next up previous
Next: About this document Up: Recurrent Inhibition and Clustered Previous: Appendix

References

1
D. G. Albrecht and D. B. Hamilton. Striate cortex of the monkey and cat: Contrast response function. Journal of Neurophysiology, 48:217--237, 1982.

2
K. Albus. A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. Experimental Brain Research, 24:159--202, 1975.

3
J. D. Allison and A. B. Bonds. Inactivation of the infragranular striate cortex broadnes orientation tuning of supragranular visual neurons in the cat. Experimental Brain Research, 101:415--426, 1994.

4
J. Allman, F. Miezin, and E. McGuinnes. Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons. Annual Review of Neuroscience, 8:407--430, 1985.

5
J. J. Atick and A. N. Redlich. Mathematical model of the simple cells in the visual cortex. Biological Cybernetics, 63:99--109, 1990.

6
W. T. Baxter and B. M. Dow. Horizontal organization of orientation-sensitive cells in primate visual cortex. Biological Cybernetics, 61:171--182, 1989.

7
N. J. Berman, R. J. Douglas, K. A. C. Martin, and D. Whitteridge. Mechanisms of inhibition in cat visual cortex. Journal of Physiology, 440:697--722, 1991.

8
G. G. Blasdel. Orientation, selectivity, preference, and continuity in monkey striate cortex. Journal of Neuroscience, 12:3139--3161, 1992.

9
J. Bolz and C. D. Gilbert. Generation of end-inhibition in the visual cortex via interlaminar connections. Nature, 320:362--365, 1986.

10
A. B. Bonds. Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Visual Neuroscience, 2:41--55, 1989.

11
A. B. Bonds. Dual inhibitory mechanisms for definition of receptive field characteristics in cat striate cortex. In J.E. Moody R.P. Lippmann and D.S. Touretzky, editors, Advances in Neural Information Processing Systems 3, 75--82. Morgan Kaufmann Publishers, 1991.

12
T. Bonhoeffer and A. Grinvald. The layout of iso-orientation domains in Area 18 of cat visual cortex: Optical imaging reveals a pinwheel-like organization. Journal of Neuroscience, 13:4157--4180, 1993.

13
V. Braitenberg and C. Braitenberg. Geometry of orientation columns in the visual cortex. Biological Cybernetics, 33:179--176, 1979.

14
D. Burr, C. Morrone, and L. Maffei. Intra-cortical inhibition prevents simple cells from responding to textured visual patterns. Experimental Brain Research, 43:455--458, 1981.

15
P. C. Bush and T. J. Sejnowski. Effects of inhibition and dendritic saturation in simulated neocortical pyramidal cells. Journal of Neurophysiology, 71:2183, 1994.

16
E. M. Callaway and L. C. Katz. Emergence and refinement of clustered horizontal connections in cat striate cortex. Journal of Neuroscience, 10:1134--1153, 1990.

17
M. Carandini and D. J. Heeger. Summation and division by neurons in primate visual cortex. Science, 264:1333--1336, 1994.

18
B. Chapman, K. R. Zahs, and M. P. Stryker. Relation of cortical cell orientation selectivity to alignement of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex. Journal of Neuroscience, 11:1347--1358, 1991.

19
B. Chapman and M. P. Stryker. Origin of orientation tuning in the visual cortex. Current Opinion in Neurobiology, 2:498--501, 1992.

20
O. D. Creutzfeldt, U. Kuhnt, and L. A. Benevento. An intracellular analysis of visual cortical neurones to moving stimuli: Responses in co-operative neural network. Experimental Brain Research, 21:251--274, 1974.

21
J. M. Crook and U. T. Eysel. GABA-induced inactivation of functionally characterized sites in cat visual cortex (area 18): Effects on orientation tuning. Journal of Neuroscience, 12:1816--1625, 1992.

22
J. G. Daugman. Spatial visual channels in the Fourier plane. Vision Research, 24:891--910, 1984.

23
J. G. Daugman. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America, A/2:1160--1169, 1985.

24
G. C. De Angelis, I. Ohzawa, and R. D. Freeman. Depth is encoded in the visual cortex by a specialized receptive field structure. Nature, 352:156--159, July 1991.

