
Vitaly Shmatikov

CS 361S

Overview of Symmetric Encryption

slide 2

Reading Assignment

 Read Kaufman 2.1-4 and 4.2

slide 3

Basic Problem

?

Given: both parties already know the same secret

How is this achieved in practice?Goal: send a message confidentially

Any communication system that aims to guarantee
confidentiality must solve this problem

slide 4

Kerckhoffs's Principle

 An encryption scheme should be secure
even if enemy knows everything about it
except the key
• Attacker knows all algorithms
• Attacker does not know random numbers

 Do not rely on secrecy of the algorithms
(“security by obscurity”)

Full name:

Jean-Guillaume-Hubert-Victor-
François-Alexandre-Auguste
Kerckhoffs von Nieuwenhof

Easy lesson:
use a good random number
generator!

slide 5

Randomness Matters!

slide 6

One-Time Pad (Vernam Cipher)

= 10111101…

= 00110010…
 10001111… 

00110010… =
 

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext  key =
(plaintext  key)  key =
plaintext  (key  key) =
plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts, and
every key is equally likely (Claude Shannon, 1949)

(contains diagram)

Diagram Transcription

Sender has a bit-stream message and a bit-stream key of
the same length. The ciphertext is defined as message[i]
XOR key[i] for every i in the message. The recipient can
decrypt the message by performing the identical
operation but using the ciphertext instead of the
message, because:

ciphertext xor key
= (plaintext xor key) xor key
= plaintext xor (key xor key)
= plaintext xor (00...00) = plaintext

slide 8

Advantages of One-Time Pad

 Easy to compute
• Encryption and decryption are the same operation
• Bitwise XOR is very cheap to compute

 As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely, regardless

of attacker’s computational resources
• …if and only if the key sequence is truly random

– True randomness is expensive to obtain in large quantities

• …if and only if each key is as long as the plaintext
– But how do the sender and the receiver communicate the key to each

other? Where do they store the key?

slide 9

Problems with One-Time Pad

 Key must be as long as the plaintext
• Impractical in most realistic scenarios
• Still used for diplomatic and intelligence traffic

 Does not guarantee integrity
• One-time pad only guarantees confidentiality
• Attacker cannot recover plaintext, but can easily change it

to something else

 Insecure if keys are reused
• Attacker can obtain XOR of plaintexts

slide 10

No Integrity

= 10111101…

= 00110010…
 10001111… 

00110010… =
 

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext  key =
(plaintext  key)  key =
plaintext  (key  key) =
plaintext

0

0

(contains diagram)

Diagram transcription

No integrity is provided, because if the attacker flips bit
n of the ciphertext while it is in transit, then after being
decrypted bit n of the plaintext will be flipped.

That is to say that while the attacker cannot know the
contents of the message, he or she can choose to flip
any bits from their original values.

slide 12

Dangers of Reuse

= 00000000…

= 00110010…
 00110010… 

00110010… =
 

 00000000…
P1

C1

= 11111111…

= 00110010…
 11001101… 

P2
C2

Learn relationship between plaintexts

C1C2 = (P1K)(P2K) =

(P1P2)(KK) = P1P2

(contains diagram)

Diagram Transcription

If two ciphertexts are generated using the same key, and
the attacker gains access to the ciphertexts (and knows
that they were generated with the same key), then:

ciphertext1 = plaintext1 xor key

ciphertext2 = plaintext2 xor key

So

ciphertext1 xor ciphertext2
= (plaintext 1 xor key) xor (plaintext2 xor key)
= (plaintext1 xor plaintext2) xor (key xor key)

= (plaintext1 xor plaintext2)

slide 14

Reducing Key Size

 What to do when it is infeasible to pre-share huge
random keys?

