementations.

This extended abstract describes a one-hour tutorial, not presented here, but
accessible from the “demos” link on the ACL2 home page [14]. Our ambitious
goal is to create effective ACL2 users. Of course, no such system can be absorbed
deeply in just one hour, so we point to useful documentation and references.
Our focus on demos and references suits a second and probably more important
goal of this talk, given that most in our audience will already be committed to
their favorite theorem prover: To provide a sense of ACL2 interaction that could
provide ideas for other interactive theorem prover projects. Conversely, we hope
that this introduction to ACL2 will stimulate suggestions for how to improve
ACL2 by incorporating ideas from other proof tools.

2 About ACL2

We invite the reader to browse the ACL2 web pages starting with the home
page [14], to find: papers on applications and on foundations; tutorials and de-
mos; documentation; mailing list pages; and other useful information.



2

The remaining sections summarize a few ACL2 demos and ACL2 features
that they illustrate. In those demos we will refer to sections of the online hyper-
text user’s manual [16] with the notation “see documentation”. This note skips
the logical foundations [12, 13], focusing instead on the use of ACL2. We con-
clude this section with a few words about how the ACL2 proof engine attempts
an individual proof and how ACL2 supports interactive proof development.

Figure 1 shows the ACL2 proof engine as an orchestrated collection of auto-
mated tactics, including a simplifier that incorporates conditional congruence-
based rewriting as well as decision procedures.

Irrelevance

User

Equality

Destructor Elimination

Generalization

Induction

Elimination of

congruence−based rewriting

evaluation
propositional calculus
BDDs
equality
uninterpreted function symbols
rational linear arithmetic
rewrite rules
recursive definitions
back− and forward−chaining
metafunctions

Simplification

Fig. 1. The ACL2 Waterfall, highlighting the Simplifier

Proof attempts often fail at first! Figure 2 illustrates user interaction with
ACL2. The user submits a definition or theorem, which ACL2 attempts to prove
using definitions and rules stored in the logical world, a database that includes
rules stored from definitions and theorems. If the attempt succeeds, then ACL2
makes a corresponding extension to its logical world. Otherwise, ACL2 provides
output that can suggest lemmas to prove, and it also offers a variety of other
proof debugging tools [15]. Ultimately, a completed proof may be checked by
certifying the resulting books: input files of events, in particular definitions and
proved theorems. Books can be developed independently and combined into
libraries of rules that are valuable for automating future proof attempts.

3 Demo: Basics of Interaction with ACL2

This demo develops a proof that for a recursively-defined notion of permutation,
the reverse of a list is a permutation of the list. We illustrate how to use ACL2



3

Q.E.D.

of ‘‘books’’ of definitions,
database composed

theorems, and advice

User

proofs

M
em

ory
Gates

Arith Vectors

prover

proposed definitions
conjectures and
advice

theorem

Fig. 2. Basic ACL2 Architecture

interactively, specifically highlighting several aspects of using ACL2. We use a
shell running under Emacs, but an Eclipse-based interface is available [7].

– Top-down proof development (see the-method [11]), using simplification check-
points to debug proof failures

– Helpful proof automation, in particular conditional rewriting with respect
to equivalence and congruence relations and a loop-stopper heuristic

– Library development and local scopes
– The proof-checker goal manager

4 Demo: A JVM Model

Next, we demonstrate the so-called M5 model of the Java Virtual Machine
(JVM). In the process we illustrate several aspects of ACL2:

– Library re-use via include-book
– Namespace support through Lisp packages

– Efficient evaluation supporting simulation of models
– Lisp macros, providing user-defined syntax

5 Demo: Proof Debugging and Theory Management

This short demo shows how ACL2 can help to identify rules that slow it down.

– Management of theories (disabling and enabling rules)
– Helpful suggestions from the tool
– Accumulated-persistence for statistics on rule use
– DMR (Dynamic Monitoring of the Rewrite stack)



4

6 Concluding Remarks

Below is a partial list of useful ACL2 features not mentioned above, many of
them requested by users. For more about ACL2, see the home page [14].

– a primitive for user-installed executable counterparts [9]
– proof control [10], including user-installed metatheoretic simplifiers, user-

supplied syntactic conditions for rewrite rules, and dynamically computed
hints

– traditional tactics (macro-commands) for the proof-checker
– partially-defined functions (see encapsulate) and, mimicking second-order

logic, functional instantiation [5, 13]
– a defpun utility [18] for defining non-terminating tail-recursive functions,

built on top of ACL2 with macros
– capabilities for system-level control, such as user-defined tables, state with

applicative semantics, and an extended macro capability (make-event) useful
in defining templates for creating events

– guards, which may be viewed as a general, semantic replacement for types
– many modes and switches (see switches-parameters-and-modes)
– hooks to external tools [17], built on a trust tag mechanism (defttag) [6]
– experimental extensions others have initiated, to support:

• Real numbers (through non-standard analysis) [8]
• Hash cons, function memoization, and applicative hash tables [4]
• Parallel evaluation [19]

– more debugging tools, e.g. to trace or to inspect the rewrite stack
– diverse tools for querying the logical database (see history)
– quantification via Skolemization (see defun-sk)

Acknowledgements. This material is based upon work supported by DARPA
and the National Science Foundation (NSF) under Grant No. CNS-0429591 and
also NSF grant EIA-0303609. We also thank Sandip Ray for helpful feedback on
a preliminary version of this paper.

