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Abstract

This report summarizes the approach of our team,
HaMeR, for the EgoEx04D Hand Pose Challenge. The pri-
mary component of our approach is our recently introduced
hand mesh recovery approach, HaMeR. We apply HaMeR
out-of-the-box on the images of the EgoExo4D Challenge,
and we observe very strong performance. Additionally, we
further finetune the model, using the hand pose annotations
from EgoExo4D. Finally, we experiment with an ensemble
including the baseline approach of the EgoExo4D bench-
mark. Our overall submission placed 2nd in the EgoExo4D
Hand Pose Competition.

1. Introduction

The EgoExo4D Hand Pose Challenge focuses on the task
of 3D hand pose estimation from egocentric camera views.
This is the first egocentric dataset that provides 3D ground
truth and is captured in diverse environments, i.e., in non-
studio settings. The dataset of the challenge includes over
8k image examples with 3D hand pose ground truth coming
from multi-view annotations (one egocentric and a number
of exocentric cameras). The 3D pose ground truth is in the
form of 3D keypoints for 21 hand joints.

For the challenge, we developed a solution based on our
recent HaMeR method [12]. HaMeR focuses on the prob-
lem of 3D Hand Mesh Recovery from a single image. We
apply HaMeR out-of-the-box on EgoEx04D and we observe
very strong performance. We further finetune HaMeR on
data from EgoExo4D. Our final solution is based on an
ensemble of these two models and the baseline POTTER
model [16], which is also trained on EgoExo4D. Our sub-
mission is ranked 2nd in the leaderboard of the EgoExo4D
Hand Pose Challenge. In this report, we describe our ap-
proach, we present an ablation for the different components
we used and we provide extensive qualitative evaluation, in-
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cluding both successful reconstructions and failure cases.

2. Preliminaries

The main component of our approach is the HaMeR net-
work [12]. HaMeR is a recent state-of-the-art model for
Hand Mesh Recovery. It is a feedforward model that takes
as input a single image of a hand and hand side (left or
right), and estimates a 3D reconstruction of the hand in
the form of the MANO parametric hand model [13]. For
HaMeR, we adopt a fully transformerized architecture de-
sign using a ViT-H backbone [2, 15], followed by a tran-
former head. The transformer head regresses the parame-
ters of the MANO model, i.e., hand pose # and and hand
shape (3, as well as the camera parameters 7 that allow us to
project the hand to the image. We train HaMeR with a com-
bination of 3D supervision losses (when 3D ground truth is
available), and 2D supervision losses, using 2D keypoint
annotations.

Besides using a large scale transformer model, the other
big advantage of HaMeR comes from training on large scale
datasets. More specifically, HaMeR is trained on over 4M
images coming from a diverse range of datasets, includ-
ing datasets with 3D annotations collected in a studio set-
ting, e.g., FreiHAND [17], InterHand2.6M [10], HO3D [6],
DEX YCB [1], as well as datasets with 2D annotations on
in-the-wild images, e.g., COCO WholeBody [7], Halpe [3],
MPII NZSL [14]. As we show in the original paper [12], the
scale of the training data, along with the large scale archi-
tecture are the key contributors to HaMeR’s performance.

3. Approach and Results

Here, we present our approach for the challenge submis-
sion. As already mentioned, our approach is based on the
default HaMeR model, and we used the model that we have
made publicly available. We observed (Table 1) that this
model already outperforms the baseline model based on



POTTER [16], which is trained using data from EgoExo4D.
One key difference of the baseline model is that it directly
regresses 3D keypoint locations, while we regress MANO
parameters. This can make it easier to overfit to specific
camera settings (i.e., particular set of intrinsics), while we
train a model using a general focal length value to accom-
modate intrinsics from different datasets. As a result, we are
capturing very accurately the local pose of the hand (PA-
MPJPE metric), but the pose is not estimated accurately
in the camera frame (which is what the MPJPE metric is
capturing). This is a common observation for the paramet-
ric pose estimation methods (see also the discussion in the
HMR paper [8]). In fact, we observed that with a very sim-
ple optimization of the orientation and the translation of the
hand, we were able to get that error significantly decreased,
yet not as low as the baseline. For this optimization, we
used the 2D keypoints estimated by HaMeR, and we opti-
mize the translation and rotation of the hand, such that it
minimizes the reprojection error, measured under through
the ground truth camera parameters.