25
G. C. De Angelis, J. G. Robson, L. Ohzawa, and R. D. Freeman. Organization of suppression in receptive fields of neurons in cat visual cortex. Journal of Neurophysiology, 68:144--163, 1992.

26
G. C. De Angelis, I. Ohzawa, and R. D. Freeman. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex.I. General characteristics and postnatal development. Journal of Neurophysiology, 69:1091--1117, 1993.

27
G. C. De Angelis, I. Ohzawa, and R. D. Freeman. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex.II. Linearity of temporal and spatial summation. Journal of Neurophysiology, 69:1118--1135, 1993.

28
G. C. De Angelis, R. D. Freeman, and I. Ohzawa. Length and width tuning of neurons in the cat's primary visual cortex. Journal of Neurophysiology, 71:347--374, 1994.

29
R. L. De Valois, L. G. Thorell, and D. G. Albrecht. Periodicity of striate-cortex-cell receptive fields. Journal of the Optical Society of America, 2:1115--1122, 1985.

30
H. R. Dinse, K. Krüger, H. A. Mallot, and J. Best. Temporal structure of cortical information processing: Cortical architecture, oscillations, and non-separability of spatio-temporal receptive field organization. In J. Krüger, editor, Neuronal Cooperativity - Springer series in Synergetics, 68--104. Springer-Verlag Berlin Heidelberg, 1991.

31
R. J. Douglas, K. A. C. Martin, and D. Whitteridge. Selective responses of visual cortical cells do not depend on shunting inhibition. Nature, 332:642--644, 1988.

32
R. J. Douglas, K. A. C. Martin, and D. Whitteridge. A canonical microcircuit for neocortex. Neural Computation, 1:480--488, 1989.

33
R. J. Douglas and K. A. C. Martin. A functional microcircuit for cat visual cortex. Journal of Physiology, 440:735--769, 1992.

34
U. T. Eysel, J. M. Crook, and H. F. Machemer. GABA-induced remote inactivation reveals cross-orientation inhibition in the cat striate cortex. Experimental Brain Research, 80:626--630, 1990.

35
D. Ferster. Spatially opponent excitation and inhibition in simple cells of the cat visual cortex. Journal of Neuroscience, 8:1172--1180, 1988.

36
D. Ferster. Linearity of synaptic interactions in the assembly of receptive fields in cat visual cortex. Current Opinion in Neurobiology, 4:563--568, 1994.

37
D. Ferster and B. Jagadeesh. Nonlinearity of spatial summation in simple cells of area 17 and 18 of cat visual cortex. Journal of Neurophysiology, 5:1667--1679, 1991.

38
D. Ferster and B. Jagadeesh. EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording. Journal of Neuroscience, 12:1262--1274, 1992.

39
D. Ferster and C. Koch. Neuronal connections underlying orientation selectivity in cat visual cortex. Trends in Neurosciences, 10:487--492, 1987.

40
D. J. Field and D. J. Tolhurst. The structure and symmetry of simple cell receptive field profiles in the cat's visual cortex. Proceedings of the Royal Society of London B, 228:379--400, 1986.

41
S. Finette, E. Harth, and T. J. Csermely. Anisotropic connectivity and cooperative phenomena as a basis for orientation sensitivity in the visual cortex. Biological Cybernetics, 30:231--240, 1978.

42
W. S. Geisler and D. G. Albrecht. Cortical neurons: Isolation of contrast gain control. Vision Research, 32:1409--1410, 1992.

43
I. Gertner and G. A. Geri. Image representation using Hermite functions. Biological Cybernetics, 71:147--151, 1994.

44
C. D. Gilbert. Horizontal integration in the neocortex. Trends in Neurosciences, 160--165, April 1985.

45
C. D. Gilbert and T. N. Wiesel. Morphology and intracortical projections of functionally characterized neurones in the cat visual cortex. Nature, 280:120--125, 1979.

46
C. D. Gilbert and T. N. Wiesel. Clustered intrinsic connections in cat visual cortex. Journal of Neuroscience, 3:1116--1133, 1983.

47
C. D. Gilbert and T. N. Wiesel. Columnar specificity of intrinsic horizontal and cortico-cortical connections in cat visual cortex. Journal of Neuroscience, 9:2432--2442, 1989.

