
Netrace: Dependency-Driven Trace-Based
Network-on-Chip Simulation

Joel Hestness∗

hestness@cs.utexas.edu
Boris Grot∗

bgrot@cs.utexas.edu
Stephen W. Keckler∗†

skeckler@nvidia.com
∗Department of Computer Science, The University of Texas at Austin

†Architecture Research Group, NVIDIA

Abstract

Chip multiprocessors (CMPs) and systems-on-chip (SOCs)
are expected to grow in core count from a few today to hun-
dreds or more. Since efficient on-chip communication is a
primary factor in the performance of large core-count sys-
tems, the research community has directed substantial atten-
tion to networks-on-chip (NOCs). Current NOC evaluation
methodologies include analytical modeling, network simula-
tion, and full-system simulation. However, as core count
and system complexity grow, the deficiencies of each of these
methods will limit their ability to meet the demands of devel-
opers and researchers. Developing efficient NOCs requires
high-fidelity, low-overhead NOC evaluation techniques and
metrics. To address these challenges, this paper describes
a new trace-based network simulation methodology that cap-
tures dependencies between network messages observed in
full-system simulation of multithreaded applications. We also
introduce Netrace, a library of tools and traces that enables
targeted NOC simulators to track and replay network mes-
sages and their dependencies.

1. INTRODUCTION
As chip multiprocessors (CMPs) scale toward hundreds of

processing cores, experimentation becomes evermore com-
plex. Diversification of cores in heterogeneous systems will
require added effort in building and debugging CMP sim-
ulators. Further, simulation time will increase as CMPs
scale and integrate more components onto a single chip. Re-
searchers must find novel methods of testing emerging sys-
tems in ways that provide quick performance estimates with-
out sacrificing (too much) fidelity or confidence.

Networks-on-chip (NOCs) promise efficient communica-
tion between cores, caches, and memory controllers of future
CMPs. Current NOC research assumes that hundreds of pro-
cessing cores will be available on a chip, and indeed, Tilera
has already produced such a design. Existing NOC research
covers traditional topics, such as topologies and routing al-
gorithms, as well as more complex ones, like incorporation of
emerging manufacturing technologies, quality of service, and
interactions of cache architecture, protocols, and network.

In this paper, we survey existing NOC evaluation method-
ologies and observe that today’s approaches have major draw-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NoCArc ’10, December 4, 2010, Atlanta, Georgia, USA
Copyright c©2010 ACM 978-1-4503-0397-2 ...$10.00.

Approach Fidelity Runtime Cite

Analytical modeling Low Zero [4, 18]

Simulation: synthetic traffic Low Short [1, 15, 16]

Simulation: Full-system “Perfect” Long [2, 7]
Simulation: application traces Medium Medium [12, 13]

Simulation: application traces High Medium Netrace
w/ dependency tracking

Table 1: Network evaluation methodologies

backs limiting their effectiveness or efficiency. For instance,
full-system simulation offers high fidelity but suffers from
long runtimes and variability, while trace-based approaches
improve simulation speed but distort the injection rates and
effects of congestion due to loss of dependency information
between network transactions. In response, we propose Ne-
trace, a new trace-based NOC evaluation methodology that
captures and enforces the dependencies between network mes-
sages. This methodology can offer insight not only into
network-level performance, but also application-level perfor-
mance characteristics and bottlenecks in a fraction of the
time of full-system simulation.

Our methodology includes (1) augmentations to the M5
simulator [6] to capture network traces with dependencies,
(2) a collection of resulting trace files for a range of bench-
marks that are currently drawn from the PARSEC bench-
mark suite [5], and (3) a trace file reader library that can be
incorporated into new and existing network simulators with
little effort. We expect that Netrace can help to standardize
a set of NOC benchmarks and enable results to be compared
across different NOC studies.

2. EXISTING METHODOLOGIES
Table 1 gives an overview of four existing network evalua-

tion methodologies, followed by the methodology that we are
proposing in this paper. Here we detail the biggest benefits
and disadvantages of each approach.

