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Reading Assignment

 Read Kaufman 2.1-4 and 4.2
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Basic Problem

?
----------
-----

Given: both parties already know the same secret 

How is this achieved in practice?Goal: send a message confidentially

Any communication system that aims to guarantee
confidentiality must solve this problem
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Kerckhoffs's Principle

 An encryption scheme should be secure 
even if enemy knows everything about it 
except the key
• Attacker knows all algorithms
• Attacker does not know random numbers

 Do not rely on secrecy of the algorithms 
(“security by obscurity”)

Full name: 

Jean-Guillaume-Hubert-Victor-
François-Alexandre-Auguste 
Kerckhoffs von Nieuwenhof

Easy lesson:
use a good random number
generator!
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Randomness Matters!
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One-Time Pad (Vernam Cipher)

= 10111101…
----------
-----

= 00110010…
 10001111… 

00110010… =
 

   10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext  key = 
(plaintext  key)  key =
plaintext  (key  key) =
plaintext 

Cipher achieves perfect secrecy if and only if 
there are as many possible keys as possible plaintexts, and
every key is equally likely   (Claude Shannon, 1949)

(contains diagram)



Diagram Transcription

Sender has a bit-stream message and a bit-stream key of 
the same length. The ciphertext is defined as message[i] 
XOR key[i] for every i in the message. The recipient can 
decrypt the message by performing the identical 
operation but using the ciphertext instead of the 
message, because:

ciphertext xor key
= (plaintext xor key) xor key
= plaintext xor (key xor key)
= plaintext xor (00...00) = plaintext
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Advantages of One-Time Pad

 Easy to compute
• Encryption and decryption are the same operation
• Bitwise XOR is very cheap to compute

 As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely, regardless 

of attacker’s computational resources
• …if and only if  the key sequence is truly random

– True randomness is expensive to obtain in large quantities

• …if and only if  each key is as long as the plaintext
– But how do the sender and the receiver communicate the key to each 

other?  Where do they store the key?
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Problems with One-Time Pad

 Key must be as long as the plaintext
• Impractical in most realistic scenarios
• Still used for diplomatic and intelligence traffic

 Does not guarantee integrity
• One-time pad only guarantees confidentiality
• Attacker cannot recover plaintext, but can easily change it 

to something else

 Insecure if keys are reused
• Attacker can obtain XOR of plaintexts
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No Integrity

= 10111101…
----------
-----

= 00110010…
 10001111… 

00110010… =
 

   10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext  key = 
(plaintext  key)  key =
plaintext  (key  key) =
plaintext 

0

0

(contains diagram)



Diagram transcription

No integrity is provided, because if the attacker flips bit 
n of the ciphertext while it is in transit, then after being 
decrypted bit n of the plaintext will be flipped.

That is to say that while  the attacker cannot know the 
contents of the message, he or she can choose to flip 
any bits from their original values.



slide 12

Dangers of Reuse

= 00000000…
----------
-----

= 00110010…
 00110010… 

00110010… =
 

   00000000…
P1

C1

= 11111111…
----------
-----

= 00110010…
 11001101… 

P2
C2

Learn relationship between plaintexts

C1C2 = (P1K)(P2K) = 

(P1P2)(KK) = P1P2

(contains diagram)



Diagram Transcription

If two ciphertexts are generated using the same key, and 
the attacker gains access to the ciphertexts (and knows 
that they were generated with the same  key), then:

ciphertext1 = plaintext1 xor key

ciphertext2 = plaintext2 xor key

So

ciphertext1 xor ciphertext2
= (plaintext 1 xor key) xor (plaintext2 xor key)
= (plaintext1 xor plaintext2) xor (key xor key)

= (plaintext1 xor plaintext2)
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Reducing Key Size

 What to do when it is infeasible to pre-share huge 
random keys?