 Use special cryptographic primitives:

 block ciphers, stream ciphers
• Single key can be re-used (with some restrictions)
• Not as theoretically secure as one-time pad

slide 15

Block Ciphers

 Operates on a single chunk (“block”) of plaintext
• For example, 64 bits for DES, 128 bits for AES
• Same key is reused for each block (can use short keys)

 Result should look like a random permutation
 Not impossible to break, just very expensive

• If there is no more efficient algorithm (unproven
assumption!), can only break the cipher by brute-force, try-
every-possible-key search

• Time and cost of breaking the cipher exceed the value and/or
useful lifetime of protected information

slide 16

Permutation

1
2
3

4

1
2
3

4
CODE becomes DCEO

 For N-bit input, N! possible permutations
 Idea: split plaintext into blocks, for each block use

secret key to pick a permutation, rinse and repeat
• Without the key, permutation should “look random”

slide 17

A Bit of Block Cipher History

 Playfair and variants (from 1854 until WWII)
 Feistel structure

• “Ladder” structure: split input in half, put one half through
the round and XOR with the other half

• After 3 random rounds, ciphertext indistinguishable from a
random permutation

 DES: Data Encryption Standard
• Invented by IBM, issued as federal standard in 1977
• 64-bit blocks, 56-bit key + 8 bits for parity
• Very widely used (usually as 3DES) until recently

– 3DES: DES + inverse DES + DES (with 2 or 3 different keys)

Textbook

Textbook

slide 18

DES Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a
“random-looking” way
to provide diffusion
(spread plaintext bits
throughout ciphertext)

repeat for several rounds

Block of ciphertext
Procedure must be reversible

(for decryption)

(contains diagram, no transcription)

slide 19

Remember SHA-1?

Current message block

Constant value

Buffer contains final hash value

Very similar to a block cipher,

with message itself used

as the key for each round

(contains diagram, no transcription)

slide 20

Advanced Encryption Standard (AES)

 US federal standard as of 2001
 Based on the Rijndael algorithm
 128-bit blocks, keys can be 128, 192 or 256 bits
 Unlike DES, does not use Feistel structure

• The entire block is processed during each round

 Design uses some clever math
• See section 8.5 of the textbook for a concise summary

slide 21

Basic Structure of Rijndael

128-bit plaintext

(arranged as 4x4 array of 8-bit bytes)
128-bit key


S shuffle the array (16x16 substitution table)

Shift rows shift array rows
(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3)

add key for this round


Expand key

repeat 10 times

Mix columns
mix 4 bytes in each column
(each new byte depends on all bytes in old column)

(contains diagram)

Diagram Transcription

The basic structure of Rijndael is to take the 128-bit
plaintext, interpret it as a 4x4 matrix of 8-bite bytes, and
then:
 - shuffle the array according to a substitution table

 - shift the rows

 - mix the 4-byte columns

 - mix in key material

 - repeat 10 times

slide 23

Encrypting a Large Message

 So, we’ve got a good block cipher, but our plaintext is
larger than 128-bit block size

 Electronic Code Book (ECB) mode
• Split plaintext into blocks, encrypt each one separately using

the block cipher

 Cipher Block Chaining (CBC) mode
• Split plaintext into blocks, XOR each block with the result of

encrypting previous blocks

 Also various counter modes, feedback modes, etc.

slide 24

ECB Mode

 Identical blocks of plaintext produce identical blocks
of ciphertext

 No integrity checks: can mix and match blocks

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

key key key key key

(contains diagram)

Diagram Transcription

The plaintext is divided into blocks, and each block is
individually encrypted using the key. The ciphertext is
the output blocks concatenated with each other.

slide 26

Information Leakage in ECB Mode
[Wikipedia]

Encrypt in ECB mode

(contains diagram, no transcription [visual example])

slide 27

Adobe Passwords Stolen (2013)

 153 million account passwords
• 56 million of them unique

 Encrypted using 3DES in ECB mode rather than hashed

Password hints

Sent with ciphertext

(preferably encrypted)

slide 28

CBC Mode: Encryption

 Identical blocks of plaintext encrypted differently
 Last cipherblock depends on entire plaintext

• Still does not guarantee integrity

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher


Initialization
vector
(random)

  key key key key

(contains diagram)

Diagram Transcription

The first block of the plaintext is XOR'ed with the IV
(random data), before being encrypted. The result of this
encryption is the first block of the ciphertext, and then is
XOR'ed with the plaintext of the second block before
being encrypted, etc.

