CS344M
 Autonomous Multiagent Systems

Patrick MacAlpine

Department of Computer Science The University of Texas at Austin

Good Afternoon, Colleagues

Are there any questions?

Good Afternoon, Colleagues

Are there any questions?

- Sandholm says "no Nash equilibrium exists"?
- Difference between axiomatic and strategic bargaining?
- How to calculate social welfare metric of a protocol?
- Why use Dutch auction?

Logistics

- Peer review process (due today) - thoughts?

Logistics

- Peer review process (due today) - thoughts?
- Progress reports coming back

Logistics

- Peer review process (due today) - thoughts?
- Progress reports coming back
- Final projects due in 3 weeks!

Logistics

- Peer review process (due today) - thoughts?
- Progress reports coming back
- Final projects due in 3 weeks!
- Final tournament: Wednesday 12/9 at 7pm in GDC 5.302

Your Progress Reports

- Best ones motivate the problem before giving solutions

Your Progress Reports

- Best ones motivate the problem before giving solutions
- Say not only what's done, but what's yet to do

Your Progress Reports

- Best ones motivate the problem before giving solutions
- Say not only what's done, but what's yet to do
- More about what worked than what didn' \dagger

Your Progress Reports

- Best ones motivate the problem before giving solutions
- Say not only what's done, but what's yet to do
- More about what worked than what didn' \dagger
- Clear enough for outsider to understand

Your Progress Reports

- Best ones motivate the problem before giving solutions
- Say not only what's done, but what's yet to do
- More about what worked than what didn' \dagger
- Clear enough for outsider to understand
- Be specific - enough detail so that we could reimplement

Your Progress Reports

- Best ones motivate the problem before giving solutions
- Say not only what's done, but what's yet to do
- More about what worked than what didn' \dagger
- Clear enough for outsider to understand
- Be specific - enough detail so that we could reimplement
- Break into sections

Your Progress Reports

- Best ones motivate the problem before giving solutions
- Say not only what's done, but what's yet to do
- More about what worked than what didn' \dagger
- Clear enough for outsider to understand
- Be specific - enough detail so that we could reimplement
- Break into sections
- Explain how you will evaluate performance (test statistical significance)

Auctions vs. voting

- Auctions: maximize profit
- result affects buyer and seller
- Voting: maximize social good
- result affects all

Gibbard-Satterthwaite

- Example: Trump, Carson, or Bush?

Gibbard-Satterthwaite

- Example: Trump, Carson, or Bush?
- Assume your preference is Trump > Carson > Bush
- For whom should you vote?

Gibbard-Satterthwaite

- Example: Trump, Carson, or Bush?
- Assume your preference is Trump > Carson > Bush
- For whom should you vote?
- What if we change the system?

Gibbard-Satterthwaite

- Example: Trump, Carson, or Bush?
- Assume your preference is Trump > Carson > Bush
- For whom should you vote?
- What if we change the system?
- Plurality, Binary, Borda?

Gibbard-Satterthwaite

- Example: Trump, Carson, or Bush?
- Assume your preference is Trump > Carson > Bush
- For whom should you vote?
- What if we change the system?
- Plurality, Binary, Borda?
- 3+ candidates \Longrightarrow only dictatorial system eliminates need for tactical voting
- One person appointed

Gibbard-Satterthwaite

- Example: Trump, Carson, or Bush?
- Assume your preference is Trump > Carson > Bush
- For whom should you vote?
- What if we change the system?
- Plurality, Binary, Borda?
- 3+ candidates \Longrightarrow only dictatorial system eliminates need for tactical voting
- One person appointed
- No point thinking of a "better" voting system
- Assumption: no restrictions on preferences

Gibbard-Satterthwaite

- Example: Trump, Carson, or Bush?
- Assume your preference is Trump > Carson > Bush
- For whom should you vote?
- What if we change the system?
- Plurality, Binary, Borda?
- 3+ candidates \Longrightarrow only dictatorial system eliminates need for tactical voting
- One person appointed
- No point thinking of a "better" voting system
- Assumption: no restrictions on preferences

What about Clarke tax algorithm?

Types of Tactical Voting

- Compromising: Rank someone higher to get him/her elected
- e.g. Carson instead of Trump

Types of Tactical Voting

- Compromising: Rank someone higher to get him/her elected
- e.g. Carson instead of Trump
- Burying: Rank someone lower to get him/her defeated
- e.g. in Borda protocol

Types of Tactical Voting

- Compromising: Rank someone higher to get him/her elected
- e.g. Carson instead of Trump
- Burying: Rank someone lower to get him/her defeated
- e.g. in Borda protocol
- Push-over: Rank someone higher to get someone else elected
- e.g. in a protocol with multiple rounds

Arrow's Theorem

Universality.