Analytical Modeling: Analytical modeling provides a
baseline for quick, back-of-the-envelope NOC evaluation, and
researchers have developed models to gain specific insights
about an NOC, such as power and area footprints, and worst-
case traffic patterns [4] [18]. However, as CMP complex-
ity grows, and designs become more dynamic, modeling the
complex interplay of architectural design decisions without
detailed simulation becomes difficult.

Synthetic Workloads: A common experimental method-
ology employs an NOC simulator driven by synthetically
generated network traffic. Commonly-used patterns include
uniform random and transpose, among others, which are
designed to stress an NOC in different ways and can pro-
vide insight into network bottlenecks through metrics such as
throughput and latency across different injection rates. Un-
fortunately, synthetic workloads do not represent expected

Figure 1: Throttling by Timestamp

traffic within a system running real applications. As such,
they fail to offer the designer application-level performance
insights, such as memory access time or end-to-end runtime.

A related approach is to develop synthetic traffic gener-
ators that mimic actual application-level behavior as in an
SOC [15, 17]. These methods require statistical analysis of
network traffic traces to tune multiple different generators
for appropriate injection rates, causal dependencies between
messages, and application phase changes. Such tuning re-
quires substantial effort and is often specific to a particular
class of architectures or applications.

Full System Simulation: Full-system simulation pro-
vides the highest evaluation fidelity by explicitly modeling
the interaction of application and architecture. The insights
gained through full-system simulation can reveal NOC bot-
tlenecks with respect to actual applications and the impact
of network-level optimizations on application performance.

Despite the considerable benefits, the approach suffers from
two important drawbacks. First, the simulation time of a
complete system running an operating system and bench-
mark applications can be on the order of many weeks to
months, depending on the level of detail and system size of
the simulation, and the duration of the application region of
interest. Slow simulation hinders the ability of the designer
to get quick feedback and to test a large design space. Sec-
ond, even with deterministic full-system simulation, the issue
of variability arises between simulations spanning a design
space. For instance, comparing performance of even small
modifications to the NOC can result in large differences in
thread-to-core assignment, synchronization contention and
operating system effects due to slight timing differences and
different execution paths [3]. Such non-determinism makes
exploration of the architectural design space of NOCs diffi-
cult.

Trace-driven NOC Simulation: As an alternative to
full-system simulations, researchers have proposed driving
an NOC simulator with traces of network traffic that have
been collected from execution of an application. The moti-
vation behind these trace-based approaches is to capture the
network-level behavior of real applications while benefitting
from the speed of isolated network simulation. Speedups of
up to 50x have been reported for trace-driven NOC evalua-
tion over full-system simulation [16].

While application traffic tends to be more realistic than
synthetic workloads, trace-driven methodologies have largely
ignored the dependencies between network messages. Ignor-
ing dependencies allows interleavings of messages that would
not occur in full-system simulation and can cause misleading
injection rates due to a lack of dependency-based throttling.

As an example, Figure 1 shows multiple requesters issuing
consecutive memory requests to the L2 bank on the right.
In a trace-driven configuration, the rate at which the re-
quests enter the network is controlled by the trace packet
timestamps that reflect the cycle in which the corresponding
memory accesses occurred in full-system simulation. If the
packet latency in the simulated NOC is greater than that
modeled in full-system mode, the rate at which the packets

enter the network can exceed the NOC’s ability to deliver
them, causing pockets of congestion. Congestion tends to
increase network latency and diminish throughput, distort-
ing these metrics and compromising simulation fidelity.

This behavior is an artifact of incorrectly throttled packet
injection that ignores transaction ordering and dependen-
cies among messages. As a result of such distortions, ex-
isting trace-driven methodologies do not provide meaning-
ful application-level performance metrics [10]. Without such
feedback, designers are not able to evaluate the impact of
NOC optimizations on application performance.