Our next step was to create an ensemble of our model
with the challenge baseline [16]. To transform both esti-
mates in the same coordinate frame, we align the two sets of
3D keypoints using Procrustes Alignment. Then, we simply
average the 3D coordinates for each joint. This ensemble
gave a clear boost in the performance of both metrics.

Finally, we also considered training HaMeR using data
from EgoExo4D. For simplicity, we only used the 2D key-
point labels, since from our initial experiments, it was not
easy to use the 3D keypoint labels. These tend to be more
noisy and not directly correspond to a valid hand geometry.
An ideal setting would be to try fitting MANO to the 3D
keypoints and using the MANO parameters as supervision,
which is common strategy for methods on parametric pose
estimation [4, 9, 11]. This preliminary experiment gave
us a small boost for the PA-MPJPE metric which was the
primary metric of the competition. The ensemble of these
three models forms our final submission for the challenge
(Table 2), where we ranked 2nd.

Qualitative results Next, we present a number of qualita-
tive results of our approach on the EgoExo04D test set. Fig-
ure 1 shows a number of interesting successes, while Fig-
ure 2 shows some representative failures. In general, we ob-
serve that HaMeR is robust across a wide setting, including
challenging hand poses, interactions with various objects,
occlusions, truncations, different skin colors, different light-
ing conditions and examples where the hands wear gloves.
However, there are still some limitations, particularly when
the occlusions/truncations are very extreme (only a few vis-
ible fingers), the wrist location or hand orientation is am-
biguous, and finally, if the original hand bounding box crop
is not very accurate.

Method MPIPE | PA-MPJPE |
POTTER 28.94 11.07
HaMeR 76.95 10.36
HaMeR-align 36.75 10.36
HaMeR + POTTER (ens) 29.18 9.32
HaMeR + POTTER + HaMeR-ft (ens) 30.52 9.30

Table 1. Ablation of our Model on the ExoExo4D Hand
Pose Challenge test set (errors in mm). We start with using
our HaMeR model out-of-the-box that has never been trained on
EgoExo04D. This outperforms the POTTER baseline on the PA-
MPJPE metric, but the MPJPE metric is very high. This met-
ric can be improved by optimizing the rotation and translation of
the hand using the ground-truth image intrinsics (HaMeR-align).
Since we do not update the hand pose, the PA-MPJPE metric stays
the same. By creating an ensemble of HaMeR with the POTTER
baseline, we achieve significant improvements for the PA-MPJPE
metric (fourth row). Finally, by finetuning HaMeR on EgoExo4D
and using this model in the ensemble, we get some minor improve-
ments for the PA-MPJPE metric (fifth row). This last version cor-
responds to our Challenge submission.

Method MPIJPE | PA-MPJPE |
PCIE_EgoHandPose 25.51 8.49
Ours 30.52 9.30
Death Knight 28.72 10.20
IRMV sjtu 29.38 10.36
Baseline POTTER 28.94 11.07

Table 2. Leaderboard of the EgoExo4D Hand Pose Chal-
lenge. We present the top-5 approaches, ranked by the primary
PA-MPJPE metric. Our approach based on HaMeR is ranked 2nd.

4. Conclusion

We presented our approach that achieved the 2nd place at
the EgoExo4D EgoPose Hand Challenge. Our solution is
based on HaMeR [12], our state-of-the-art model for hand
pose estimation. We experiment with different versions, in-
cluding finetuning on the EgoExo4D dataset [5] and creat-
ing an ensemble with the baseline POTTER model [5, 16].
As is common across the literature in this space, our para-
metric approach achieved very solid results on the local
pose estimation (PA-MPJPE), but was inferior compared
to the approaches regressing 3D keypoints (e.g., POTTER
baseline). Future work can consider the better integration of
the EgoExo4D data (e.g., creating pseudo ground-truth la-
bels for training), as well as make better use of the intrinsics
for pose inference (currently, the poses are estimated under
a very extreme focal length).
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Figure 1. Successful reconstructions of HaMeR on EgoEx04D. We observe that HaMeR is robust across a variety of settings found in
EgoExo4D, including more challenging poses, interactions with different objects, heavy occlusions and truncations, different skin colors,
challenging lighting conditions and hands covered by gloves.
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Figure 2. Failure cases of HaMeR on the EgoExo4D test set. We observed that despite its robustness, HaMeR can occasionally fail on the
EgoExo4D examples. This can be often attributed to ambiguous wrist location, ambiguous orientation, extreme occlusions or truncations,
as well as cases with non-centered or incorrect hand bounding box annotations.
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