CS 3615 - Network Security and Privacy
Spring 2017

Project #2

Part 1 due: 11:00, April 3, 2017
Part 2 due: 11:00, April 10, 2017

Submission instructions

Follow the submission instructions in the Deliverables section.
If you are submitting late, please indicate how many late days you are using.

Collaboration policy

This assignment can be done individually or in two-person teams. Any cheating (e.g., sub-
mitting another person’s work as your own, or permitting your work to be copied) will
automatically result in a failing grade. The Computer Science department code of conduct
can be found at https://www.cs.utexas.edu/academics/conduct.

Late submission policy

The first part of this project is due at the beginning of class on April 3. The second part
is due at the beginning of class on April 10. All late submissions will be subject to the
following policy.

You start the semester with a credit of 3 late days. For the purpose of counting late
days, a “day” is 24 hours starting at 11am on the assignment’s due date. Partial days are
rounded up to the next full day. You are free to divide your late days among the take-home
assignments (3 homeworks and 2 projects) any way you want: submit three assignments
1 day late, submit one assignment 3 days late, etc. After your 3 days are used up, no
late submissions will be accepted and you will automatically receive 0 points for each late
assignment.



Project #2 (75 points + 25 bonus points)

The objective of this project is to give you hands-on experience with implementing buffer
overflow exploits. You are given source code for five exploitable programs (targetl.c, ...,
target5.c). These programs are all to be installed as setuid root in the the virtual machine
(VM). Your goal is to write five exploit programs (sploitl, ..., sploit5). The sploit[i]
program will execute target[i], giving it a certain input that should result in a root shell
on the VM.

You will need:

e Project #2 Virtual Machine (VM) Image:

https://www.cs.utexas.edu/~ojensen/courses/cs361s/vms/proj2-vm.ova

e Project #2 Files:

https://www.cs.utexas.edu/~ojensen/courses/cs361s/vms/proj2-files.tgz

Getting Started

1. Download the Project #2 VM Image, and import into your VM of choice (e.g. Virtual-
box, VMPlayer, etc). If you do not need Internet access within the VM, I recommend
you set networking to “Host Only” for ease of use.

2. Login to the virtual machine. There are two accounts: root/root and user/user.
You want to do most of your work as user.

3. Put the Project #2 Files onto the VM. You can do this by downloading the files tarball,
and then (e.g. using scp) to transferring it onto the VM. Extract the files into the
user’s home directory.

4. Set up the executable targets: Compile the targets (run make) and copy the targets
to /tmp together with the corresponding .c files (run make install). Set up the
permissions so that the targets are owned by root, are setuid root, and the .c files are
publicly readable (run make setuid as root).

5. Every time you restart the VM, you’ll have to set up the targets in the VM’s /tmp
because it be wiped clean. Files in your home folder will of course persist between
reboots.

The virtual machine we provide is configured with Debian Etch. Should you need any
other packages to do your work (e.g., emacs), you can install it with the command apt-get
(e.g., apt-get install emacs). You may need to edit the /etc/apt/sources.list file and
replace http://mirrors.kernel.org/debian with http://archive.debian.org/debian.



Buffer Overflow Project

Targets

The Project #2 Files contain the source code for the targets, along with a Makefile speci-
fying how they are to be built.

Your exploits should assume that the compiled target programs are installed setuid-root
in /tmp — /tmp/targetl, /tmp/target2, etc.

Exploits

The Project #2 Files also contain skeleton source code for the exploits which you are to
write, along with a Makefile for building them. Also included is shellcode.h, which gives
Aleph One’s shellcode. Exploit programs are very short, so there is no need to write a lot of
code.

Your assignment

You are to write one exploit per target, along with the corresponding explaination of the
exploit. Each exploit, when run in the virtual machine with its target installed setuid-root
in /tmp, should yield a root shell (/bin/sh). You can use whoami to tell if you are root or
not.