48
V. D. Glezer, T. A. Tsherbach, and V. E. Gauselman. Spatio-temporal organization of receptive fields of the cat striate cortex. Biological Cybernetics, 43:35--49, 1982.

49
N. Graham, J. Beck, and A. Sutter. Nonlinear processes in spatial-frequency channel models of perceived texture segregation: Effects of sign and amount of contrast. Vision Research, 32:719--743, 1992.

50
A. Grinvald, E. E. Lieke, R. D. Frostig, and R. Hildescheim. Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. Journal of Neuroscience, 14:2545--2568, 1994.

51
Y. Hata, T. Tsumoto, H. Sato, and K. Hagihara. Inhibition contributes to orientation selectivity in visual cortex of cat. Nature, 335:815--817, 1988.

52
M. J. Hawken and A. J. Parker. Spatial properties of neurons in the monkey striate cortex. Proceedings of the Royal Society of London B, 231:251--288, 1987.

53
M. J. Hawken and A. J. Parker. Spatial receptive field organization in monkey V1 and its relationship to the cone mosaic. In M.S. Landy and J.A. Movshon, editors, Computational Models of Visual Processing, 83--93. MIT Press, 1991.

54
D. J. Heeger. Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9:181--197, 1992.

55
P. Heggelund. Receptive field organization of simple cells in cat striate cortex. Experimental Brain Research, 42:89--98, 1981.

56
G. H. Henry, A. Michalski, B. M. Wimborne, and R. J. McCart. The nature and origin of orientation specificity in neurons of the visual pathways. Progress in Neurobiology, 43:381--437, 1994.

57
J. A. Hirsch and C. D. Gilbert. Synaptic physiology of horizontal connections in the cat's visual cortex. Journal of Neuroscience, 11:1800--1809, 1991.

58
D. H. Hubel. Exploration of the primary visual cortex, 1955-78. Nature, 299:515--524, 1982.

59
D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology, 160:106--154, 1962.

60
D. H. Hubel and T. N. Wiesel. Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor. Journal of Comparative Neurology, 158:295--302, 1974.

61
J. Jones and L. Palmer. The two-dimensional spatial structure of simple receptive fields in cat striate cortex. Journal of Neuroscience, 58:1187--1211, 1987.

62
J. Jones and L. Palmer. An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58:1233--1258, 1987.

63
Z. F. Kisvárday, C. Beaulieu, and U. T. Eysel. Network of GABAergic large basket cells in cat visual cortex (area 18). Implications for lateral disinhibition. Journal of Comparative Neurology, 327:398--415, 1993.

64
Z. F. Kisvárday, D.-S. Kim, U. T. Eysel, and T. Bonhoffer. Relationship between lateral inhibitory connections and the topography of the orientation map in cat visual cortex. European Journal of Neuroscience, 6:1619--1632, 1994.

65
Z. F. Kisvárday and U. T. Eysel. Functional and structural topography of horizontal inhibitory connections in cat visual cortex. European Journal of Neuroscience, 5:1558--1572, 1993.

66
C. Koch and T. Poggio. The syanptic veto mechanism: Does it underlie direction and orientation selectivity in the visual cortex. In D. Rose and V. G. Dobson, editors, Models of the visual cortex, 408--419. John Wiley & Sons, New York, 1985.

67
M. F. Kritzer, A. Cowey, and P. Somogyi. Patterns of inter- and intralaminar GABAergic connections distinguish striate (V1) and extrastriate (V2, V4) visual cortices and their functionally specialized subdivisions in the rhesus monkey. Journal of Neuroscience, 12:4545--4564, 1992.

68
G. Krone, H. Mallot, G. Palm, and A. Schüz. Spatiotemporal receptive fields: A dynamical model derived from cortical architectonics. Proceedings of the Royal Society of London B, 226:421--444, 1986.

69
J. J. Kulikowski, S. Marcelja, and P. O. Bishop. Theory of spatial position and spatial frequency relations in the receptive fields of simple cells in the visual cortex. Biological Cybernetics, 43:187--198, 1982.

70
J. J. Kulikowski and P. O. Bishop. Linear analysis of the responses of simple cells in the cat visual cortex. Experimental Brain Research, 44:386--400, 1981.