The IV is pre-pended to the ciphertext (as it is necessary
for decryption)

slide 30

CBC Mode: Decryption

plaintext

ciphertext

decrypt decrypt decrypt decrypt

Initialization
vector   key key key key

(contains diagram)

Diagram Transcription

To decrypt in CBC mode, take the first block of the
ciphertext (this is the IV). Then decrypt the second block
of the ciphertext using the key, and XOR the result as the
IV. This is the first block of plaintext. Then take the third
block of the ciphertext, decrypt it using the key, and XOR
the result with the second block of the ciphertext. This is
the second block of plaintext. Rinse and repeat.

slide 32

ECB vs. CBC

AES in ECB mode AES in CBC mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)

[Picture due to Bart Preneel]

(contains diagram, no transcription [visual example])

slide 33

Choosing the Initialization Vector

 Key used only once
• No IV needed (can use IV=0)

 Key used multiple times
• Best: fresh, random IV for every message
• Can also use unique IV (eg, counter), but then the first step

in CBC mode must be IV’  E(k, IV)
– Example: Windows BitLocker
– May not need to transmit IV with the ciphertext

 Multi-use key, unique messages
• Synthetic IV: IV  F(k’, message)

– F is a cryptographically secure keyed pseudorandom function

slide 34

CBC and Electronic Voting

Initialization
vector
(supposed to
 be random)

plaintext

ciphertext

DES DES DES DES

   

Found in the source code for Diebold voting machines:

DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data,

 totalSize, DESKEY, NULL, DES_ENCRYPT)

[Kohno, Stubblefield, Rubin, Wallach]

key key key key

(contains diagram, no transcription, see earlier slide
on CBC)

slide 35

CTR (Counter Mode)

 Still does not guarantee integrity
 Fragile if counter repeats

plaintext

ciphertext

Enc(IV) Enc(IV+1) Enc(IV+2) Enc(IV+3)



Random IV

  

IV

key key key key

(contains diagram)

Diagram Transcription

Instead of XORing with the IV and then the previous
block of ciphertext, first XOR with the IV and then IV+1
and then IV+2 etc etc. Since this XORing happens before
encryption, the resulting blocks of ciphertext will be
arbitrarily different.

slide 37

When Is a Cipher “Secure”?

 Hard to recover plaintext from ciphertext?
• What if attacker learns only some bits of the plaintext?

Some function of the bits? Some partial information about
the plaintext?

 Fixed mapping from plaintexts to ciphertexts?
• What if attacker sees two identical ciphertexts and infers

that the corresponding plaintexts are identical?
• What if attacker guesses the plaintext – can he verify his

guess?
• Implication: encryption must be randomized or stateful

slide 38

How Can a Cipher Be Attacked?

 Attackers knows ciphertext and encryption algthm
• What else does the attacker know? Depends on the

application in which the cipher is used!

 Known-plaintext attack (stronger)
• Knows some plaintext-ciphertext pairs

 Chosen-plaintext attack (even stronger)
• Can obtain ciphertext for any plaintext of his choice

 Chosen-ciphertext attack (very strong)
• Can decrypt any ciphertext except the target
• Sometimes very realistic

slide 39

Known-Plaintext Attack

Extracting password from an encrypted PKZIP file …
 “… I opened the ZIP file and found a `logo.tif’ file, so I

went to their main Web site and looked at all the files
named `logo.tif.’ I downloaded them and zipped them
all up and found one that matched the same checksum
as the one in the protected ZIP file”

 With known plaintext, PkCrack took 5 minutes to
extract the key
• Biham-Kocher attack on PKZIP stream cipher

[From “The Art of Intrusion”]

slide 40

Chosen-Plaintext Attack

Crook #1 changes
his PIN to a number
of his choice

cipher(key,PIN)

PIN is encrypted and
transmitted to bank

Crook #2 eavesdrops
on the wire and learns
ciphertext corresponding
to chosen plaintext PIN

… repeat for any PIN value

(contains diagram)

Diagram Transcription

Crook 1 changes his PIN at an ATM

Pin is encrypted (Enc(PIN, Key)) and sent over the
network

Crrok 2 eavesdrops and thus learns a valid encryption of
any given plaintext (the PIN entered by Crook 1)

slide 42

Very Informal Intuition

 Security against chosen-plaintext attack
• Ciphertext leaks no information about the plaintext
• Even if the attacker correctly guesses the plaintext, he

cannot verify his guess
• Every ciphertext is unique, encrypting same message twice

produces completely different ciphertexts

 Security against chosen-ciphertext attack
• Integrity protection – it is not possible to change the

plaintext by modifying the ciphertext

Minimum security
requirement for a
modern encryption scheme

slide 43

The Chosen-Plaintext Game

 Attacker does not know the key
 He chooses as many plaintexts as he wants, and

receives the corresponding ciphertexts
 When ready, he picks two plaintexts M0 and M1

• He is even allowed to pick plaintexts for which he previously
learned ciphertexts!

