
Compiled Procedure

Prologue

Procedure Code

Epilogue

Prologue: (or preamble) Save registers and return
address; transfer parameters.

Epilogue: (or postamble) Restore registers; transfer
returned value; return.

A return statement in a procedure is compiled to:

1. Load the returned value into a register.

2. goto the Epilogue.

194

Subroutine Call Is Expensive

The prologue and epilogue associated with each procedure
are “overhead” that is necessary but does not do user
computation.

• Even in scientific Fortran, procedure call overhead
may account for 20% of execution time.

• Fancier languages have higher procedure call
overhead.

• Relative overhead is higher for small procedures.

• Breaking a program into many small procedures
increases execution time.

• A GOTO is much faster than a procedure call.

• Modern hardware architecture can help:

– Parameter transfer

– Stack addressing

– Register file pointer moved with subroutine call

195

Activations and Control Stack

An activation is one execution of a procedure; its lifetime
is the period during which the procedure is active,
including time spent in its subroutines.

In a recursive language, information about procedure
activations is kept on a control stack. An activation
record or stack frame corresponds to each activation.

The sequence of procedure calls during execution of a
program can be thought of as a tree. The execution of
the program is the traversal of this tree, with the control
stack holding information about the active branches from
the currently executing procedure up to the root.

196

Environment

The environment of a procedure is the complete set of
variables it can access; the state of the procedure is the
set of values of these variables.

A binding is an association of a name with a storage
location; we use the verb bind for the creation of a binding
and say a variable is bound to a location. An environment
provides a set of bindings for all variables.

An assignment, e.g. pi := 3.14 , changes the state of
a procedure but not its environment.

197

Run-time Memory Organization

[Aho, Sethi, and Ullman, Compilers, Fig. 7.7.]

198

PowerPC Stack Frame Layout

199

Global Variable References

200

Global Variables in Algol, Pascal, PL/I

201

Block-structured Symbol Table

202

Run-time Stack for Algol

203

Code Generation

We assume that the input is error-free and complete, for
example that any type conversion operators have already
been inserted.1

Can generate:

• Binary

– absolute

– relocatable

• Assembly

• Interpreted code (e.g. Java byte codes)

Problems include:

• Instruction selection

• Register management

• Local optimization

1This slide was written by John Werth.

204

Code Generation

Code generation can be broken into several steps:

1. Generate the prologue

2. Generate the program code

3. Generate the epilogue

Subroutines are provided to generate the prologue and
epilogue.

The arguments to the code generator are:

gencode(pcode, varsize, maxlabel)

pcode = pointer to code:

(program foo (progn output)

(progn ...))

varsize = size of local storage in bytes

maxlabel = max label number used so far

205

Code Generation

A starter program codgen.c is furnished. A very simple
program, triv.pas, can be compiled by codgen.c:

program graph1(output);

var i:integer;

begin i := 3 end.

The result is triv.s:

.globl graph1

.type graph1, @function

graph1:

...

subq $32, %rsp # space for stack frame

--------- begin Your code -------

movl $3,%eax # 3 -> %eax

movl %eax,-32(%rbp) # i := %eax

--------- begin Epilogue code ---

leave

ret

206

Running Generated Code

Programs can be run using driver.c as the runtime
library:

% cc driver.c triv.s -lm

% a.out

calling graph1

exit from graph1

driver.c is quite simple:

void main()

{ printf("calling graph1\n");

graph1();

printf("exit from graph1\n");

}

void write(char str[])

{ printf("%s", str); }

void writeln(char str[])

{ printf("%s\n", str); }

int round(double x)

...

207

Code Generation for Statements

The function genc(code) generates code for a
statement. There are only a few kinds of statements:

1. PROGN
For each argument statement, generate code.

2. :=
Generate the right-hand side into a register using
genarith. Then store the register into the location
specified by the left-hand side.

3. GOTO
Generate a Branch to the label number.

4. LABEL
Generate a Label with the label number.

5. IF
(IF c p1 p2) can be compiled as:
IF c GOTO L1;

p2; GOTO L2; L1: p1; L2:

Optimizations are discussed later.

6. FUNCALL
Compile short intrinsic functions in-line. For others,
generate subroutine calls.

208

Arithmetic Expressions

Code for arithmetic expressions on a multi-register
machine can be generated from trees using a simple
recursive algorithm.