Dependency-driven NOC Simulation: We propose
a new evaluation methodology for trace-based NOC simu-
lation that captures and obeys the dependencies between
messages. Our approach is to construct a directed acyclic
graph (DAG) between network messages based on the order-
ing and dependencies among memory transactions recorded
during full-system simulation. The dependency information
is stored along with packet data in the network trace. By en-
forcing the ordering constraints in a network simulator, the
proposed technique can greatly increase the fidelity of trace-
driven evaluation with little impact on simulation speed.

Dependency-tracking trace-driven simulation provides sev-
eral benefits. First, enforcing dependencies ensures a proper
interleaving of network messages, which increases the fidelity
of the simulation by eliminating network hotspots that are
a result of artificial network contention. Analysis of the re-
maining hotspots that arise while enforcing dependencies can
offer valuable insight into the network bottlenecks that are
due to either the network architecture or the communica-
tion patterns of the application. Second, since the traces
are collected from a single execution of a benchmark, the
same application execution paths are enforced regardless of
the NOC organization being tested. This strategy makes it
easier to assess the impact of different network designs on
application-level performance characteristics as compared to
full-system simulation, which is plagued by variability in exe-
cution paths. Third, the time to run an NOC simulation that
obeys dependencies is only slightly longer than NOC simula-
tion without dependencies, offering substantial speedup over
full-system simulation. Finally, we anticipate that the rich
content of the traces will enable researchers to test the inter-
play of numerous design points, including cache coherence
and cache-to-network protocols, physical placement of cache
and memory controllers on a die, and cache line owner/home
mappings. We hope that this methodology can be used as a
standard for network evaluation as the size and complexity
of NOC designs grow.

Trace-based methods, including the one proposed here, are
not without drawbacks. Trace file sizes can be large (a gi-
gabyte or more) making distribution difficult. Because each
trace is matched to the architecture of the simulated sys-
tem, testing a different cache organization or processor core
will require full-system simulation run to collect new traces.
Despite these limitations, we anticipate that the benefits of
fidelity and speed will motivate many NOC researchers to
use these dependency-based traces and tools.

3. DEPENDENCIES
Abstractly, a network message j is dependent on network

message i if either of the following holds: (1) receipt of mes-
sage i must occur before (or triggers) the sending of message
j, or (2) message j is dependent on message k, and k is

Cores 64 on-chip, in-order, Alpha ISA, 2GHz
L1 cache 32KB instruction/32KB data, 4-way associative,

64B lines, 3 cycle access time, MESI coherence
L2 cache 64 bank fully shared S-NUCA, 16MB, 64B lines,

8-way associative, 8 cycle bank access time
Memory 150 cycle access time, 8 on-chip memory controllers

Table 2: Target System

Figure 2: Abstraction in Target System

dependent on message i.
The second condition is transitivity, stipulating that a

message is dependent on another if there exists a chain of
dependencies linking them. Analogous to a data-flow graph,
the set of packets and dependencies in a trace makes up a
directed-acyclic graph where the nodes are packets and the
edges are dependencies between packets.

One of the simplest examples of a chain of dependencies
is a memory access. Figure 3 depicts a memory access from
an L1 instruction cache for instruction memory that is not
currently on-chip. The request triggers a chain of packets
and dependencies that goes to memory to get the data and
returns it to the L1-I. More complex memory accesses in-
volve the cache coherence protocol and result in longer or
wider chains of packets and dependencies. We use the term
“memory access” to denote the set of network messages and
dependencies that result due to a single core issuing a single
memory request.

The concept of a memory access is a useful abstraction
when trying to understand what a network traffic trace with
dependencies looks like. For the target system in this study,
a network traffic trace is made up of a set of memory accesses
that are linked end-to-end through dependencies at the pro-
cessor core. Since the packets and dependencies represent a
directed, acyclic graph, a partial order can be defined. The
longest chain of dependencies in the graph, along with as-
sociated latencies, represents the network critical path for
the application from which the traces were collected. This
observation indicates the link between network performance
and end-to-end runtime of an application, and it is our mo-
tivation for tracking dependencies.

