CS344M
 Autonomous Multiagent Systems

Patrick MacAlpine

Department of Computer Science The University of Texas at Austin

Good Afternoon, Colleagues

Are there any questions?

Logistics

- Progress reports due in 1 week

Logistics

- Progress reports due in 1 week
- Topic change for next week: multiagent learning

Logistics

- Progress reports due in 1 week
- Topic change for next week: multiagent learning
- Talks in the department:
- FAI Talk - Sergey Levine, Frdiay 11 am GDC 6.302

Mixed strategy equilibrium

Player 2
 Action 1 Action 2

Action 1
3,7
2,2

Player 1
Action 2
6,5
1,7

Mixed strategy equilibrium

$$
\begin{array}{lll}
\hline & \text { Player } & 2 \\
\text { Action } 1 & \text { Action } 2
\end{array}
$$

$$
\begin{array}{lll}
\text { Action } 1 & 3,7 & 2,2
\end{array}
$$

Player 1
Action 2
6,5
1,7

- What if player 2 picks action $13 / 4$ of the time?
- What if player 2 picks action 1 1/4 of the time?
- Player 1 must be indifferent between actions 1 and 2
- Player 2 must be indifferent between actions 1 and 2

Correlated Equilibria

Correlated Equilibria

Sometimes mixing isn't enough: Bach/Stravinsky
Wife

	S	B
S	2,1	0,0

Me
B
0,0
1,2

Want only S,S or B,B-50\% each

Focal points

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.

Focal points

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15 th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.

Focal points

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15 th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.
- When and where?

Focal points

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15 th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.
- When and where?
- What are the Nash equilibria?

Incomplete Information Games

- We each get one of 3 cards: 1,2,3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum

Incomplete Information Games

- We each get one of 3 cards: 1,2,3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum

Card ?

$$
\begin{array}{ccc}
& \mathrm{R} & \mathrm{~F} \\
\mathrm{R} & 5,-5 & 1,-1
\end{array}
$$

Card 3

$$
\begin{array}{ll}
F & -1,1
\end{array}
$$

Incomplete Information Games

	Card ?	
	R	
R	$5,-5$	$1,-1$

Card 3
F
$-1,1$
0,0

Incomplete Information Games

	Card ?	
	R	
R	$5,-5$	$1,-1$

Card 3

F	$-1,1$	0,0

Card ?
R F
$\begin{array}{lll}\mathrm{R} & -5,5 & 1,-1\end{array}$
Card 1
F
$-1,1$
0,0

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$?

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$?
- Raise: $(.5)(-5)+(.5)(1)=-2$
- Fold: $(.5)(-1)+(.5)(0)=-.5$

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$?
- Raise: $(.5)(-5)+(.5)(1)=-2$
- Fold: $(.5)(-1)+(.5)(0)=-.5$
- Always fold!

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$?
- Raise: $(.5)(-5)+(.5)(1)=-2$
- Fold: $(.5)(-1)+(.5)(0)=-.5$
- Always fold!
- Bayes-Nash: both players Raise if 3, otherwise Fold

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$?
- Raise: $(.5)(-5)+(.5)(1)=-2$
- Fold: $(.5)(-1)+(.5)(0)=-.5$
- Always fold!
- Bayes-Nash: both players Raise if 3, otherwise Fold

With more numbers and/or different payoffs, bluffing can be a part of the Nash Equilibrium

Discussion

- How useful is the concept of Nash equilibrium?

Discussion

- How useful is the concept of Nash equilibrium?
- What if one player isn't rational?

Discussion

- How useful is the concept of Nash equilibrium?
- What if one player isn't rational?
- What can'† game theory simulate?

Repeated games

- Book slides

Repeated games

- Book slides
- Tournaments on resources page

Repeated games

- Book slides
- Tournaments on resources page
- Threats slides

Repeated games

- Book slides
- Tournaments on resources page
- Threats slides
- Doran's ICML slides