The specifications of the recursive algorithm are:

• Input: an arithmetic expression tree

• Side Effect: outputs instructions to the output file

• Output: returns the number of a register that
contains the result.

209

Basic Expression Algorithm

The basic algorithm for expressions is easy:

• Operand (leaf node): get a register; generate a load;
return the register.

• Operator (interior node): generate operand subtrees;
generate op; return result register.

(defun genarith (x)

(if (atom x) ; if leaf,

(genload x (getreg)) ; load

(genop (op x) ; else op

(genarith (lhs x))

(genarith (rhs x)))))

>(genarith ’(* (+ a b) 3))

LOAD A,R1

LOAD B,R2

ADD R1,R2

LOAD 3,R3

MUL R2,R3

R3

210

Trace of Expression Algorithm

>(genarith ’(* (+ a b) 3))

1> (GENARITH (* (+ A B) 3))

2> (GENARITH (+ A B))

3> (GENARITH A)

4> (GENLOAD A R1)

LOAD A,R1

<4 (GENLOAD R1)

<3 (GENARITH R1)

3> (GENARITH B)

4> (GENLOAD B R2)

LOAD B,R2

<4 (GENLOAD R2)

<3 (GENARITH R2)

3> (GENOP + R1 R2)

ADD R1,R2

<3 (GENOP R2)

<2 (GENARITH R2)

2> (GENARITH 3)

3> (GENLOAD 3 R3)

LOAD 3,R3

<3 (GENLOAD R3)

<2 (GENARITH R3)

2> (GENOP * R2 R3)

MUL R2,R3

<2 (GENOP R3)

<1 (GENARITH R3)

R3

211

Arithmetic Expression Algorithm

The genarith input is a tree (operand or operator):

• Operand (leaf node):

1. Get a register.

2. An operand may be a variable or constant:

(a) Variable: Generate an instruction to load the
variable into the register.

(b) Constant:

i. Small constant: Generate an immediate
instruction to load it into the register directly.

ii. Otherwise, make a literal for the value of the
constant. Generate an instruction to load the
literal into the register.

3. Return the register number.

• Operator (interior node):

1. Recursively generate code to put each operand into
a register.

2. Generate the operation on these registers,
producing a result in one of the source registers.

3. Mark the other source register unused.

4. Return the result register number.

212

Register Management

Issues are:2

• register allocation: which variables will reside in
registers?

• register assignment: which specific register will a
variable be placed in?

Registers may be:

• general purpose (usually means integer)

• float

• special purpose (condition code, processor state)

• paired in various ways

2This slide was written by John Werth.

213

Simple Register Allocation

Note that there may be several classes of registers,
e.g., integer data registers, index registers, floating point
registers.

A very simple register allocation algorithm is:

1. At the beginning of a statement, mark all registers as
not used.

2. When a register is requested,

(a) If there is an unused register, mark it used and
return the register number.

(b) Otherwise, punt.

On a machine with 8 or more registers, this algorithm
will almost always work. However, we need to handle the
case of running out of registers.

214

Heuristic for Expressions

The likelihood of running out of registers can be reduced
by using a heuristic in generating code for expressions:

Generate code for the most complicated operand
first.

The “most complicated” operand can be found by
determining the size of each subtree. However, simply
generating code for a subtree that is an operation before
a subtree that is a simple operand is usually sufficient.

With this simple heuristic, on a machine with 8 or more
registers, the compiler will never3 run out.

If a machine allows arithmetic instructions to be used
with a full address, the operation may be combined with
the last load.

3Well, hardly ever.

215

Improving Register Allocation

The simple register allocation algorithm can be improved
in two ways:

• Handle the case of running out of available registers.
This can be done by storing some register into a
temporary variable in memory.

• Remember what is contained in registers and reuse
it when appropriate. This can save some load
instructions.

216

Register Allocation

Used Use Number Token

An improved register allocation algorithm, which handles
the case of running out of registers, is:

1. At the beginning of a statement, mark all registers as
not used; set use number to 0.

2. When an operand is loaded into a register, record a
pointer to its token in the register table.

3. When a register is requested,

(a) If there is an unused register: mark it used, set its
use number to the current use number, increment
the use number, and return the register number.