3.1 Dependency Classes
Dependencies between network messages arise as a result

of three distinct causes: architectural, microarchitectural,
and programmatic. We classify network message dependen-
cies based on these causes and describe them in the context
of a target system below. For a thorough discussion of these
dependency classes in the context of microprocessor design,
we refer the reader to Fields [8].

3.2 Target System
To make the message dependency discussion concrete, we

walk through a case study of dependencies for a particular
target system in the next subsection. Table 2 summarizes
the design parameters for this target system, which is com-

Figure 3: Example Memory Access

prised of in-order cores with private L1 instruction and data
caches, a shared, banked L2 cache, and eight on-die memory
controllers. This target system corresponds to a specific in-
stance of the abstract architecture shown in Figure 2. The
cache coherence protocol is MESI for the L1s. An L2 bank
acts as the owner of shared lines and as the backing store for
writebacks from the L1s.

3.3 Message Dependency Classes
Architectural dependencies arise as a result of archi-

tectural component interaction, such as messages between
cores, caches, and memory controllers. For our target sys-
tem, there are 3 types of architectural dependencies: request-
request, request-response and response-response. Each of
these different types is depicted in Figure 3. For instance,
request-request dependencies occur when a request for data
causes a miss in the L2 and thus, a subsequent request to
the memory controller for the data. Analogously, when the
response comes back on-chip, it first returns to the L2 be-
fore being forwarded to the requesting L1. Request-response
dependencies occur when an architectural component can
service a request, so after it receives the request, it can send
the response data. In this target system, the L2 and memory
controllers can service requests.

Microarchitectural dependencies are due to microar-
chitectural implementation details, including buffer capaci-
ties, protocols and others. In general, tracking microarchi-
tectural dependencies can be difficult as they must be con-
sidered on a per-architectural-component basis.

For the target system, microarchitectural dependencies are
caused by cache implementations and the cache coherence
protocol. For instance, the L2 cache line size, associativity,
replacement policy and capacity affect when and which cache
lines are evicted. When the L2 receives a packet i containing
new data, it may trigger a writeback of the old data via
a message to a memory controller. The writeback packet
depends on the receipt of i, causing the eviction.

The coherence protocol is also a source of many dependen-
cies. For instance, if a cache line is shared between multiple
L1 data caches, and one of the L1s issues an upgrade re-
quest for that cache line, the receipt of that upgrade request
at the L2 will trigger the release of invalidation requests to
all other sharers of that line. A similar situation occurs when
read requests cause a downgrade request to the owner.

Program behavior dependencies are a result of both
data- and control-flow dependencies within an application,
and they are realized by the microarchitecture of the pro-
cessor core. An example is when a branch or jump instruc-
tion in the control-flow graph causes a new region of in-
struction memory to be loaded into the L1-I cache. The

instruction load is dependent on executing an instruction
that was loaded previously. Data-flow dependencies, such as
read-after-read (RAR) and write-after-read (WAR), cause
similar network message dependencies between a load and
other loads/stores.

In practice, program behavior dependencies are difficult to
track without inspection of machine code of an application.
For the purpose of investigating the efficacy of dependency
tracking, our initial target system uses in-order cores, which
allow us to make the assumption that memory requests from
a core must proceed serially. We have started investigating
dependencies in the context of an out-of-order core, and we
plan to complete a full analysis in future work.

4. TRACE COLLECTION
We use a two step process for collecting network traf-

fic traces. First, we use full-system simulation to collect
memory request traces, which we refer to as the “simulation
traces.” Then we post-process these simulation traces to
extract network messages and detect dependencies between
them. This data is output to an encoded network traffic
trace. While we describe the process in the context of a par-
ticular target system, our methodology can be extended and
applied to a variety of system configurations.

4.1 Simulated System
For full-system simulation, we use the M5 simulator [6]

running a modified version of Linux 2.6.27 that supports
up to 64 cores. We choose to simulate a system that is,
in a couple ways, more abstract than the target system de-
scribed in Section 3. First, the simulated system models a
unified L2 cache and a single memory controller. This allows
us to concentrate the L2 and memory traffic through a sin-
gle point, simplifying trace post-processing and eliminating
variable access time to physically distinct components.