 Use special cryptographic primitives:

    block ciphers, stream ciphers
• Single key can be re-used (with some restrictions)
• Not as theoretically secure as one-time pad
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Block Ciphers

 Operates on a single chunk (“block”) of plaintext
• For example, 64 bits for DES, 128 bits for AES
• Same key is reused for each block (can use short keys)

 Result should look like a random permutation
 Not impossible to break, just very expensive

• If there is no more efficient algorithm (unproven 
assumption!), can only break the cipher by brute-force, try-
every-possible-key search

• Time and cost of breaking the cipher exceed the value and/or 
useful lifetime of protected information
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Permutation

1
2
3

4

1
2
3

4
CODE becomes DCEO

 For N-bit input, N! possible permutations
 Idea: split plaintext into blocks, for each block use 

secret key to pick a permutation, rinse and repeat
• Without the key, permutation should “look random”
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A Bit of Block Cipher History

 Playfair and variants (from 1854 until WWII)
 Feistel structure

• “Ladder” structure: split input in half, put one half through 
the round and XOR with the other half

• After 3 random rounds, ciphertext indistinguishable from a 
random permutation

 DES: Data Encryption Standard
• Invented by IBM, issued as federal standard in 1977
• 64-bit blocks, 56-bit key + 8 bits for parity
• Very widely used (usually as 3DES) until recently

– 3DES: DES + inverse DES + DES (with 2 or 3 different keys)

Textbook

Textbook
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DES Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms 
its input bits in a 
“random-looking” way 
to provide diffusion 
(spread plaintext bits 
throughout ciphertext)

repeat for several rounds

Block of ciphertext
Procedure must be reversible 

(for decryption)

(contains diagram, no transcription)
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Remember SHA-1?

Current message block

Constant value

Buffer contains final hash value

Very similar to a block cipher,

with message itself used

as the key for each round 

(contains diagram, no transcription)
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Advanced Encryption Standard (AES)

 US federal standard as of 2001
 Based on the Rijndael algorithm
 128-bit blocks, keys can be 128, 192 or 256 bits
 Unlike DES, does not use Feistel structure

• The entire block is processed during each round

 Design uses some clever math
• See section 8.5 of the textbook for a concise summary
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Basic Structure of Rijndael

128-bit plaintext

(arranged as 4x4 array of 8-bit bytes)
128-bit key


S shuffle the array (16x16 substitution table)

Shift rows shift array rows 
(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3)

add key for this round


Expand key

repeat 10 times

Mix columns
mix 4 bytes in each column 
(each new byte depends on all bytes in old column)

(contains diagram)



Diagram Transcription

The basic structure of Rijndael is to take the 128-bit 
plaintext, interpret it as a 4x4 matrix of 8-bite bytes, and 
then:
 - shuffle the array according to a substitution table

 - shift the rows

 - mix the 4-byte columns

 - mix in key material

 - repeat 10 times
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Encrypting a Large Message

 So, we’ve got a good block cipher, but our plaintext is 
larger than 128-bit block size

 Electronic Code Book (ECB) mode
• Split plaintext into blocks, encrypt each one separately using 

the block cipher

 Cipher Block Chaining (CBC) mode
• Split plaintext into blocks, XOR each block with the result of 

encrypting previous blocks

 Also various counter modes, feedback modes, etc.
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ECB Mode

 Identical blocks of plaintext produce identical blocks 
of ciphertext

 No integrity checks: can mix and match blocks

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

key key key key key

(contains diagram)



Diagram Transcription

The plaintext is divided into blocks, and each block is 
individually encrypted using the key. The ciphertext is 
the output blocks concatenated with each other.
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Information Leakage in ECB Mode
[Wikipedia]

Encrypt in ECB mode

(contains diagram, no transcription [visual example])
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Adobe Passwords Stolen (2013)

 153 million account passwords
• 56 million of them unique

 Encrypted using 3DES in ECB mode rather than hashed

Password hints



Sent with ciphertext

(preferably encrypted)
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CBC Mode: Encryption

 Identical blocks of plaintext encrypted differently
 Last cipherblock depends on entire plaintext

• Still does not guarantee integrity

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher


Initialization
vector
(random)

  key key key key

(contains diagram)



Diagram Transcription

The first block of the plaintext is XOR'ed with the IV 
(random data), before being encrypted. The result of this 
encryption is the first block of the ciphertext, and then is 
XOR'ed with the plaintext of the second block before 
being encrypted, etc.

