

INTEL[®] VTUNETM AMPLIFIER

Jackson Marusarz - Intel

Agenda

- Introduction to Performance Tuning
- Introduction to Intel VTune Amplifier
- System-Level Profiling
 - HPC Characterization
 - Disk I/O Analysis
- Application Performance Tuning Process
 - Find Hotspots
 - Determine Efficiency
 - Address Parallelism Issues
 - Address Hardware Issues
 - Rebuild and Compare
- Summary

Two Great Ways to Collect Data

Intel[®] VTune[™] Amplifier

Software Collector	Hardware Collector		
Uses OS interrupts	Uses the on chip Performance Monitoring Unit (PMU)		
Collects from a single process tree	Collect system wide or from a single process tree.		
~10ms default resolution	~1ms default resolution (finer granularity - finds small functions)		
Either an Intel [®] or a compatible processor	Requires a genuine Intel [®] processor for collection		
Call stacks show calling sequence	Optionally collect call stacks		
Marks in virtual anvironments	Works in a VM only when supported by the VM		
WORKS III VII tuat eriviroriments	(e.g., vSphere*, KVM)		
No driver required	Requires a driver - Easy to install on Windows - Linux requires root (or use default perf driver)		

No special recompiles - C, C++, C#, Fortran, Java, Assembly

A Rich Set of Performance Data

Intel[®] VTune[™] Amplifier

Software Collector	Hardware Collector
Basic Hotspots Which functions use the most time?	Advanced Hotspots Which functions use the most time? Where to inline? – Statistical call counts
Concurrency Tune parallelism. Colors show number of cores used.	General Exploration Where is the biggest opportunity? Cache misses? Branch mispredictions?
Locks and Waits Tune the #1 cause of slow threaded performance: – waiting with idle cores.	Advanced Analysis Memory-access, HPC Characterization, etc
Any IA86 processor, any VM, no driver	Higher res., lower overhead, system wide

No special recompiles - C, C++, C#, Fortran, Java, Assembly

Example: Hotspots Analysis Summary View

💹 General Exploration Hotspots viewpoint (change) ③ 🔛 Collection Log \varTheta Analysis Target 🔥 Analysis Type 🗓 Summary 🖧 Bottom-up Elapsed Time⁽²⁾: 5.554s \odot () CPU Time[®]: 10.504s Instructions Retired: 21.698.000.000 CPI Rate ⁽²⁾: 1 257 CPU Frequency Ratio ⁽²⁾: 1041 Total Thread Count: 9 Paused Time ⁽²⁾: 0s

O Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function	Module	CPU Time ^②
grid intersect	3_tachyon_omp.exe	5.539s
sphere intersect	3_tachyon_omp.exe	3.247s
func@0x1002e59d	libiomp5md.dll	0.148s
shader	3_tachyon_omp.exe	0.117s
KeDelayExecutionThread	ntoskrnl.exe	0.091s
[Others]	N/A*	1.361s

*N/A is applied to non-summable metrics.

Average Bandwidth

Package	Total, GB/sec	Read, GB/sec	Write, GB/sec
<u>package O</u>	5.715	3.504	2.212

OPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

Collection and Platform Info

This section provides information about this collection, including result set size and collection platform data.

Example: Concurrency Analysis Bottom-up View

Optimization Notice

Find Answers Fast

Intel[®] VTune[™] Amplifier

Basic Hotspots Hotspots by CPU Usage viewpoint (change) ?

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Intel VTune Amplifier XE 2015

