Type checking

Slides adapted from CS 412 (Cornell) and CS 164 (Berkeley)

Types

- What is a type?
	- The notion varies from language to language
- Consensus

1

- A set of values
- A set of operations on those values
- Classes are one instantiation of the modern notion of type

Why Do We Need Type Systems?

Consider the assembly language fragment

addi \$r1, \$r2, \$r3

What are the types of \$r1, \$r2, \$r3?

Types and Operations

- Most operations are legal only for values of some types
	- It doesn't make sense to add a function pointer and an integer in C
	- It does make sense to add two integers
	- But both have the same assembly language implementation!

Type Systems

- A language's type system specifies which operations are valid for which types
- The goal of type checking is to ensure that operations are used with the correct types
	- Enforces intended interpretation of values, because nothing else will!
- Type systems provide a concise formalization of the semantic checking rules

What Can Types do For Us?

- Can detect certain kinds of errors
- Memory errors: – Reading from an invalid pointer, etc.
- Violation of abstraction boundaries:

class FileSystem { open(x : String) : File { … } … } class Client { f(fs : FileSystem) { File fdesc <- fs.open("foo") … } -- f cannot see inside fdesc ! }

Dynamic And Static Types

- A *dynamic type* attaches to an object reference or other value
	- A run-time notion
	- Applicable to any language
- The *static type* of an expression or variable is a notion that captures all possible dynamic types the value of the expression could take or the variable could contain
	- A compile-time notion

Dynamic and Static Types. (Cont.)

- In early type systems the set of static types correspond directly with the dynamic types:
	- for all expressions E, $dynamic_type(E) = static_type(E)$ (in **all** executions, E evaluates to values of the type inferred by the compiler)
- This gets more complicated in advanced type systems

Dynamic and Static Types • A variable of static type A can hold values of static type B at runtime, if $B \leq A$ class A: … class B extends A: … ………… \rightarrow x: A $x = A()$ … $x = B()$ … x has static $$ type A Here, x's value has dynamic type A Here, x's value has dynamic type B

Dynamic and Static Types

Soundness theorem:

 \forall E. dynamic_type(E) \le static_type(E)

Why is this Ok?

- For E, compiler uses static_type(E) (call it C)
- All operations that can be used on an object of type C can also be used on an object of type $C' \leq C$
	- Such as fetching the value of an attribute
	- Or invoking a method on the object
- Subclasses can only add attributes or methods
- Methods can be redefined but with same type !

Type Checking Overview

- Three kinds of languages:
	- Statically typed: All or almost all checking of types is done as part of compilation (C#, Java). Static type system is rich.
	- Dynamically typed: Almost all checking of types is done as part of program execution (Scheme, Python). Static type system is trivial.
	- Untyped: No type checking (machine code). Static and dynamic type systems trivial.

The Type Wars

- Competing views on static vs. dynamic typing
- Static typing proponents say:
	- Static checking catches many programming errors at compile time
	- Avoids overhead of runtime type checks
- Dynamic typing proponents say:
	- Static type systems are restrictive
	- Rapid prototyping easier in a dynamic type system

The Type Wars (Cont.)

- In practice, most code is written in statically typed languages with an "escape" mechanism
	- Unsafe casts in C, native methods in Java, unsafe modules in Modula-3
- Within the strongly typed world, are various devices, including subtyping, coercions, and type parameterization.
- Of course, each such wrinkle introduces its own complications.

Conversion

• In Java, can write

int $x = 'c';$

- float $y = x$;
- But relationship between **char** and **int,** or **int** and **float** not usually called subtyping, but rather *conversion* (or coercion).
- In general, might be a change of value or representation. Indeed **int**→**float** can lose information—a narrowing conversion.

Conversions: Implicit vs. Explicit

- Conversions, when automatic (implicit), another way to ease the pain of static typing.
- Typical rule (from Java):
	- Widening conversions are implicit; narrowing conversions require explicit cast.
- Widening conversions convert "smaller" types to "larger" ones (those whose values are a superset).
- Narrowing conversions go in opposite direction (and thus may lose information).