Second, the simulated system models a fixed-latency bus
between the L1 and L2 caches, and another between the L2
and memory controller. Packets are not artificially spaced
through time due to contention for communication resources.
The combination of these two abstractions avoids assuming
any physical layout of the chip by giving the illusion that
each core is the same“distance”from the L2 or memory. This
approach ensures that the varying latencies that are realized
in dependency-enforcing network simulation are not a result
of artificial timing effects from the full-system simulation.

While future systems may feature non-uniform cache ac-
cess latencies, the actual latencies of these components would
be highly dependent on floorplanning and layout, so we fix
the access latency to a given cache. Another aspect of mod-
eling component latency is deciding how to model network la-
tency. Actual network latencies are dependent on the amount
of contention in the network at a given time, as well as the
network implementation, such as the number of routers be-
tween source and destination of a message. Due to the high
variability in network latency, we again assume a fixed la-
tency for message communication. To decide this latency,
we used an analytical model to calculate the average num-
ber of hops, and thus average packet latency, across a chip
with a mesh-like network topology using manhattan distance
and assuming no contention. The assumption of contention-
free network traffic reflects communication behavior of high-
performance applications, which are typically optimized for
local communication in an actual system.

Format:
<inject_cycle>: <bus>: src <port_id>

dst <port_id> <type> <addr>

A 36: sys.tol2bus: src 96 dst -1 ReadReq 0xd040
B 50: sys.tol2bus: src 46 dst -1 ReadReq 0xdb40
C 60: sys.tol2bus: src 16 dst 96 ReadResp 0xd040
D 74: sys.tol2bus: src 16 dst 46 ReadResp 0xdb40

Figure 4: Example Simulation Trace Records

Figure 5: Example Packet

4.2 Post-processing Simulation Traces
After collecting simulation traces from the simulated sys-

tem, we post-process them to generate network traffic traces.
Our post-processing application first syntactically parses the
simulation trace to build network packets that include the
injection cycle, source and destination node, and others. The
second phase inspects a window of packets from the previ-
ous 1,000,000 trace cycles to detect and track dependencies
between them. The window depth was chosen empirically to
contain at least 95% of each dependency type that we track.

To make the post-processing step more concrete, consider
the example records from a simulation trace as shown in Fig-
ure 4. The syntactic parsing of record A builds a packet data
structure similar to the one shown in Figure 5. The packet
injection cycle is read directly from the record. The source
and destination ports are translated using the mapping de-
fined within simulation, which in this case maps port 96 to
the L1 data cache at node 47. A destination port of -1 indi-
cates that a packet is broadcast on the bus. Record C shows
the response to record A, which originates at port 16, the L2
cache. The L2 home node of the cache line is calculated on
an address-interleaved basis. Packet A is added to the packet
window to be inspected later to detect dependencies.

When record C is parsed, our application searches through
the window of previously parsed records to find packets on
which C depends. Here, C depends on A, so the number of
dependencies for packet A is incremented, and C is added
to A’s list of downward dependencies. Similarly, packet D

depends on B, so a dependency is established between them.

4.3 Benchmarks
Our first set of on-chip network traffic traces with depen-

dencies was collected from M5 simulation of the PARSEC
v2.1 benchmark suite [5] [9]. The PARSEC suite contains
multiple input sets for each benchmark, and we collect traces
for simulation with the simsmall, simmedium and simlarge
input sets for all the benchmarks that work with simulation
up to 64 cores.

5. NETRACE
Netrace is a C/C++ library that includes functionality to

read a standardized network traffic trace file and track the
dependencies between network messages. This library can
be easily incorporated into existing and new network sim-
ulators as a means of driving the simulation. A network
simulator can employ the API calls of the Netrace system to
read packets from a trace and to detect and enforce depen-

dencies. This section outlines the Netrace API as shown in
Table 3, and we describe the flexibility of the traces.