71
J. J. Kulikowski and T. R. Vidyasagar. Space and spatial frequency: Analysis and representation in the macaque striate cortex. Experimental Brain Research, 64:5--18, 1986.

72
Z. Li and J. J. Atick. Toward a theory of the striate cortex. Neural Computation, 6:127--146, 1994.

73
J. S. Lund. Excitatory and inhibitory circuitry and laminar mapping strategies in the primary visual cortex of the monkey. In W. E. Gall G.M. Edelman and W.M. Cowan, editors, Signal and sense: Local and global order in perceptual maps, 51--66. Wiley-Liss, 1990.

74
L. Maffei and A. Fiorentini. The unresponsive regions of visual cortical receptive fields. Vision Research, 16:1131--1139, 1976.

75
H. A. Mallot. An overall description of retinotopic mapping in the cat's visual cortex areas 17,18 and 19. Biological Cybernetics, 52:45--51, 1985.

76
H. A. Mallot, W. von Seelen, and F. Giannakopoulos. Neural mapping and space variant image processing. Neural Networks, 3:245--263, 1990.

77
S. Marcelja. Mathematical description of the responses of simple cortical cells. Journal of the Optical Society of America, 70:1297--1300, 1980.

78
K. A. C. Martin and D. Whitteridge. Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. Journal of Physiology, 353:463--504, 1984.

79
K. A. C. Martin and D. Whitteridge. The relationship of receptive field properties to the dendritic shape of neurones in the cat striate cortex. Journal of Physiology, 356:291--302, 1984.

80
J. Matsubara, M. Cynader, N. V. Swindale, and M. P. Strykers. Intrinsic projections within visual cortex: Evidence for orientation-specific local connections. Proceedings of the National Academy of Sciences, USA, 82:935--939, 1985.

81
B. A. McGuire, C. D. Gilbert, P. K. Rivlin, and T. N. Wiesel. Targets of horizontal connections in macaque primary visual cortex. Journal of Comparative Neurology, 305:370--392, 1991.

82
S. G. Mikhlin and K. L. Smolitskiy. Approximate methods for solution of differential and integral equations. Elsevier, 1967.

83
K. D. Miller. A model for the development of simple cell receptive fields and the ordered arrangements of orientation columns through activity-dependent competition between ON- and OFF-center inputs. Journal of Neuroscience, 14:409--441, 1994.

84
G. J. Mitchison. Does the striate cortex contain a system of oriented axons? In D. Rose and V. G. Dobson, editors, Models of the visual cortex, 443--451. John Wiley and Sons Ltd, 1985.

85
G. Mitchison and F. Crick. Long axons within the striate cortex: Their distribution, orientation, and patterns of connection. Proceedings of the National Academy of Sciences, USA, 79:3661--3665, 1982.

86
M. C Morrone, D. C. Burr, and L. Maffei. Functional implications of cross-orientation inhibition of cortical visual cells: I. neurophysiological evidence. Proceedings of the Royal Society of London B, 216:335--354, 1982.

87
J. A. Movshon, I. D. Thompson, and D. J. Tolhurst. Receptive field organization of complex cells in the cat's striate cortex. Journal of Physiology, 283:79--99, 1978.

88
W. H. Mullikin, J. P. Jones, and L. A. Palmer. Periodic simple cells in cat striate cortex. Journal of Neurophysiology, 52:372--387, 1984.

89
E. Nelle and F. Wörgötter. Cascaded intracortical inhibition: Modeling connection schemes on a large scale simulator. In ICANN'93: Proceedings of the International Conference on Artificial Neural Networks, 157--160. Springer, London, 1993.

90
S. Nelson, L. Toth, B. Sheth, and M. Sur. Orientation selectivity of cortical neurons during intracellular blockade of inhibition. Science, 265:774--777, 1994.

91
J. I. Nelson and B. J. Frost. Intracortical facilitation among co-oriented, co-axially aligned simple cells in cat striate cortex. Experimental Brain Research, 61:54--61, 1985.