The IV is pre-pended to the ciphertext (as it is necessary 
for decryption)
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CBC Mode: Decryption

plaintext

ciphertext

decrypt decrypt decrypt decrypt

Initialization
vector   key key key key

(contains diagram)



Diagram Transcription

To decrypt in CBC mode, take the first block of the 
ciphertext (this is the IV). Then decrypt the second block 
of the ciphertext using the key, and XOR the result as the 
IV. This is the first block of plaintext. Then take the third 
block of the ciphertext, decrypt it using the key, and XOR 
the result with the second block of the ciphertext. This is 
the second block of plaintext. Rinse and repeat.
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ECB vs. CBC

AES in ECB mode AES in CBC mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)

[Picture due to Bart Preneel]

(contains diagram, no transcription [visual example])
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Choosing the Initialization Vector

 Key used only once
• No IV needed (can use IV=0)

 Key used multiple times
• Best: fresh, random IV for every message
• Can also use unique IV (eg, counter), but then the first step 

in CBC mode must be IV’  E(k, IV)
– Example: Windows BitLocker
– May not need to transmit IV with the ciphertext

 Multi-use key, unique messages
• Synthetic IV: IV  F(k’, message)

– F is a cryptographically secure keyed pseudorandom function
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CBC and Electronic Voting

Initialization
vector
(supposed to
 be random)

plaintext

ciphertext

DES DES DES DES

   

Found in the source code for Diebold voting machines:

DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data,

             totalSize, DESKEY, NULL, DES_ENCRYPT)

[Kohno, Stubblefield, Rubin, Wallach]

key key key key

(contains diagram, no transcription, see earlier slide 
on CBC)
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CTR (Counter Mode)

 Still does not guarantee integrity
 Fragile if counter repeats

plaintext

ciphertext

Enc(IV) Enc(IV+1) Enc(IV+2) Enc(IV+3)



Random IV

  

IV

key key key key

(contains diagram)



Diagram Transcription

Instead of XORing with the IV and then the previous 
block of ciphertext, first XOR with the IV and then IV+1 
and then IV+2 etc etc. Since this XORing happens before 
encryption, the resulting blocks of ciphertext will be 
arbitrarily different.
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When Is a Cipher “Secure”?

 Hard to recover plaintext from ciphertext?
• What if attacker learns only some bits of the plaintext? 

Some function of the bits?  Some partial information about 
the plaintext?

 Fixed mapping from plaintexts to ciphertexts?
• What if attacker sees two identical ciphertexts and infers 

that the corresponding plaintexts are identical?
• What if attacker guesses the plaintext – can he verify his 

guess?
• Implication: encryption must be randomized or stateful
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How Can a Cipher Be Attacked?

 Attackers knows ciphertext and encryption algthm
• What else does the attacker know? Depends on the 

application in which the cipher is used!

 Known-plaintext attack (stronger)
• Knows some plaintext-ciphertext pairs

 Chosen-plaintext attack (even stronger)
• Can obtain ciphertext for any plaintext of his choice

 Chosen-ciphertext attack (very strong)
• Can decrypt any ciphertext except the target
• Sometimes very realistic
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Known-Plaintext Attack

Extracting password from an encrypted PKZIP file …
 “… I opened the ZIP file and found a `logo.tif’ file, so I 

went to their main Web site and looked at all the files 
named `logo.tif.’ I downloaded them and zipped them 
all up and found one that matched the same checksum 
as the one in the protected ZIP file”

 With known plaintext, PkCrack took 5 minutes to 
extract the key
• Biham-Kocher attack on PKZIP stream cipher 