References

1. R. S. Boyer and J S. Moore. Proving theorems about pure lisp functions. JACM,
22(1):129–144, 1975.

2. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, NY, 1979.
3. R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press,

London, UK, 1997.
4. R. S. Boyer and Jr. W. A. Hunt. Function memoization and unique object repre-

sentation for ACL2 functions. In Proceedings of the Sixth International Workshop
on the ACL2 Theorem Prover and Its Applications, pages 81–89, NY, 2006. ACM.

5. R.S. Boyer, D.M. Goldschlag, M. Kaufmann, and J S. Moore. Functional in-
stantiation in first-order logic. In V. Lifschitz, editor, Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy, pages
7–26. Academic Press, 1991.



5

6. P. Dillinger, M. Kaufmann, and P. Manolios. Hacking and extend-
ing ACL2. In ACL2 Workshop 2007, Austin, Texas, November 2007.
http://www.cs.uwyo.edu/∼ruben/acl2-07/.

7. P. Dillinger, P. Manolios, J S. Moore, and D. Vroon. ACL2s: ”The
ACL2 Sedan”. Theoretical Computer Science, 174(2):3–18, 2006. See
http://acl2s.peterd.org/acl2s/doc/.

8. R. Gamboa and M. Kaufmann. Non-Standard Analysis in ACL2. Journal of
Automated Reasoning, 27(4):323–351, 2001.

9. D. A. Greve, M. Kaufmann, P. Manolios, J S. Moore, S. Ray, J. L. Ruiz-Reina,
R. Sumners, D. Vroon, and M. Wilding. Efficient execution in an automated
reasoning environment. Journal of Functional Programming, 18(1):3–18, January
2008. See also Tech. Rpt. TR-06-59, Dept. of Computer Sciences, Univ. of Texas
at Austin, http://www.cs.utexas.edu/ftp/pub/techreports/tr06-59.pdf.

10. W. A. Hunt, Jr., M. Kaufmann, R. Krug, J S. Moore, and E. Smith. Meta reasoning
in ACL2. In J. Hurd and T. Melham, editors, Proceedings of the 18th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs 2005), volume
3603 of LNCS, pages 163–178, Oxford, England, 2005. Springer-Verlag.

11. M. Kaufmann. Modular proof: The fundamental theorem of calculus. In M. Kauf-
mann, P. Manolios, and J S. Moore, editors, Computer-Aided Reasoning: ACL2
Case Studies, pages 75–92, Boston, MA., 2000. Kluwer Academic Press.

12. M. Kaufmann and J S. Moore. A precise description of the ACL2 logic. In
http://www.cs.utexas.edu/users/moore/publications/km97a.ps.gz. Dept. of Com-
puter Sciences, University of Texas at Austin, 1997.

13. M. Kaufmann and J S. Moore. Structured Theory Development for a Mechanized
Logic. Journal of Automated Reasoning, 26(2):161–203, 2001.

14. M. Kaufmann and J S. Moore. The ACL2 home page. In
http://www.cs.utexas.edu/users/moore/acl2/. Dept. of Computer Sciences,
University of Texas at Austin, 2008.

15. M. Kaufmann and J S. Moore. Proof Search Debugging Tools in ACL2. In R. Boul-
ton, J. Hurd, and K. Slind, editors, Tools and Techniques for Verification of System
Infrastructure, A Festschrift in honour of Prof. Michael J. C. Gordon FRS. Royal
Society, London, http://www.ttvsi.org/, March 2008.

16. M. Kaufmann and J S. Moore. The ACL2 User’s Manual. In
http://www.cs.utexas.edu/users/moore/acl2/#User’s-Manual. Dept. of Computer
Sciences, University of Texas at Austin, 2008.

17. M Kaufmann, J S. Moore, S. Ray, and E. Reeber. Integrating external deduction
tools with ACL2. In C. Benzmueller, B. Fischer, and G. Sutcliffe, editors, Proceed-
ings of the 6th International Workshop on Implementation of Logics (IWIL 2006),
volume 212 of CEUR Workshop Proceedings, pages 7–26, 2006. to appear in the
Journal of Applied Logic.

18. P. Manolios and J S. Moore. Partial functions in ACL2. Journal of Automated
Reasoning, 31(2):107–127, 2003.

19. D. L. Rager. Adding parallelism capabilities to ACL2. In Proceedings of the Sixth
International Workshop on the ACL2 Theorem Prover and its applications, pages
90–94, New York, NY, USA, 2006. ACM.

20. G. L. Steele, Jr. Common Lisp The Language. Digital Press, second edition, 1990.