Netrace API: After a Netrace file has been opened, the
nt_read_packet function will return the next packet in the
file. A packet, i contains a list of downstream dependent
packets that should not be injected into the network until
i has been ejected. Netrace adds these dependencies to its
internal data structures to power the next two functions.

The nt_dependencies_cleared method queries the Ne-
trace data structures to check if, for a packet j, all of its
upstream dependent packets have been ejected from the net-
work. If so, the method returns TRUE to indicate that j can
be injected into the network, otherwise, it returns FALSE. The
network simulator must clear these upward dependencies by
calling the nt_clear_dependencies_free_packet method
on all packets as they are ejected from the network. A call
to nt_clear_dependencies_free_packet removes the down-
ward dependencies of a packet and frees the packet memory.
For packet, i, which is being ejected from the network, if i is
the last upward dependency for packet j, then after the call
nt_clear_dependencies_free_packet(i), subsequent calls
to nt_dependencies_cleared(j) will return TRUE indicating
that all dependencies have been cleared.

Netrace Flexibility: Figure 2 shows the abstraction of
the target system as we discussed in Section 4. Thanks to
this abstraction, an NOC simulator can be used to evaluate
a wide range of network configurations within this target
system using traces with message dependencies.

First, Netrace is designed to support comparisons between
traditional NOC design points, such as topologies and rout-
ing algorithms. At a detailed level, it can provide application-
level insight into bottlenecks caused by the NOC, similar to
what we describe in Section 6.

Second, the expressiveness of Netrace traces also supports
emerging research directions. For instance, it allows for eval-
uations of on-chip floorplanning and layout in future systems
that may incorporate numerous cores or new manufacturing
technologies such as die-stacking. It can be used to evaluate
different cache and memory controller counts and locality
simply by remapping the sources and destinations of packets
aimed at particular components.

Finally, Netrace provides the flexibility to test the inter-
play of multiple design decisions in a system hierarchy. For
example, the traces we distribute assume a particular coher-
ence protocol that can easily be replaced with other protocols
as long as the NOC simulator tracks coherence state for live
cache lines. This allows for testing the interaction of dif-
ferent network designs and cache coherence protocols, which
will be critical as the focus of NOC research comes to include
broadcast/multicast support and power concerns.

6. EVALUATION
Methodology: To evaluate the effectiveness of enforcing

message dependencies, we compare application-level perfor-
mance metrics between M5 full-system simulation and trace-
based NOC simulation. To assess the affect of varying aver-
age packet latency on application-level performance charac-
teristics, we first run full-system simulations with a variety
of fixed network latencies. The full-system that we model
is the same as our simulated system, which models an ideal
network, namely, the communication latency from any node
to any other node is the same. We then use a custom NOC
simulator to test three network topologies that represent a

Benchmark Input Cycles Packets

blackscholes simlarge 894M 89.5M

canneal simmedium 300M 74.2M

x264 simsmall 1.48B 31.3M

Table 4: Full-system simulation ROI data

range of different latency and throughput characteristics: a
mesh, a mesh with concentration factor of four (Cmesh) [4],
and a multidrop express channel topology (MECS) [11].

Discussion: Figure 6 plots the region of interest (ROI)
runtime, normalized to full-system simulation with an 8-
cycle fixed network latency for three different PARSEC bench-
marks. The benchmarks, listed in Table 4, were chosen as
examples of the range of application performance character-
istics that Netrace can capture. Three different simulation
configurations are shown in the figure – full-system, con-
ventional trace-based NOC simulation without dependency
tracking (Trace), and dependency-driven NOC simulation
(Netrace). For both trace-based configurations, individual
points correspond to the three modeled topologies – MECS,
concentrated mesh, and mesh, respectively, going from left
(lower latency) to right (higher latency) in the figure. For
full-system simulations, the topology is unchanged but dif-
ferent fixed network latencies are modeled.

As expected, in full-system simulation, longer network la-
tencies increase the runtime of the application by delaying
the completion of cache and memory accesses. In contrast,
the runtime of network simulation without dependencies re-
mains unchanged across the different topologies and is always
equal to the runtime of the full-system configuration under
which the traces were collected. This is because simulation
without dependencies fails to provide feedback to throttle
packet injection and elongate runtime.