92
E. Niebur and F. Wörgötter. Circular inhibition: A new concept in long-range interactions in the mammalian visual cortex. In Proceedings of the International Joint Conference on Neural Networks (IJCNN-90, San Diego) , II:367--372, IEEE Press, Piscataway, NJ, 1990.

93
D. A. Pollen and S. F. Ronner. Visual cortical neurons as localized spatial frequency filters. IEEE Transactions in Systems, Man, and Cybernetics, 13:907--916, 1983.

94
K. S. Rockland, J. S. Lund, and A. L. Humphrey. Anatomical banding of intrinsic connections in striate cortex of tree shrews tupaia glis. Journal of Comparative Neurology, 209:41--58, 1982.

95
B. Sakitt and H. B. Barlow. A model for the economical encoding of the visual image in cerebral cortex. Biological Cybernetics, 43:97--108, 1982.

96
P. H. Schiller, B. L. Finlay, and S. F. Volman. Qualitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. Journal of Neurophysiology, 39:1288--1319, 1976.

97
P. H. Schiller, B. L. Finlay, and S. F. Volman. Qualitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance. Journal of Neurophysiology, 39:1320--1333, 1976.

98
E. L. Schwartz. Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding. Vision Research, 20:645--669, 1980.

99
C. Schwarz and J. Bolz. Functional specificity of a long-range horizontal connection in cat visual cortex: A cross-correlation study. Journal of Neuroscience, 11:2995--3007, 1991.

100
T. Shou and A. G. Leventhal. Organized arrangement of orientation-sensitive realy cells in the cat's dorsal lateral geniculate nucleus. Journal of Neuroscience, 9:4287--4302, 1989.

101
A. M. Sillito. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. Journal of Physiology, 250:305--329, 1975.

102
A. M. Sillito. Functional considerations of the operation of GABAergic inhibitory processes in the visual cortex. In E. G. Jones and A. Peters, editors, The Cerebral Cortex, Vol. 2A, 91--117. Plenum, New York, 1984.

103
D. C. Somers, S. B. Nelson, and M. Sur. An emergent model of visual cortical orientation selectivity. In Computation and Neural Systems '94. Kluwer Academic, Norwell, MA, USA, 1995. in press.

104
P. Somogyi. Synaptic organization of GABAergic neurons and receptors in the lateral geniculate nucleus and visual cortex. In D. Man-Kit Lam and C. D. Gilbert, editors, Neural mechanisms of visual perception, 35--62. Portfolio, Houston, 1989.

105
R. E. Soodak. Two dimensional modeling of visual receptive fields using Gaussian subunits. Proceedings of the National Academy of Sciences, USA, 83:9259--9263, 1986.

106
D. G. Stork and H. R. Wilson. Do Gabor functions provide appropriate decriptions of visual cortical receptive fields? Journal of the Optical Society of America, 7:1362--1373, 1990.

107
N. V. Swindale. Coverage and the design of striate cortex. Biological Cybernetics, 65:415--424, 1991.

108
R. G. Szulborski and L. A. Palmer. The two-dimensional spatial structure of nonlinear subunits in the receptive fields of complex cells. Vision Research, 30:249--254, 1990.

109
K. Tanaka. Cross-correlation analysis of geniculostriate neuronal relationships in cats. Journal of Neurophysiology, 49:1303--1316, 1983.

110
K. Tanaka. Organization of geniculate inputs to visual cortical cells in the cat. Vision Research, 25:357--364, 1985.

111
S. B. Tieman and H. V. B. Hirsch. Exposure to lines of only one orientation modifies dendritic morphology of cells in the visual cortex of the cat. Journal of Comparative Neurology, 211:353--362, 1982.

112
S. B. Tieman and H. V. B. Hirsch. Role of dendritic fields in orientation selectivity. In Models of the visual cortex, 432--442. John Wiley & Sons, 1985.

113
D. J. Tolhurst and A. F. Dean. The effects of contrast on the linearity of spatial summation of simple cells in the cat's striate cortex. Experimental Brain Research, 79:582--588, 1990.

114
R. J. Tusa, L. A. Palmer, and A. C. Rosenquist. The retinotopic organization of area 17 (striate cortex) in the cat. Journal of Comparative Neurology, 177:213--236, 1978.