[From “The Art of Intrusion”]
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Chosen-Plaintext Attack

Crook #1 changes
his PIN to a number
of his choice

cipher(key,PIN)

PIN is encrypted and
transmitted to bank

Crook #2 eavesdrops
on the wire and learns
ciphertext corresponding
to chosen plaintext PIN

… repeat for any PIN value

(contains diagram)



Diagram Transcription

Crook 1 changes his PIN at an ATM

Pin is encrypted (Enc(PIN, Key)) and sent over the 
network

Crrok 2 eavesdrops and thus learns a valid encryption of 
any given plaintext (the PIN entered by Crook 1) 
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Very Informal Intuition

 Security against chosen-plaintext attack
• Ciphertext leaks no information about the plaintext
• Even if the attacker correctly guesses the plaintext, he 

cannot verify his guess
• Every ciphertext is unique, encrypting same message twice 

produces completely different ciphertexts

 Security against chosen-ciphertext attack
• Integrity protection – it is not possible to change the 

plaintext by modifying the ciphertext

Minimum security 
requirement for a 
modern encryption scheme
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The Chosen-Plaintext Game

 Attacker does not know the key
 He chooses as many plaintexts as he wants, and 

receives the corresponding ciphertexts
 When ready, he picks two plaintexts M0 and M1

• He is even allowed to pick plaintexts for which he previously 
learned ciphertexts!

 He receives either a ciphertext of M0, or a ciphertext of 
M1

 He wins if he guesses correctly which one it is
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Meaning of “Leaks No Information”

 Idea: given a ciphertext, attacker should not be able to 
learn even a single bit of useful information about the 
plaintext

 Let Enc(M0,M1,b) be a “magic box” that returns 
encrypted Mb

• Given two plaintexts, the box always returns the ciphertext 
of the left plaintext or right plaintext

• Attacker can use this box to obtain the ciphertext of any 
plaintext M by submitting M0=M1=M, or he can try to learn 
even more by submitting M0≠M1

 Attacker’s goal is to learn just this one bit b

0 or 1
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Chosen-Plaintext Security

 Consider two experiments (A is the attacker)
Experiment 0 Experiment 1

       A interacts with Enc(-,-,0)    A interacts with Enc(-,-,1)
       and outputs his guess of bit b       and outputs his guess of bit b

• Identical except for the value of the secret bit
• b is attacker’s guess of the secret bit

 Attacker’s advantage is defined as
| Prob(A outputs 1 in Exp0) - Prob(A outputs 1 in Exp1)) |

 Encryption scheme is chosen-plaintext secure if this 
advantage is negligible for any efficient A
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Simple Example

 Any deterministic, stateless symmetric encryption 
scheme is insecure 
• Attacker can easily distinguish encryptions of different 

plaintexts from encryptions of identical plaintexts
• This includes ECB mode of common block ciphers!

Attacker A interacts with Enc(-,-,b)

   Let X,Y be any two different plaintexts

       C1  Enc(X,X,b);   C2  Enc(X,Y,b);

       If C1=C2 then b=0 else b=1

 The advantage of this attacker A is 1
Prob(A outputs 1 if b=0)=0    Prob(A outputs 1 if b=1)=1
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Encrypt + MAC

Goal: confidentiality + integrity + authentication

Alice Bob

K1, K2
K1, K2

msg

MAC=HMAC(K2,msg)

encrypt(msg), MAC(msg)

=
?

Encrypt(K1,msg)

Decrypt

Verify MAC

encrypt(msg2), MAC(msg2)

Can tell if messages
are the same!

MAC is deterministic: messages are equal  their MACs are equal

Solution: Encrypt, then MAC    (what about MAC, then encrypt?)

Breaks chosen-
plaintext security

(contains diagram)



Diagram Transcription

If the MAC of the plaintext is appended to the ciphertext 
before being sent out, then an attacker can know if two 
messages contain the same plaintext (because the MACs 
will match). This breaks chosen plaintext security.
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