See Profile Data On Source / Asm

Double Click from Grid or Timeline

View Source / Asm or both CPU Time Right click for instruction reference manual

	🖉 Bas	otspots Hotspots by CPU Usage vie	wpoint	hange) ⑦					Intel VTune	Amplifier XE	2015
		sis Type 🗮 Collection Log 🕅 Summary 🖸	😵 Bott	p 🔹 Caller/	'Callee	😽 To	p-down	Tree 🔣 Tasks an	rames 🚯 grid.cp	p 🕺	Þ
	Source	Assembly		Assembly grou	iping:	Address					•
	Source	Source	CPU Time:	Total 🖹 🔺	Ad	dress 🔺	Sour	Asse	bly	CPU Time: Total	>
	Enic		Idle	oor 📒 Ok	0-4	18664	590	own duord pt	op_0v1901 0v	Idle Poor	Ok
uick Asm	navi	aation.	0.0175		0x4	18674	580	jz 0x418be6 <	bp=0x190], 0x	0.379s	
		gation			0x4	418b76		Block 54:			_
elect sourc	e to	hiahliaht Asm		-	0x41	18b76	581	mov edx, dword	ptr [ebp-0x190	0.090s	
siece sourc		Ingringite Asiri	C W	-	0x41	18b7c	581	mov eax, dword	ptr [edx+0x4]	0.020s	
	579	<pre>cur = g->cells[voxindex];</pre>	0		0x41	18b7f	581	mov ecx, dword	ptr [eax]	3.853s	
	580	while (cur != NULL) {	0.499s 🕞		0x41	18b81	581	mov edx, dword	ptr [ebp+0xc]	2.500s	
	581	if (ry->mbox[cur->obj->id] !	7.795s		0x41	18b84	581	mov eax, dword	ptr [edx+0x10]	0.030s	
	582	ry->mbox[cur->obj->id] = r	0.547s		0x41	18b87	581	mov edx, dword	ptr [ebp+0xc]		
	583	cur->obj->methods->interse	1.769s		0x41	18b8a	581	mov eax, dword	ptr [eax+ecx*4	0.040s	
	584	}			0x41	18b8d	581	cmp eax, dword	ptr [edx+0xc]	1.262s	
	585	<pre>cur = cur->next;</pre>	0.568s		0x41	18b90	581	jz 0x418bd6 <b< th=""><th>Lock 57></th><th></th><th></th></b<>	Lock 57>		
	586	}	0.070s		0x4	418b92		Block 55:			=
	587	curvox.z += step.z;	0.070s		0x4:	18b92	582	mov ecx, dword	ptr [3x190	0.331s	
	588	if (ry->maxdist < tmax.z cu	0.100s		0x4	18b98	582	mov edx, dword	ptr [e 14]	0.116s	
		Selected 1 row(s):		7.795s 👻				H	ighlighted 9 rc (s):	7.79	5s 👻
		• • • • • • • • • • • • • • • • • • •	•	•	1			•		•	F.

Scroll Bar "Heat Map" is an overview of hot spots

Click jump to scroll Asm

Timeline Visualizes Thread Behavior

Intel[®] VTune[™] Amplifier

P Transitions CPU Time Locks & Waits **Basic Hotspots** Advanced Hotspots Ruler Area Q2Q+Q-Q# 29.86s 29.87s 29.88s 29.89s 29.94s 29.96s 30.05s 30.1s Frame wWinMainCRTStartu... Thread Thread (0x1364) Running Thread (0x136c) Waits 놑 Thread (0x1374) User Task Thread (0x137c) ✓ ↑↓ Transition Thread Concurrency Thread (0x1384) Concurrency Thread Concurrency Frames over Time Hule Frame Rate Frames over Time >> V User Task **P** Transition Frame User Task Transition Frame Start: 29.958s Duration: 0.018s Hovers: Start: 29.858s Duration: 0.017s wWinMainCRTStartup (0x12d4) to Thread (0x138c) (29.899s to 29.899s) Task Type: Smoke::FrameWork::execute()::Other Frame: 72 Task End Call Stack: Framework::Execute Sync Object: TBB Scheduler Frame Domain: Smoke::Framework::execute() Object Creation File: taskmanagertbb.cpp Frame Type: Good Object Creation Line: 318 CPU Time Frame Rate: 59.8242179 94.233472%

Optional: Use API to mark frames and user tasks revealed User Task

Optional: Add a mark during collection

🖵 Mark Timeline

Command Line Interface

Automate analysis

amplxe-cl is the command line:

- -Windows: C:\Program Files (x86)\Intel\VTune Amplifier XE \bin[32|64]\amplxe-cl.exe
- -Linux: /opt/intel/vtune_amplifier_xe/bin[32|64]/amplxe-cl

Use UI to setup 1) Configure analysis in UI 2) Press "Command Line..." button 3) Copy & paste command

Great for regression analysis – send results file to developer Command line results can also be opened in the UI

10

Compare Results Quickly - Sort By Difference

Intel[®] VTune[™] Amplifier

Quickly identify cause of regressions.