Grading

There are five targets. Each successful exploit will earn you the following points:

Part 1 (due October 27)
Target 1: 10 points

Target 2: 15 points

Part 2 (due November 3)
Target 3: 25 points

Target 4: 25 points

Target 5 is the bonus target, worth 25 points. You will receive these points on top of the
regular points for this assignment.



Hints

gdb is your best friend in this assignment. It will help you inspect the contents of memory
as your target is executing and generally understand what’s going on. In particular, notice
the disassemble and stepi commands. You may find the x command useful to examine
memory (and the different ways you can print the contents such as /a /i after x). The
info register command is helpful in printing out the contents of registers such as ebp and
esp. Another very useful command is info frame. It prints a detailed description of the
selected frame.

When you run gdb, you will find the -e and -s command-line flags useful. For example,
the command gdb -e sploitl -s /tmp/targetl in the VM tells gdb to execute sploitl
and use the symbol file in targetl. These flags let you trace the execution of targetl after
the sploit has forked off the execve process. When running gdb using these command-line
flags, be sure to first issue catch exec, then run the program before you set any breakpoints;
the command run naturally breaks the execution at the first execve call before the target is
actually exec-ed, so you can set your breakpoints when gdb catches the execve. Note that
if you try to set break points before entering the command run, you’ll get a segmentation
fault.

Keep in mind that it’ll be easier to debug the exploits if the targets aren’t setuid, and
are owned by user (otherwise, gdb will throw permission errors). If an exploit succeeds in
getting a user shell on a non-setuid target in /tmp, it should succeed in getting a root shell
on that target when it is setuid. (But be sure to test that way, too, before submitting your
solutions!)

If you wish, you can instrument your code with arbitrary assembly using the __asm__()
pseudofunction.

IMPORTANT: Your code must run within the provided VM environment.

Warnings

Aleph One gives code that calculates addresses on the target’s stack based on addresses on
the exploit’s stack. Addresses on the exploit’s stack can change based on how the exploit
is executed (working directory, arguments, environment, etc.). In our testing, we do not
guarantee to execute your exploits as bash does.

You must therefore hard-code target stack locations in your exploits. You should not
use a function such as get_sp() in the exploits you hand in.

Your exploit programs should not take any command-line arguments.

Your exploits should compile. Any exploit that doesn’t compile within the VM will receive
no credit.

AGAIN: Your code must run within the provided VM environment.



Deliverables

Make sure you start early.

You will submit a single tarball that contains the source code for all your exploits, along
with any files (Makefile, shellcode.h) necessary for building them. All the exploits should
build if the make command is issued. There should be no directory structure: all files in the
tarball should be in its root directory. Before you submit, you should do the following:

e Modify SUBMISSION-PART1.txt (&H‘Partl)(H‘SUBMISSION—PART2.tXt (ﬁﬂ Paﬁ:Q)
The first line should state how many (possibly 0) late days were used. Then give the
following on a single line, one line for each student:

— Your UT EID, followed by a single space, followed by your real name.

For example, the output should look like this:

$ cat SUBMISSION-PART1.txt
0

bevo314 Bevo Longhorn
as525 Adam Smith

$

e You may also (optionally) modify README-PART1 . txt (for Part 1) or README-PART2. txt
(for Part 2) with comments about your experiences or suggestions for improvement.

To create the tarball for submission, issue the following command inside the /sploits
directory:

e Part 1: tar cvzf cs361ls-proj2-partl.tgz [files to include]

e Part 2: tar cvzf cs361s-proj2-part2.tgz [files to includel

You will then submit the tarball using Canvas. Submit cs361s-proj2-partl.tgz (for
Part 1) or cs361s-proj2-part2.tgz (for Part 2).

Evaluation

You will receive full credit for each exploit accompanied by a valid explanation of how it
works that yields a root shell in our testing. No partial credit will be awarded for exploits
that are “close”.

We may also ask you to explain to us how and why each exploit works (i.e. at office
hours, on a homework, on an exam, etc.). If you work with a partner, be sure that each of
you understands every exploit you turn in! Dividing up the work and working separately is
not recommended.