Netrace correctly tracks network dependencies and faith-
fully serializes transactions, reflecting the relative elongation
in application runtime experienced by full-system simula-
tions with longer network delays (i.e. the slope of the full-
system and Netrace lines in the figure are quite similar). For
instance, for canneal, Netrace reveals that a MECS topol-
ogy yields an 11% speed-up relative to a mesh network while
reducing the average packet latency by over 66%, from 26.8
cycles to 11.9 cycles. The relative speedup precisely matches
that observed in full-system simulation with equivalent net-
work latencies.

We can also see the effect of communication locality on
ROI runtime. As an example, x264-small can only utilize 8
cores during the ROI, and the Linux thread scheduler does
a good job of placing threads for locality. The end result
is that data communication between threads is mostly lo-
cal, so network topology has a minor effect on ROI runtime.
On the other hand, blackscholes spreads the work among all
of the cores with little communication affinity. As a result,
packets travel larger distances across the NOC, exposing the
latency-reducing benefits of low-diameter networks. In this
case, Netrace shows that the low-diameter MECS topology
improves application performance by 5% compared to the
mesh network, which requires a large number of hops be-
tween source and destination.

In general, the relative performance of different topolo-
gies under Netrace correlates well with full-system measure-
ments. However, the absolute performance as indicated by
ROI runtime is quite different for the two approaches. The
reason for this phenomenon is that full-system simulation
uses an idealized fixed-latency NOC model, which ignores

Method Description

nt_read_packet() Read a packet from the Netrace file

nt_dependencies_cleared(packet) Check if upward dependencies have been cleared

nt_clear_dependencies_free_packet(packet) Clear downward dependencies and free the passed packet

Table 3: Netrace API Methods

1

1.02

1.04

1.06

1.08

1.1

0 10 20 30 40

R
O

I
ru

n
ti

m
e

 (
n

o
rm

a
li

ze
d

)

Average network latency (cycles)

Full-system Trace Netrace

MECS

Cmesh

mesh

Cmesh mesh

MECS

(a) blackscholes-large

1

1.1

1.2

1.3

1.4

1.5

1.6

0 10 20 30 40

Average network latency (cycles)

Full-system Trace Netrace

MECS

Cmesh mesh

MECS Cmesh

mesh

(b) canneal-medium

1

1.1

1.2

1.3

1.4

1.5

0 10 20 30 40

Average network latency (cycles)

Full-system Trace Netrace

MECS Cmesh
mesh

mesh Cmesh

MECS

(c) x264-small

Figure 6: Comparison of different methodologies.

the effects of variable communication latency of a realistic
multi-hop network. One of these effects is the divergence in
the execution rates of the different threads based on their ob-
served memory latency, which causes some threads to finish
ahead of others. In parallel systems, workload completion
time is always determined by the slowest thread – an effect
not fully captured in simulations with fixed network latency.
In contrast, Netrace faithfully captures both network effects
and application dependencies, and is likely a more accurate
indicator of NOC’s impact on application performance than
the full-system results here.

7. CONCLUSIONS AND FUTUREWORK
This paper introduces Netrace, a trace-based network sim-

ulation platform that encodes dependencies between network
messages. Netrace includes a set of NOC traffic traces and
trace file reader library that can be incorporated into new
and existing network simulators with little effort. We will
provide more detail about the Netrace tools and traces in
our technical report [14].

Enforcing dependencies between network messages dur-
ing trace-driven NOC simulation ensures that the network
handles a proper interleaving of packets. This strategy in-
creases the fidelity of NOC simulation when compared to
other trace-based NOC simulation methodologies by elimi-
nating hotspots due to artificial network contention and fo-
cusing bottleneck detection. Compared to full-system simu-
lation, trace-driven NOC simulation with dependencies can
be orders of magnitude faster and can avoid the problem of
variability of execution path by collecting a trace of a sin-
gle execution of a benchmark. Finally, Netrace enables the
analysis of the interaction of numerous design decisions and
application-level evaluation metrics, most importantly, ap-
plication runtime.