Arrow's Theorem

Universality. The voting method should provide a complete ranking of all alternatives from any set of individual preference ballots.

Arrow's Theorem

Universality. The voting method should provide a complete ranking of all alternatives from any set of individual preference ballots.

Pareto optimality.

Arrow's Theorem

Universality. The voting method should provide a complete ranking of all alternatives from any set of individual preference ballots.

Pareto optimality. If everyone prefers X to Y, then the outcome should rank X above Y.

Arrow's Theorem

Universality. The voting method should provide a complete ranking of all alternatives from any set of individual preference ballots.

Pareto optimality. If everyone prefers X to Y, then the outcome should rank X above Y.

Criterion of independence of irrelevant alternatives.

Arrow's Theorem

Universality. The voting method should provide a complete ranking of all alternatives from any set of individual preference ballots.

Pareto optimality. If everyone prefers X to Y , then the outcome should rank X above Y.

Criterion of independence of irrelevant alternatives. If one set of preference ballots would lead to an an overall ranking of alternative X above alternative Y and if some preference ballots are changed without changing the relative rank of X and Y, then the method should still rank X above Y.

Citizen Sovereignty.

Citizen Sovereignty. Every possible ranking of alternatives can be achieved from some set of individual preference ballots.

Citizen Sovereignty. Every possible ranking of alternatives can be achieved from some set of individual preference ballots.

Non-dictatorship.

Citizen Sovereignty. Every possible ranking of alternatives can be achieved from some set of individual preference ballots.

Non-dictatorship. There should not be one specific voter whose preference ballot is always adopted.

Arrow's Theorem

Universality.

Arrow's Theorem

Universality. Complete rankings

Arrow's Theorem

Universality. Complete rankings

Pareto optimality.

Arrow's Theorem

Universality. Complete rankings

Pareto optimality. $\mathrm{X}>\mathrm{Y}$ if all agree

Arrow's Theorem

Universality. Complete rankings

Pareto optimality. $\mathrm{X}>\mathrm{Y}$ if all agree

Citizen Sovereignty.

Arrow's Theorem

Universality. Complete rankings
Pareto optimality. $\mathrm{X}>\mathrm{Y}$ if all agree
Citizen Sovereignty. Any ranking possible

Arrow's Theorem

Universality. Complete rankings
Pareto optimality. $\mathrm{X}>\mathrm{Y}$ if all agree
Citizen Sovereignty. Any ranking possible
Non-dictatorship.

Arrow's Theorem

Universality. Complete rankings
Pareto optimality. $\mathrm{X}>\mathrm{Y}$ if all agree
Citizen Sovereignty. Any ranking possible
Non-dictatorship. No one voter decides

Arrow's Theorem

Universality. Complete rankings
Pareto optimality. $\mathrm{X}>\mathrm{Y}$ if all agree
Citizen Sovereignty. Any ranking possible
Non-dictatorship. No one voter decides
Independence of irrelevant alternatives.

Arrow's Theorem

Universality. Complete rankings
Pareto optimality. $\mathrm{X}>\mathrm{Y}$ if all agree
Citizen Sovereignty. Any ranking possible
Non-dictatorship. No one voter decides
Independence of irrelevant alternatives. Removing or adding
a non-winner doesn'† change winner

Arrow's Theorem

Universality. Complete rankings
Pareto optimality. $\mathrm{X}>\mathrm{Y}$ if all agree
Citizen Sovereignty. Any ranking possible
Non-dictatorship. No one voter decides
Independence of irrelevant alternatives. Removing or adding
a non-winner doesn'† change winner

Not all possible!

Condorcet Voting

- Strategy proof under weaker irrelevant alternatives criterion

Condorcet Voting

- Strategy proof under weaker irrelevant alternatives criterion
- A pairwise method

Condorcet Voting

- Strategy proof under weaker irrelevant alternatives criterion
- A pairwise method
- Smith set: smallest set of candidates such that each candidate in the set preferred over each candidate not in the set

Condorcet Voting

- Strategy proof under weaker irrelevant alternatives criterion
- A pairwise method
- Smith set: smallest set of candidates such that each candidate in the set preferred over each candidate not in the set
- Every candidate in the Smith set is relevant

Condorcet Example

- 48: $A>B>C$
- 40: $\mathrm{B}>\mathrm{C}>\mathrm{A}$
- 12: $C>B>A$

Condorcet Example

- 48: $A>B>C$
- 40: $\mathrm{B}>\mathrm{C}>\mathrm{A}$
- 12: $C>B>A$
- A vs. B:

Condorcet Example

- 48: $A>B>C$
- 40: $\mathrm{B}>\mathrm{C}>\mathrm{A}$
- 12: $C>B>A$
- A vs. $B: 48-52 \Longrightarrow B>A$

Condorcet Example

- 48: $A>B>C$
- 40: $\mathrm{B}>\mathrm{C}>\mathrm{A}$
- 12: $C>B>A$
- A vs. $B: 48-52 \Longrightarrow B>A$
- A vs. C : 48-52 $\Longrightarrow C>A$
- B vs. C : $88-12 \Longrightarrow B>C$

Condorcet Example

- 48: $A>B>C$
- 40: $\mathrm{B}>\mathrm{C}>\mathrm{A}$
- 12: $C>B>A$
- A vs. $B: 48-52 \Longrightarrow B>A$
- A vs. C : 48-52 $\Longrightarrow C>A$
- B vs. C : $88-12 \Longrightarrow B>C$

$$
\text { Overall: } \mathrm{B}>\mathrm{C}>\mathrm{A}
$$

Condorcet Example

- 48: $A>B>C$
- 40: $\mathrm{B}>\mathrm{C}>\mathrm{A}$
- 12: $C>B>A$
- A vs. $B: 48-52 \Longrightarrow B>A$
- A vs. C : 48-52 $\Longrightarrow C>A$
- B vs. C : $88-12 \Longrightarrow B>C$

Overall: $\mathrm{B}>\mathrm{C}>\mathrm{A}$

- Does that solve everything?

Condorcet Example

- 48: $A>B>C$
- 40: $\mathrm{B}>\mathrm{C}>\mathrm{A}$
- 12: $C>B>A$
- A vs. $B: 48-52 \Longrightarrow B>A$
- A vs. C : 48-52 $\Longrightarrow C>A$
- B vs. C : $88-12 \Longrightarrow B>C$

Overall: $\mathrm{B}>\mathrm{C}>\mathrm{A}$

- Does that solve everything? What about cycles?

Bargaining

small market, both can come out favorably

Bargaining

small market, both can come out favorably

- Two people bargaining, each with a preference over outcomes O
- Let o^{*} be the selected outcome

Bargaining

small market, both can come out favorably

- Two people bargaining, each with a preference over outcomes O
- Let o^{*} be the selected outcome
- Example: "split the dollar"

Bargaining

small market, both can come out favorably

- Two people bargaining, each with a preference over outcomes O
- Let o^{*} be the selected outcome
- Example: "split the dollar"
- One person makes offer o
- Other rejects with probaility $p(o)$ - based on offer
- If rejects, both get nothing

Bargaining

small market, both can come out favorably

- Two people bargaining, each with a preference over outcomes O
- Let o^{*} be the selected outcome
- Example: "split the dollar"
- One person makes offer o
- Other rejects with probaility $p(o)$ - based on offer
- If rejects, both get nothing
- Another version
- One person makes an offer
- Other accepts, rejects, or counters
- If counters, \$. 05 lost
- Game ends with an accept or reject

Nash Bargaining Solution

Unique solution that satisfies:

Nash Bargaining Solution

Unique solution that satisfies:
Invariance: only preference orders matter
Anonymity: no discrimination
Pareto efficiency: if one does better, other does worse
Independence of irrelevant alternatives: removing outcomes
doesn'† change things

Nash Bargaining Solution

Unique solution that satisfies:
Invariance: only preference orders matter
Anonymity: no discrimination
Pareto efficiency: if one does better, other does worse Independence of irrelevant alternatives: removing outcomes doesn'† change things

Maximize $u_{1}(o) * u_{2}(o)$

General Equilibrium

Consumers: utilities, endowments
Producers: production possibility sets
Variables: prices on goods

General Equilibrium

Consumers: utilities, endowments
Producers: production possibility sets
Variables: prices on goods
Equilibrium: allocation (prices) such that consumers maximize preferences, producers maximize profits

General Equilibrium

Consumers: utilities, endowments
Producers: production possibility sets
Variables: prices on goods
Equilibrium: allocation (prices) such that consumers
maximize preferences, producers maximize profits

- Assumption: agent doesn'† affect prices

General Equilibrium

Consumers: utilities, endowments
Producers: production possibility sets
Variables: prices on goods
Equilibrium: allocation (prices) such that consumers maximize preferences, producers maximize profits