(b) Otherwise, find the register with the smallest use
number. Get a temporary data cell. Generate a
Store instruction (spill code) to save the register
contents into the temporary. Change the token to
indicate the temporary.

Now, it will be necessary to test whether an operand is a
temporary before doing an operation, and if so, to reload
it. Note that temporaries must be part of the stack frame.

217

Example of Code Generation

218

Example (2)

219

Example (3)

220

Example (4)

221

Reusing Register Contents

Used Contents

Many instructions can be eliminated by reusing variable
values that are already in registers:4

1. Initially, set the contents of each register to NULL.

2. When a simple variable is loaded, set the contents

of the register to point to its symbol table entry.

3. When a register is requested, if possible choose an
unused register that has no contents marked.

4. When a variable is to be loaded, if it is contained in
an unused register, just mark the register used. This
saves a Load instruction.

5. When a register is changed by an operation, set its
contents to NULL.

6. When a value is stored into a variable, set the contents
of any register whose contents is that variable to NULL.
Then mark the register from which it was stored as
containing that variable.

7. When a Label is encountered, set the contents of all
registers to NULL.

8. The condition code contents can be reused also.
4We assume that there are no aliases for variables.

222

Register Targeting

On some machines, it is useful to be able to tell
genarith, top-down, that its result should be produced
in a certain register if possible.

Example: Suppose that a function argument should
be transmitted in register %xmm0. If the argument can
be generated in %xmm0 directly, it will save a move
instruction.

223

x86 Processor

We will assume a x86-64 processor. This processor
has a vast number of instructions (some undocumented)
and two major families of assembler syntax and calling
sequence conventions. We will use the AT&T/Unix
syntax and gcc calling conventions.

General-purpose (Integer) Registers:
32/64 bits, numbered 0 - 7 in genasm. We will use
them in the order %eax, %ecx, %edx, %ebx since %ebx is
callee-saved. RBASE to RMAX is the local integer register
range.

Floating Point Registers:
64 bits, numbered 8 - 15 in genasm. FBASE to FMAX

is the floating register range. These are called %xmm0

through %xmm7.

224

Move (Load/Store) Instructions

Most of the instructions used in a computer program
are instructions that move data. The x86 processor
uses variable-length instructions and offers very flexible
addressing options.

The Unix syntax of x86 instructions shows data
movement from left to right:

movl $0,%eax # 0 -> %eax

movl %eax,-32(%rbp) # %eax -> i

There are three data formats that we will use:

Instruction Terminology Bits Use For
MOVL long 32 Integer
MOVQ quad-word 64 Pointer
MOVSD signed double 64 Float

225

Kinds of Move Addressing

There are several addressing styles that are used with
move instructions:

Constants or immediate values are specifies with a $.
x86 allows even very large integer constants.

movl $0,%eax # 0 -> %eax

Stack Variables have negative offsets relative to %rbp.
The offset is the offset from the symbol table minus the
stack frame size.

movl %eax,-32(%rbp) # %eax -> i

In this case, i has an offset of 16 and the stack frame size
is 48.

Literals have offsets relative to %rip.

movsd .LC5(%rip),%xmm0 # 0.0625 -> %xmm0

Record References have offsets relative to a register
containing a pointer to the record.

movl %eax,32(%rcx) # ^. []

226

Move with Calculated Address

x86 allows very flexible addressing:

Offset from Register

movl %eax,-32(%rbp) # %eax -> i

Offset from Two Registers

movsd %xmm0,-1296(%rbp,%rax) # ac[]

The offset and contents of the two registers are added to
form the effective address.

Offset from Two Registers with Multiplier

movsd %xmm0,-1296(%rbp,%rax,8) # x[]

In this case, the second register is multiplied by 2, 4, or 8
before being added. This can allow many aref expressions
to be done in a single instruction.

227

Literals

A literal is constant data that is assembled as part of
the compiled program. Literals must be made for large
integers, all floats, and most strings.

There are three programs that make literals; each is called
with a literal value and a label number:

• makeilit(i,label) : integer (not needed for x86)

• makeflit(i,label) : float

• makeblit(i,label) : byte (string)

A literal is accessed relative to the Instruction Pointer:

movsd .LC4(%rip),%xmml

Literals are saved in tables and output at the end of the
program.