In the future, we plan to extend Netrace to support sys-
tems with out-of-order cores. We will also be considering
new on-chip system configurations, possibly with different
numbers of network terminal nodes and cache hierarchies.

REFERENCES

[1] D. Abts, N. D. Enright Jerger, J. Kim, D. Gibson, and M. H.
Lipasti. Achieving Predictable Performance Through Better
Memory Controller Placement in Many-core CMPs. SIGARCH
Computer Architecture News, 37(3):451–461, 2009.

[2] N. Agarwal, L.-S. Peh, and N. K. Jha. In-Network Snoop
Ordering (INSO): Snoopy Coherence on Unordered
Interconnects. In HPCA, pages 67–78, 2009.

[3] A. R. Alameldeen and D. A. Wood. Variability in Architectural
Simulations of Multi-Threaded Workloads. In HPCA, pages
7–18, 2003.

[4] J. Balfour and W. J. Dally. Design Tradeoffs for Tiled CMP
On-chip Networks. In ICS, pages 187–198, 2006.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
Benchmark Suite: Characterization and Architectural
Implications. Technical Report TR-811-08, Princeton
University, January 2008.

[6] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt. The M5 Simulator: Modeling
Networked Systems. In IEEE Micro, pages 52–60, July/August
2006.

[7] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das.
Application-Aware Prioritization Mechanisms for On-chip
Networks. In MICRO, pages 280–291, 2009.

[8] B. Fields, S. Rubin, and R. Bod́ık. Focusing processor policies
via critical-path prediction. SIGARCH Computer Architecture
News, 29(2):74–85, 2001.

[9] M. Gebhart, J. Hestness, E. Fatehi, P. Gratz, and S. W.
Keckler. Running PARSEC 2.1 on M5. Technical Report
TR-09-32, The University of Texas at Austin, Department of
Computer Science, October 2009.

[10] C. Grecu, A. Ivanov, P. P, A. Jantsch, E. Salminen, and
R. Marculescu. An initiative towards open network-on-chip
benchmarks. http://www.ocpip.org/socket/whitepapers/
NoC-Benchmarks-WhitePaper-15.pdf, 2007.

[11] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. Express
cube topologies for on-chip interconnects. In HPCA, 2009.

[12] B. Grot, S. W. Keckler, and O. Mutlu. Preemptive Virtual
Clock: A Flexible, Efficient, and Cost-Effective QOS Scheme for
Networks-On-Chip. In MICRO, pages 268–279, 2009.

[13] M. Hayenga, N. E. Jerger, and M. Lipasti. SCARAB: A Single
Cycle Adaptive Routing and Bufferless Network. In MICRO,
pages 244–254, 2009.

[14] J. Hestness and S. W. Keckler. Netrace: Dependency-Tracking
Traces for Efficient Network-on-Chip Experimentation.
Technical Report TR-10-11, The University of Texas at Austin,
Department of Computer Science,
http://www.cs.utexas.edu/~netrace, October 2010.

[15] S. Mahadevan, F. Angiolini, J. Sparsø, L. Benini, and
J. Madsen. A Reactive and Cycle-True IP Emulator for MPSoC
Exploration. IEEE Transactions on CAD of Integrated
Circuits and Systems, 27(1):109–122, 2008.

[16] S. Mahadevan, F. Angiolini, M. Storgaard, R. G. Olsen,
J. Sparso, and J. Madsen. A network traffic generator model for
fast network-on-chip simulation. In DATE, pages 780–785, 2005.

[17] A. Scherrer, A. Fraboulet, and T. Risset. Automatic Phase
Detection for Stochastic On-Chip Traffic Generation. In
CODES+ISSS, pages 88–93, 2006.

[18] B. Towles and W. J. Dally. Worst-case Traffic for Oblivious
Routing Functions. In SPAA, pages 1–8, 2002.