- Assumption: agent doesn'† affect prices
- Only true if market is infinitely large
- Else, strategic bidding (like bargaining) possible

General Equilibrium

Consumers: utilities, endowments
Producers: production possibility sets
Variables: prices on goods
Equilibrium: allocation (prices) such that consumers maximize preferences, producers maximize profits

- Assumption: agent doesn'† affect prices
- Only true if market is infinitely large
- Else, strategic bidding (like bargaining) possible
- Assumption: no externalities

General Equilibrium

Consumers: utilities, endowments
Producers: production possibility sets
Variables: prices on goods
Equilibrium: allocation (prices) such that consumers maximize preferences, producers maximize profits

- Assumption: agent doesn'† affect prices
- Only true if market is infinitely large
- Else, strategic bidding (like bargaining) possible
- Assumption: no externalities
- Utilities or production sets don'† depend on others'

General Equilibrium

Consumers: utilities, endowments
Producers: production possibility sets
Variables: prices on goods
Equilibrium: allocation (prices) such that consumers maximize preferences, producers maximize profits

- Assumption: agent doesn'† affect prices
- Only true if market is infinitely large
- Else, strategic bidding (like bargaining) possible
- Assumption: no externalities
- Utilities or production sets don'† depend on others'
- Braess' paradox

Other DRDM

- Contract nets: task allocation among agents

Other DRDM

- Contract nets: task allocation among agents
- Contingencies
- Leveled commitment (price)

Other DRDM

- Contract nets: task allocation among agents
- Contingencies
- Leveled commitment (price)
- Coalitions

Other DRDM

- Contract nets: task allocation among agents
- Contingencies
- Leveled commitment (price)
- Coalitions
- Formation
- Optimization within
- Payoff division

Contract Nets

Task allocation among agents

Contract Nets

Task allocation among agents

- OCSM-contracts: original, cluster, swap, multiagent
- Hill-climbing leads to optimum
- Without any type, may be no sequence to optimum

Contract Nets

Task allocation among agents

- OCSM-contracts: original, cluster, swap, multiagent
- Hill-climbing leads to optimum
- Without any type, may be no sequence to optimum
- Backing out of contracts

Contract Nets

Task allocation among agents

- OCSM-contracts: original, cluster, swap, multiagent
- Hill-climbing leads to optimum
- Without any type, may be no sequence to optimum
- Backing out of contracts
- Contingency (future events)

Contract Nets

Task allocation among agents

- OCSM-contracts: original, cluster, swap, multiagent
- Hill-climbing leads to optimum
- Without any type, may be no sequence to optimum
- Backing out of contracts
- Contingency (future events)
- Leveled commitment (price)

Contract Nets

Task allocation among agents

- OCSM-contracts: original, cluster, swap, multiagent
- Hill-climbing leads to optimum
- Without any type, may be no sequence to optimum
- Backing out of contracts
- Contingency (future events)
- Leveled commitment (price)
- What are some of the tradeoffs?

Contingency vs. leveled commitment

Contingency problems:

Contingency vs. leveled commitment

Contingency problems:

1. Hard to track all contingencies

Contingency vs. leveled commitment

Contingency problems:

1. Hard to track all contingencies
2. Could be impossible to enumerate all possible contingencies

Contingency vs. leveled commitment

Contingency problems:

1. Hard to track all contingencies
2. Could be impossible to enumerate all possible contingencies
3. What if only one agent observes that relevant event happened?

Contingency vs. leveled commitment

Contingency problems:

1. Hard to track all contingencies
2. Could be impossible to enumerate all possible contingencies
3. What if only one agent observes that relevant event happened?

Leveled commitment problems:

Contingency vs. leveled commitment

Contingency problems:

1. Hard to track all contingencies
2. Could be impossible to enumerate all possible contingencies
3. What if only one agent observes that relevant event happened?

Leveled commitment problems:

1. Breacher's gain may be smaller than victim's loss

Contingency vs. leveled commitment

Contingency problems:

1. Hard to track all contingencies
2. Could be impossible to enumerate all possible contingencies
3. What if only one agent observes that relevant event happened?

Leveled commitment problems:

1. Breacher's gain may be smaller than victim's loss
2. May decommit insincerely (wait for other) inefficent contracts executed.

Coalitions

- Formation
- Optimization within
- Payoff division

DRDM Summary

For many agents: voting, general equilibrium, auctions
For fewer agents: auctions, contract nets, bargaining
Possible in all: coalitions

DRDM Summary

For many agents: voting, general equilibrium, auctions
For fewer agents: auctions, contract nets, bargaining
Possible in all: coalitions

All self-interested, rational agents