.align 8

.LC4:

.long 0

.long 1078001664

228

Integer Arithmetic Instructions

These instructions operate on registers or
memory. S,D represent source and destination.
addl S,D D + S → D
subl S,D D − S → D
imull S,D D ∗ S → D
ldiv S,D D/S → D
cmpl S,D compare D − S, set condition
andl S,D D ∧ S → D
orl S,D D ∨ S → D
notl D ¬D → D
negl D −D → D

Note that arithmetic can be done directly on memory: i
:= i + 1 can be one instruction:

addl $1, -4(%rbp)

229

Compare and Jump

A compare is a subtract that does not store its results;
however, the results set the condition code, which can be
tested by jump instructions.

cmpl S,D compare D − S, set condition, integer
cmpsd S,D compare D − S, set condition, float

The jump instructions test the condition code:

jmp Jump always.
jle Jump if D ≤ S
je Jump if D = S
jne Jump if D 6= S
jge Jump if D ≥ S
jl Jump if D < S
jg Jump if D > S

230

Floating Point

These instructions operate on registers or
memory. S,D represent source and destination.
addsd S,D D + S → D
subsd S,D D − S → D
mulsd S,D D ∗ S → D
divsd S,D D/S → D
cmpsd S,D compare D − S, set condition

Routine are provided to generate the instruction
sequences for fix, float and negate operations.

231

Intrinsic Functions

Some things that are specified as functions in source code
should be compiled in-line. These include:

1. Type-change functions that do no computation:
boole, ord, chr.

2. Functions that are only a few instructions: pred,
succ, abs.

3. Functions that are implemented in hardware: sqrt

may be an instruction.

232

Function Calls

For external functions, it is necessary to:

1. Set up the arguments for the function call.

2. Call the function.

3. Retrieve the result and do any necessary final actions.

A function call involves the following:

1. Load arguments into registers:

• For string literals, address in %edi:

movl $.LC12,%edi # addr of literal .LC12

• For floating arguments, %xmm0

2. Execute a call instruction:

call sin

3. Floating results are returned in %xmm0. Integer results
are returned in %eax.

233

Volatile Registers

By convention, some registers are designated volatile or
caller-saved, i.e. destroyed by a subroutine call. Other
registers are designated non-volatile or callee-saved and
must be preserved (or not used) by a subroutine.

We will try to use only the registers %eax, %ecx, and
%edx, since %ebx is callee-saved.

Any floating values that need to be preserved across a call
must be saved on the stack prior to the call and restored
afterwards. Routines are provided to save one floating
register on the stack and restore it.

234

Details of Function Call

1. For each argument, use genarith to compute the
argument. If needed, move the result from the
register returned by genarith to %xmm0 and mark
the genarith register unused.

2. For each volatile register that is in use, save it

3. Call the function

4. For each volatile register that is in use, restore it

5. Return the function result register (%xmm0 or %eax)
as the result of genarith.

235

IF Statement Generation

Code for an intermediate code statement of the form
(if c p1 p2) can be generated as follows:

1. Generate code for the condition c using the arithmetic
expression code generator. Note that a cmp

instruction should be generated for all comparison
operators, regardless of which comparison is used.

2. Generate the appropriate jump-on-condition in-
struction, denoted jmp c below, by table lookup
depending on the comparison operator.

jmp c .L1

p2 ! "else"

jmp .L2

.L1:

p1 ! "then"

.L2:

The following jump table can be used:

op = 6= < ≤ ≥ >
c je jne jl jle jge jg

-c jne je jge jg jl jle

236

IF Statement Optimization

Special cases of IF statements are common; these can
be compiled as shown below, where jmp c represents a
jump on condition and jmp -c represents a jump on the
opposite of a condition.

(if c (goto l)) jmp c l

(if c (progn) (goto l)) jmp -c l

(if c p1 (goto l)) jmp -c l

p1

(if c (goto l) p2) jmp c l

p2

(if c p1) jmp -c L1

p1

L1:

(if c (progn) p2) jmp c L1

p2

L1:

237

Array References

Suppose the following declarations have been made:

var i: integer; x: array[1..100] of real;

This would give i an offset of 4 and x an offset of 8 (the
initial offset is 4; since x is double, its offset must be
8-aligned.). The total storage is 808. A reference x[i]

would generate the code:

(AREF X (+ -8 (* 8 I)))

The effective address is: %rbp, minus stack frame size,
plus the offset of x, plus the expression (+ -8 (* 8 I)).