Examples

• Thus,

Object $x = ...;$ String $y = ...$ int $a = ...;$ short $b = 42;$ $x = y$; $a = b$; // OK $y = x$; $b = a$; // ERRORS $x = (Object)$ y; // OK $a = (int) b;$ // OK y = (String) x; // OK but may cause exception $b = (short) a;$ // OK but may lose information • Possibility of implicit coercion complicates typematching rules (see C_{++}).

Type Inference

- Type Checking is the process of checking that the program obeys the type system
- Often involves inferring types for parts of the program
	- Some people call the process type inference when inference is necessary

Rules of Inference

- We have seen two examples of formal notation specifying parts of a compiler
	- Regular expressions (for the lexer)
	- Context-free grammars (for the parser)
- The appropriate formalism for type checking is logical rules of inference having the form
	- If Hypothesis is true, then Conclusion is true
- For type checking, this becomes:
	- If E_1 and E_2 have certain types, then E_3 has a certain type
	- (eg) if E_1 and E_2 have type int, then $E_1 + E_2$ has a certain type

Why Rules of Inference?

- Rules of inference are a compact notation for "If-Then" statements
- Given proper notation, easy to read (with practice), so easy to check that the rules are accurate.
- Can even be mechanically translated into programs.

Function Declarations

• Consider a function declaration of the form

T_r f (T_1 a_1 ,..., T_n a_n) { E; }

• The body of the function must type check in an environment containing the type bindings for the formal parameters

$$
\frac{A_i}{A \mid -T_r \text{ f } (T_1 \mid 0, \ldots, T_n \mid A_n) \text{ f } (T_1 \mid T_n \mid T_n \text{ f } (T_1 \mid 0, \ldots, T_n \mid A_n) \text{ f } (E_i) \text{ : } \text{void (function-body)}
$$

CS 412/413 Spring 2008 Introduction to Compilers 38

Solution

• Intuition:

- Make one pass over program to add top level function signatures to symbol table
- Use these signatures in a second pass to type-check program – Slight complication for object-oriented programs with methods inside classes:
- functions are named using pair (Class, method name)
- Formalization:
	- Split the type environment into two parts, one for functions and one for variables
	- Type environment for functions does not change during the second pass
- We will not show this to keep the notation simple.

How to Check Return?

$$
\begin{array}{c|c}\n & A \mid E : T \\
\hline\nA \mid - \textbf{return} \ E : \text{void} \\
\end{array} \text{(return 1)}
$$

- A return statement produces no value for its containing context to use
- Does not return control to containing context
- Suppose we use type void…
- …then how to make sure T is the return type of the current function?

CS 412/413 Spring 2008 Introduction to Compilers 42

CS 412/413 Spring 2008 Introduction to Compilers 43 Put return type in environment • Add a special entry { return_fun : T } when we start checking the function "f", look up this entry when we hit a return statement. • To check T_r f $(T_1 a_1, ..., T_n a_n)$ { **return** S; } in environment A, need to check: A, return_f : T |– E : T $\frac{R_i \text{ return}}{A_i \text{ return } f : T \mid - \text{ return } E : \text{void}}$ (return) $\frac{A}{A}$, $\frac{a}{A}$: T₁, ,…, $\frac{a}{A}$: T_n, return_f : T_r |– E : void (function-body)
 $\frac{A}{A}$ |– T_r f (T₁ a₁,…, T_n a_n) { E; } : void

Arrays

• Arrays:

– array types are of form int[], float[] etc.

 $A \vdash E_0 : T[\] \quad A \vdash E_1 : \mathsf{int}$ $A \vdash E_0[E_1] : T$

 $\frac{A \vdash E : T \, [\,]}{A \vdash E \, .}$

 $\frac{A \vdash E : \mathsf{int}}{A \vdash \mathsf{new} \; T[E] : T[]}$

Classes

• Class would be represented in the type environment by a list of (name:type) pairs which has one entry for each field and method

class C1 { int x,y; int get_x() {return x;} } C1: {x:int,y:int,get_x:void->int}

 $A \vdash E : T \quad T \in C \quad (\mathit{id} : T') \in T$ $A \vdash E$. id: T'

• Method invocations

 $\begin{array}{c} A \vdash E_0 : T_1 \times \ldots \times T_n \to T \\ A \vdash E_i : T_i, \ 1 \leq i \leq n \end{array}$ $A \vdash E_0(E_1, \ldots, E_n) : T$

