Inorder

There are several ways of writing arithmetic expressions; these are closely related to the orders of tree traversal:

An expression tree can be printed as infix by an inorder traversal:


(defun op  (x) (first x))    ; access functions
(defun lhs (x) (second x))   ; left-hand side
(defun rhs (x) (third x))    ; right-hand side

(defun infix (x)
  (if (consp x)
      (progn (princ "(")
             (infix (lhs x))    ; first child
             (prin1 (op x))     ; parent
             (infix (rhs x))    ; second child
             (princ ")") )
      (prin1 x)))


>(infix '(* (+ x y) z))
((X+Y)*Z)

Contents    Page-10    Prev    Next    Page+10    Index