- Run a command line analysis daily
- Identify the function responsible so you know who to alert
- Compare 2 optimizations What improved?

Compare 2 systems – What didn't speed up as much?

Grouping: Function / Call Stack	Function / Call Stack					
Function / Call Stack	CPU Time:Difference	Module	CPU Time:r007hs 🛛 🛠	CPU Time:r006hs	*	
■ FireObject::checkCollision	4.850s	SystemProceduralFire.DLL	6.281s	1.431s 🚺		
	4.644s	SystemProceduralFire.DLL	5.643s	0.999s		
⊞ dllStopPlugin	3.765s	RenderSystem_Direct3D9.DLL	9.184s	5.419s		

Introduction to Performance Tuning

Introduction to Intel VTune Amplifier

- Accurate Data Low Overhead
 - CPU, GPU, FPU, threading, bandwidth, and more...
 - Profile applications or systems
- Meaningful Analysis
 - Threading and hardware utilization efficiency
 - Memory and storage device analysis
- Easy
 - Data displayed by source code
 - Expert advice built-in
 - Easy set-up, no special compiles

General Exploration Hotspots viewpoint (change)					
🔄 💮 Analysis Target 🧳	👌 Analysis Type 🔛 Collection Log 🗂 Summ	iary 😪 Bottom-u	up 🔗 Caller/Callee	🚱 Top-down Tree	🔁 Platform
Grouping: Function / Call	ouping: Function / Call Stack				
	CPU Time 1	7	~		
Function / Call Stack	Effective Time by Utilization	Spin Time	Overhead Time	Instructions Retired	CPI Rate
grid_intersect	5.915s (0s	0s	12,956,100,000	1.200
sphere_intersect	3.685s	0s	0s	8,988,900,000	1.049
grid_bounds_intersect	0.434s 🏮	0s	0s	638,400,000	1.714
▶ shader	0.101s	0s	0s	165,300,000	1.414
tri_intersect	0.098s	0s	0s	180,500,000	1.105
▶ pos2grid	0.094s	0s	0s	169,100,000	1.213
Raypnt	0.073s	0s	0s	148,200,000	1.308
< >	<				
્∾ ્+ ્−્+	0.5s 1s 1.5s 2s	2.5s	3s 3.5s	4s 4.5s	5s 5
OMP Worker Thread	and the difference of the second s	Minimum Line Art		A MARY A ANA MARKING	Provident A.
OMP Worker Thread	han also the first of the state	MANULA UN	N IN ANNALMAN	A LANK A ALL AND AND	and here and the
OMP Worker Thread	Contraction and a second s				A THURSDAY TO
OMP Master Thread #	Vanage of the Approximately Mark and Approximately and a second				AND PROVIDE A DA
Thread (TID: 15956)	hread (TID: 15956)			. It is a standard stand	a summer of the
Thread (TID: 9288)					
Thread (TID: 16148)	i A				
Thread (TID: 1488)					

> amplxe-cl -help collect

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

(intel)

System-Level Profiling – High-level Overviews

Γ	Q≈ Q+ Q−Q#	0.5s 1s 1.5s 2s 2.5s 3s 3.5s 4.088s 4.5s 5s 5.5s
	⊡ core_1	a state of the sta
	cpu_2	
	cpu_3	and the provide state of the second state in a second state in a large state of the second state of
	⊡ core_0	a a fair a fair a fair a fair a state a
	cpu_0	
itext	cpu_1	an a bear an

CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

System-Level Profiling – Process/Module Breakdowns

	Hotspots viewpoint (<u>change</u>)						
	🔄 🖭 Collection Log ⊕ Analysis Target 🔥 Analysis Type	tion Log 🕀 Analysis Target 🙏 Analysis Type 🖞 Summary 🚱 Bottom-up 🗞 Caller/Callee 🗞 Top-down Tree 📧 Platform					
	Grouping: Process / Module / Function / Thread / Call Stack						
	Process / Module / Function / Thread / Call Stack	CPU Time 🔻 💿	Instructions Retired	CPI Rate	CPU Frequency Ratio	Module	
Dresses	▶ Pid 0x544	3.889s	27.5%	0.910	0.965		
Processes >	▼ chrome.exe	3.443s	15.4%	1.441	0.963		
	chrome_child.dll	3.022s	14.6%	1.301	0.944		
	▶ ntdll.dll	0.242s 🔋	0.6%	3.171	1.103		
	ntoskrnl.exe	0.179s 🛔	0.2%	7.143	1.064		
	▶ EXCEL.EXE	2.750s	14.3%	1.312	1.022		
	Explorer.EXE	2.598s	10.3%	1.677	0.998		
	Syncplicity.exe	1.140s 🛑	4.1%	1.923	1.039		
Modules	V OUTLOOK.EXE	0.891s 🛑	1.5%	3.723	0.918		
Modules	▶ mso.dll	0.141s	0.2%	4.719	0.812		
	▼ ntoskrnl.exe	0.080s	0.2%	2.884	1.181		
	ExEnterPriorityRegionAndAcquireResourceExclusive	0.004s	0.0%		0.400	ntoskrnl.exe	ExEnterPriorityRegionAndAcquireResource
Eurotions	ExAllocatePoolWithTag	0.004s	0.0%	1.000	1.000	ntoskrnl.exe	ExAllocatePoolWithTag
	▶ KeSetEvent	0.004s	0.0%		0.200	ntoskrnl.exe	KeSetEvent
	ObReferenceObjectByHandleWithTag	0.004s	0.0%		0.800	ntoskrnl.exe	ObReferenceObjectByHandleWithTag
		3s 3.5s 4s 4.5s	5s 5.5s 6s 6	.5s 7s	7.5s 8s 8.5s 9s	9.5s 10s 10.5s 11s	11.5s 12s 12.5s 13s 13.5s 14s 14.5s
	Thread (TID: 9844)	and the second sec				······	
	Thread (TID: 15272)	the second second second second			and the second data as a s		
	Thread (TID: 16316)	A . .					A
	Thread (TID: 19756)	and a second		alah dani ma	the second s	- the second	
	Thread (TID: 19836)	and a second	and the second second second		and a second second	attan and a	de a desta de la companya de la comp
	Thread (TID: 16588)		and the second second second		and a state of the		

Optimization Notice

System-Level Profiling – Disk I/O Analysis

Are You I/O Bound or CPU Bound?

- Explore imbalance between I/O opera (async & sync) and compute
- Storage accesses mapped to the source code
- See when CPU is waiting for I/O
- Measure bus bandwidth to storage
- Latency analysis
- Tune storage accesses with latency histogram
- Distribution of I/O over multiple devices

> amplxe-cl -collect disk-io -d 10

Disk Input and Output Histogram

System-Level Profiling – HPC Characterizaton

Three Metric Classes

- CPU Utilization
 - Logical core % usage •
 - Includes parallelism and **OpenMP** information
- Memory Bound •
 - Break down each level of • the memory hierarchy
- FPU Utilization
 - Floating point GFLOPS and • density