 He receives either a ciphertext of M0, or a ciphertext of
M1

 He wins if he guesses correctly which one it is

slide 44

Meaning of “Leaks No Information”

 Idea: given a ciphertext, attacker should not be able to
learn even a single bit of useful information about the
plaintext

 Let Enc(M0,M1,b) be a “magic box” that returns
encrypted Mb

• Given two plaintexts, the box always returns the ciphertext
of the left plaintext or right plaintext

• Attacker can use this box to obtain the ciphertext of any
plaintext M by submitting M0=M1=M, or he can try to learn
even more by submitting M0≠M1

 Attacker’s goal is to learn just this one bit b

0 or 1

slide 45

Chosen-Plaintext Security

 Consider two experiments (A is the attacker)
Experiment 0 Experiment 1

 A interacts with Enc(-,-,0) A interacts with Enc(-,-,1)
 and outputs his guess of bit b and outputs his guess of bit b

• Identical except for the value of the secret bit
• b is attacker’s guess of the secret bit

 Attacker’s advantage is defined as
| Prob(A outputs 1 in Exp0) - Prob(A outputs 1 in Exp1)) |

 Encryption scheme is chosen-plaintext secure if this
advantage is negligible for any efficient A

slide 46

Simple Example

 Any deterministic, stateless symmetric encryption
scheme is insecure
• Attacker can easily distinguish encryptions of different

plaintexts from encryptions of identical plaintexts
• This includes ECB mode of common block ciphers!

Attacker A interacts with Enc(-,-,b)

 Let X,Y be any two different plaintexts

 C1  Enc(X,X,b); C2  Enc(X,Y,b);

 If C1=C2 then b=0 else b=1

 The advantage of this attacker A is 1
Prob(A outputs 1 if b=0)=0 Prob(A outputs 1 if b=1)=1

slide 47

Encrypt + MAC

Goal: confidentiality + integrity + authentication

Alice Bob

K1, K2
K1, K2

msg

MAC=HMAC(K2,msg)

encrypt(msg), MAC(msg)

=
?

Encrypt(K1,msg)

Decrypt

Verify MAC

encrypt(msg2), MAC(msg2)

Can tell if messages
are the same!

MAC is deterministic: messages are equal  their MACs are equal

Solution: Encrypt, then MAC (what about MAC, then encrypt?)

Breaks chosen-
plaintext security

(contains diagram)

Diagram Transcription

If the MAC of the plaintext is appended to the ciphertext
before being sent out, then an attacker can know if two
messages contain the same plaintext (because the MACs
will match). This breaks chosen plaintext security.

	Overview of Symmetric Encryption
	Reading Assignment
	Basic Problem
	Kerckhoffs's Principle
	Randomness Matters!
	One-Time Pad (Vernam Cipher)
	Slide 7
	Advantages of One-Time Pad
	Problems with One-Time Pad
	No Integrity
	Slide 11
	Dangers of Reuse
	Slide 13
	Reducing Key Size
	Block Ciphers
	Permutation
	A Bit of Block Cipher History
	DES Operation (Simplified)
	Remember SHA-1?
	Advanced Encryption Standard (AES)
	Basic Structure of Rijndael
	Slide 22
	Encrypting a Large Message
	ECB Mode
	Slide 25
	Information Leakage in ECB Mode
	Adobe Passwords Stolen (2013)
	CBC Mode: Encryption
	Slide 29
	CBC Mode: Decryption
	Slide 31
	ECB vs. CBC
	Choosing the Initialization Vector
	CBC and Electronic Voting
	CTR (Counter Mode)
	Slide 36
	When Is a Cipher “Secure”?
	How Can a Cipher Be Attacked?
	Known-Plaintext Attack
	Chosen-Plaintext Attack
	Slide 41
	Very Informal Intuition
	The Chosen-Plaintext Game
	Meaning of “Leaks No Information”
	Chosen-Plaintext Security
	Simple Example
	Encrypt + MAC
	Slide 48