115
R. J. Tusa, A. C. Rosenquist, and L. A. Palmer. Retinotopic organization of areas 18 and 19 in the cat. Journal of Comparative Neurology, 185:657--678, 1979.

116
D. C. Van Essen, E. A. DeYoe, J. F. Olavarria, J. J. Knierim, J. M. Fox, D. Sagi, and B. Julesz. Neural responses to static and moving texture patterns in visual cortex of the macaque monkey. In D. Man-Kit Lam and C. D. Gilbert, editors, Neural mechanisms of visual perception, 137--154. Portfolio, Houston, 1989.

117
T. R. Vidyasagar. A model of striate response properties based on geniculate anisotropies. Biological Cybernetics, 57:11--23, 1987.

118
T. R. Vidyasagar and J. V. Urbas. Orientation sensitivity of cat LGN neurons with and without inputs from visual cortical areas 17 and 18. Experimental Brain Research, 46:157--169, 1982.

119
M. Volgushev, X. Pei, T. R. Vidyasagar, and O. D. Cretzfeldt. Excitation and inhibition in orientation selectivity of cat visual cortex neurons revealed by whole-cell recordings in vivo. Visual Neuroscience, 10:1151--1155, 1993.

120
M. A. Webster and R. L. De Valois. Relationship between spatial-frequency and orientation tuning of striate-cortex cells. Journal of the Optical Society of America, 2:1124--1132, 1985.

121
D. F. Winter. Integral equations. In Handbook of Applied Mathematics, 512--570. Van Nostrand Reinhold, 1990.

122
F. Wörgötter. Comparing different modeling approaches of visual cortical cells characteristics. In Cerebral Cortex. Plenum, New York, 1995. in press.

123
F. Wörgötter, E. Niebur, and C. Koch. Isotropic connections generate functional asymmetrical behavior in visual cortical cells. Journal of Neurophysiology, 66:444--459, 1991.

124
F. Wörgötter, E. Niebur, and C. Koch. Generation of direction selectivity by isotropic intracortical connections. Neural Computation, 4:332--340, 1992.

125
F. Wörgötter and U. T. Eysel. Topographycal aspects of intracortical excitation and inhibition contributing to orientation specificity in area 17 of the cat visual cortex. European Journal of Neuroscience, 3:1232--1244, 1991.

126
F. Wörgötter and C. Koch. A detailed model of the primary vision pathway in the cat: Comparison of afferrent excitatory and intracortical inhibitory connection schemes for orientation selectivity. Journal of Neuroscience, 11:1959--1979, 1991.

127
F. Wörgötter and E. Niebur. Cortical column design: A link between the map of preferred orientation and orientation tuning strength? Biological Cybernetics, 70:1--13, 1993.

128
R. A. Young. The Gaussian derivative theory of spatial vision: Analysis of cortical cell receptive field line-weighting profiles. Technical Report GMR-4920, General Motors Research, 1985.

129
R. A. Young and R. M. Lesperance. A physiological model of motion analysis for machine vision. Technical Report GMR-7878, General Motors Research, 1993.

130
L. Raffo, S. P. Sabatini, D. D. Caviglia, and G. M. Bisio. Anisotropic active resistor meshes for implementing image processing operators. Electronics Letters, 29:960--961, May 1993.

131
L. Raffo, S. P. Sabatini, D. D. Caviglia, and G. M. Bisio. Artificial visual orientation map implemented as inhomogeneous active resistor mesh. Electronics Letters, 29:963--964, May 1993.

132
S. P. Sabatini, L. Raffo, and G. M. Bisio. Coupled diffusion maps as neural computational models for texture segmentation. In Proceedings of ICASSE94-Erlangen-Germany, 1994.

133
D. C. Van Essen, W. T. Newsome, and J. H. R. Maunsell. The visual representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability. Vision Research, 24:429--448, 1984.

134
W. von Seelen. Informationsverarbeitung in homogenen netzen von neuronenmodellen. Kybernetik, 5:133--148, 1968.

135
W. von Seelen, H. A. Mallot, and F. Giannakopoulos. Characteristics of neuronal systems in the visual cortex. Biological Cybernetics, 56:37--49, 1987.


next up previous
Next: About this document Up: Recurrent Inhibition and Clustered Previous: Appendix