CPU Utilization [©] : 60.9% Average CPU Usage [©] : 14.611 Out of 24 logical CPUs Serial Time [©] : 0.013s (0.1%) Parallel Region Time [©] : 11.986s (99.9%) Estimated Ideal Time [©] : 8.205s (68.4%) OpenMP Potential Gain [©] : 3.781s (31.5%) The time wasted on load imbalance or parallel work arrangeme OpenMP regions with the highest metric values. Make sure the w	nt is significant and negatively impacts the application performance and scalability. Explore orkload of the regions is enough and the loop schedule is optimal.
 Top OpenMP Regions by Potential Gain This section list: OpenMP colors with the highest constantial for performing the region OpenMP F Memory Bound ⁽²⁾: 91.8% 	mance improvement. The Potential Gain metric chows the elapsed time that could be caved if
conj_grad. Cache Bound [®] :	0.105
MAIN_5c DRAM Latency Bound [®] : MAIN_5c DRAM Bandwidth Bound [®] : MAIN_5c DRAM Bandwidth Bound [®] : MAIN_5c This metric represents a fraction of a fractin of a fraction of a fraction o	 ○ FPU Utilization[®]: 1.3% SP FLOPs per Cycle[®]: 0.211 Out of 16 N Vector Capacity Usage[®]: 48.3% N ○ FP Instruction Mix:
[Others] main memory (DRAM). This metric d *N/A is appl Consider improving data locality in N	© % of racked Fr Instr. 93.1% % of 256-bit [©] . 0.0% % of Scalar FP Instr. [©] : 6.9%
NUMA: % of Remote Accesses ⁽²⁾ : A significant amount of DRAM loads same core or at least the same park	FP Anth/Mem Kd Instr. Ratio ⁻⁷ : 0.204 № FP Arith/Mem Wr Instr. Ratio ⁻⁰ : 6.298 ⊙ Top 5 hotspot cloops (functions) by FPU usage This section provides information for the most time consuming loops/functions with floating point operations.
same core, or at teast the same pack	Function CPU Time $^{\odot}$ FPU Utilization $^{\odot}$ Vector Instruction Set $^{\odot}$ Loop Type $^{\odot}$
	[Loop at line 575 in conj_grad_\$omp\$parallel@517] 126.149s 1.6% ▶ SSE2(128) ▶ Body
	[Loop at line 678 in conj_grad_\$omp\$parallel@517] 5.004s 1.7% SSE2(128) Body
	Loop at line 575 in conj_grad_\$omp\$parallel@517 2.678s 2.1% [Unknown] Remainder
	Loop at time 573 in conj_grad_pomppparattet@5171 0.995s 4.0% SSE2(128) Body
	[Loop at line 661 in coni_grad_\$omp\$parallel@517] 0.952s 1.3% SSF(128) SSF2(128) Body

*N/A is applied to non-summable metric

amplxe-cl -collect hpc-per: >

System-Level Profiling – Memory Bandwidth

As As Ar Ax	HPC Performance Characterization Copy	
🗆 🦢 Algorithm Analysis	Analyze important aspects of your application performance, including CPU utilization with additional details on OpenMP	Find areas of high ar
A Basic Hotspots	efficiency analysis, memory usage, and FPU utilization with vectorization information. For vectorization ontimization data such as trip counts, data dependencies, and memory access patterns, try Intel Advisor	
A Advanced Hotspots	It identifies the loops that will benefit the most from refined vectorization and gives tips for improvements.	usage. Compare
A Concurrency	The HPC Performance Characterization analysis type is best used for analyzing intensive compute applications. Learn more	bandwidth base
A Locks and Waits	(F1)	honshr
🗆 🗁 Compute-Intensive Application Analys	CPU sampling interval. ms:	Denchin
A HPC Performance Characterization		
🗆 🦢 Microarchitecture Analysis		
🗚 General Exploration	🖉 Analyze memory bandwidth	-knob collect-memor
A Memory Access		
A TSX Exploration		

nd low bandwidth to max system ed on Stream arks.

-bandwidth=true

	Q	°Q+Q−Q#	9850ms 9900ms 9950ms 10000ms 10050ms 1010 <mark>10124.28ms</mark> 50ms 10200ms 10250ms 10300m
ndwi	⊞ package_0	40.0 26.7 13.3	
DRAM Bai	⊞ package_1	40.0 26.7 13.3	package_0
widt D	⊞ package_0	16.5 11.0 5.5	Total, GB/sec 5.972/sec
aPI Band	⊞ package_1	16.5 11.0 5.5	Read, GB/sec
	package_1	5600%	
Time	package_0	5600%	4.903/sec