238

Easy Array References

(AREF X (+ -8 (* 8 I)))

One way to generate code for the array reference is to:

• use genarith to generate (+ -8 (* 8 I)) in
register (%eax) (move the result to %eax if necessary).

• Issue the instruction CLTQ, which sign-extends %eax

to %rax.

• access memory from the offset and sum of the
registers.

movsd %xmm0,-1296(%rbp,%rax) # ac[]

This is easy from the viewpoint of the compiler writer,
but it generates many instructions, including a possibly
expensive multiply.

239

Better Array References

(AREF X (+ -8 (* 8 I)))

A better way generate the array reference is to:

1. combine as many constants as possible

2. replace the multiply by a shift

Note that in the expression (+ -8 (* 8 I)) there is an
additive constant of -8 and that the multiply by 8 can
be done in the x86 processor by a shift of 3 bits.

This form of code is ony one instructions on x86:

movsd %xmm0,-208(%rbp,%rax,8)

240

Pointer References

A pointer operator specifies indirect addressing. For
example, in the test program, the code john^.favorite
produces the intermediate code:

(aref (^ john) 32)

Note that a pointer operator can occur only as the first
operand of an aref, and the offset is usually a constant.
Compiling code for it is simple: the address is the sum of
the pointer value and the offset:

movq -1016(%rbp),%rcx # john -> %rcx

movl %eax,32(%rcx) # ^. []

241

switch Statement

int vowel(ch)

int ch;

{ int sw;

switch (ch)

{ case ’A’: case ’E’: case ’I’:

case ’O’: case ’U’: case ’Y’:

sw = 1; break;

default: sw = 0; break;

}

return (sw);

}

242

switch Statement Compiled

vowel:

save %sp,-104,%sp

st %i0,[%fp+68]

.L14:

ba .L16

nop

.L17:

.L18:

.L19:

.L20:

.L21:

.L22:

mov 1,%o0

ba .L15

st %o0,[%fp-8]

.L23: ! default: sw = 0; break;

ba .L15

st %g0,[%fp-8]

.L16:

ld [%fp+68],%o0

cmp %o0,79

bge .L_y0

nop

cmp %o0,69

bge .L_y1

nop

cmp %o0,65

be .L17

nop

ba .L23

nop

.L_y1:

be .L18

nop

... 20 more instructions

.L24:

.L15:

ld [%fp-8],%i0

jmp %i7+8

restore

243

switch Statement Compiled -O

[... big table constructed by the compiler ...]

vowel:

sub %o0,65,%g1

cmp %g1,24

bgu .L77000008

sethi %hi(.L_const_seg_900000102),%g2

.L900000107:

sll %g1,2,%g1

add %g2,%lo(.L_const_seg_900000102),%g2

ld [%g1+%g2],%g1

jmpl %g1+%g2,%g0

nop

.L77000007:

or %g0,1,%g1

retl ! Result = %o0

or %g0,%g1,%o0

.L77000008:

or %g0,0,%g1

retl ! Result = %o0

or %g0,%g1,%o0

244

Table Lookup

static int vowels[]

= {1,0,0,0,1,0,0,0,1,0,0,0,0,

0,1,0,0,0,0,0,1,0,0,0,1,0};

int vowel(ch)

int ch;

{ int sw;

sw = vowels[ch - ’A’];

return (sw);

}

245

Table Lookup Compiled

vowel:

save %sp,-104,%sp

st %i0,[%fp+68]

.L15:

ld [%fp+68],%o0

sll %o0,2,%o1

sethi %hi(vowels-260),%o0

or %o0,%lo(vowels-260),%o0

ld [%o1+%o0],%i0

st %i0,[%fp-8]

jmp %i7+8

restore

246

Table Lookup Compiled -O

vowel:

sll %o0,2,%g1

sethi %hi(vowels-260),%g2

add %g2,%lo(vowels-260),%g2

retl ! Result = %o0

ld [%g1+%g2],%o0 ! volatile

Bottom Line:

switch 46
switch -O 15
Table Lookup 10
Table Lookup -O 5

Table Lookup beats the switch statement in code size
and performance; it is also better Software Engineering.

247