Application Performance Tuning Process

Find Hotspots

Functions

Call Stacks

Basic Hotspots Hotspots by CPU Usage viewpoint (change) 0 INTEL VTUNE AMPLIFIER 2018									
🔄 🕀 Analysis Target 🗍 Analysis Type 🔚 Collection Log 🗄 Summary 🗞 Bottom-up 🐼 Caller/Callee 🗞 Top-down Tree 🖹 Platform									
Grouping: Function / Call Stack	CPU Time	~							
Function / Call Stack	CPU Time 🔻 🔊	Module	Function (Full)	Source File	Start Address	Viewing - 1 of 19 + selected stack(s)			
▶ grid_intersect	6.063s	1_tachyon_serial.exe	grid_intersect	grid.cpp	0x40bee0	33.5% (2.033s of 6.063s)			
sphere_intersect	2.943s	1_tachyon_serial.exe	sphere_intersect	sphere.cpp	0x408a70	1_tachyon_serial.exe!grid_intersect -	· ^		
MsgWaitForMultipleObjects	0.450s	user32.dll	MsgWaitForMultipleObjects		0x6ba8dbc0	1_tachyon_serial.exe!intersect_obje.			
grid_bounds_intersect	0.411s	1_tachyon_serial.exe	grid_bounds_intersect	grid.cpp	0x40cf20	1_tachyon_serial.exe!shader+0x346			
GdipDrawImagePointRectI	0.172s	gdiplus.dll	GdipDrawImagePointRectI		0x1003a2b0	1_tachyon_serial.exe!trace+0x2e - tr	(T		
SwitchToThread	0.121s	KernelBase.dll	SwitchToThread		0x10021460	1_tachyon_serial.exe!render_one_pi.			
▶ shader	0.092s	1_tachyon_serial.exe	shader(struct ray *)	shade.cpp	0x406e60	1_tachyon_serial.exe!parallel_thread			
▶ tri_intersect	0.070s	1_tachyon_serial.exe	tri_intersect	triangle.cpp	0x408d60	1_tachyon_serial.exe!thread_trace+			
▶ pos2grid	0.070s	1_tachyon_serial.exe	pos2grid	grid.cpp	0x40d1b0	1_tachyon_serial.exe!trace_shm+0x.			
CreateWindowExA	0.060s	user32.dll	CreateWindowExA		0x6ba91cb0	1_tachyon_serial.exe!trace_region+0)		
libm_sse2_sqrt_precise	0.060s	msvcr120.dll	libm_sse2_sqrt_precise		0x10042608	1_tachyon_serial.exe!renderscene+0	J		
Raypnt	0.050s	1_tachyon_serial.exe	Raypnt(struct ray *,double)	vector.cpp	0x4034d0	1_tachyon_serial.exe!rt_renderscene)		
libm_sse2_pow_precise	0.050s	msvcr120.dll	libm_sse2_pow_precise		0x1003d6f3	1_tachyon_serial.exe!tachyon_video:	:		
< >	<				>	1_tachyon_serial.exe!thread_video+	v		
್ನಲ ್+ ್=್+ 0.5s 1s 1.5	s 2s 2.5s	3s 3.5s 4s 4.5	s 5s 5.5s 6s 6.5s 7s 7.5s 8s 8.5s	9s 9.5s 10	Ds 10.5s 11s 1	1.5s 12s 12.5 ✔ Thread	~		
thread_video (TID: 171	11				1	Running 🔨 💭 Running	,		
WinMainCRTStartup (and the late to		المراجع الم	🖌 🔔 🔜 💽 🖌 🛃 🛃 🛃 🛃 🖌	ne		
	V 😹 Spin and Ov								
							le		
						✓ CPU Usage			
						CPU Tim	ne		
						🗹 🚧 Spin and	d Ov		

> amplxe-cl -collect basic-hotspots -- ./myapp.out

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Find Hotspots

- Drill to source or assembly
- Hottest areas easy to ID
- Is this the expected behavior
- Pay special attention to loops and memory accesses
- Learn how your code behaves
- What did the compiler generate
- What are the expensive statements

Basic Hotspots Hotspots by CPU Usage viewpoint (<u>change</u>)									
🔍 🕀 Analysis Target Å Analysis Type 🖾 Collection Log 👔 Summary 🐼 Bottom-up 🐼 Caller/Callee 🐼 Top-down Tree 🖼 Platform 🗋 grid.cpp 🕺									
Sour	rce Assembly	Assembly grouping: Address							
		CPU Time: Total	* 🕅	>					
Sour	Source				CPU Time:	Source File			
Line	Source		Spin Time	Time	Self	Sourcerne			
562	break	ldie Poor Ok deal Over							
563	unvindey 1- sten v.								
564	tmax x += tdelta x:								
565	curpos = nXp:								
566	nXp.x += pdeltaX.x;								
567	nXp.y += pdeltaX.y;								
568	nXp.z += pdeltaX.z;								
569	}								
570	else if (tmax.z < tmax.y) {	0.4%	0.0%	0.0%	0.040s	grid.cpp			
571	<pre>cur = g->cells[voxindex];</pre>	2.9%	0.0%	0.0%	0.321s	grid.cpp			
572	while (cur != NULL) {								
573	if (ry->mbox[cur->obj->id] != ry->seri	22.4%	0.0%	0.0%	2.497s	grid.cpp			
574	ry->mbox[cur->obj->id] = ry->serial;	7.3%	0.0%	0.0%	0.817s	grid.cpp			
575	cur->obj->methods->intersect(cur->ob	7.9%	0.0%	0.0%	0.406s	grid.cpp			
576	}								
577	<pre>cur = cur->next;</pre>	6.3%	0.0%	0.0%	0.699s	grid.cpp			
5/8	}		0.00/	0.001					
5/9	curvox.z += step.z;	0.3%	0.0%	0.0%	0.038s	grid.cpp			
580	<pre>if (ry->maxdist < tmax.z curvox.z ==</pre>	0.2%	0.0%	0.0%	0.0215	gna.cpp			
582	Dredk;								
583	tmay z += tdelta z:	0.5%	0.0%	0.0%	0.060s	arid con			
584	curpos = pZp:	01370	01070	01070	0.0003	gnatepp			
585	nZp.x += pdeltaZ.x:								
586	nZp.y += pdeltaZ.y;								
Sele		22.4%	0.0%	0.0%	2 <u>4</u> 97e				
Jeie		22.4/0	0.0 %	0.076	2.4975				

Determine Efficiency

General Exploration Hotspots viewpoint (change) 0									
🔄 💮 Analysis Target 🛛 Å Analysis	Type 🔛 Collection Log 🖞 Summary 🔗	Bottom-up 🔗	Caller/Callee 🛛 😪 Top						
Grouping: Function / Call Stack									
	CPU Time 1	7	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>						
Function / Call Stack	Effective Time by Utilization	Spin Time	Overhead Time						
▶ grid_intersect	5.915s (1997)	0s	0s						
sphere_intersect	3.685s	0s	0s						
grid_bounds_intersect	0.434s 🔲	0s	0s						
▶ shader	0.101s	0s	0s						
▶ tri_intersect	0.098s	0s	0s						
▶ pos2grid	0.094s	0s	0s						
▶ Raypnt	0.073s	0s	0s						

<u>A</u>	General Explor	ation General	Exploration view	vpoint (<u>chan</u>	<u>ge</u>) 😢
⊲	💮 Analysis Target	Å Analysis Type	🔛 Collection Log	🖞 Summary	😪 Bottom-u
Gro	uping: Function / C	all Stack			

Function / Call Stack	CPI Rate	Retiring 💿	Fro
▶ grid_intersect	1.200	22.5%	
sphere_intersect	1.049	23.9%	
grid_bounds_intersect	1.714	16.5%	•
▶ shader	1.414	16.3%	•
▶ pos2grid	1.213	50.9%	•
▶ tri_intersect	1.105	23.8%	•
▶ Raypnt	1.308	39.2%	•
▶ func@0x140150ef0	9.714	80.9%	
libm_sse2_sqrt_precise	2.241	0.0%	

Look for Parallelism, Cycles-per-Instruction (CPI), and Retiring %

Address Parallelism Issues

- Use Concurrency Analysis to ensure you're using all your threads as often as possible.
- Common concurrency problems can often be diagnosed in the timeline.
- Switch to the Locks And Waits viewpoint or run a Locks and Waits analysis to investigate contention.

Coarse-Grain Locks

Thread Imbalance

High Lock Contention

Address Hardware Issues

The X86 Processor Pipeline (simplified)

Address Hardware Issues

For each pipeline slot on each cycle:

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Address Hardware Issues

General Exploration General Exploration viewpoint (change)

🕘 💮 Analysis Target 🔺 Analysis Type 🔛 Collection Log 🗓 Summary 🔗 Bottom-up 🔗 Event Count 🖂 Platform

Grouping: Function / Call Stack

Eurotion / Call Stack	Retiring	Front-End Bound	Bad Speculation	Back-End B	Back-End Bound «		
Function / Call Stack	Realing	FION-End Bound	Bau Speculation	Memory Bound 💿	Core Bound 💿	module	
▶ grid_intersect	22.5%	6.5%	4.5%	34.6%	31.8%	3_tachyon_omp.exe	
sphere_intersect	23.9%	6.2%	11.5%	29.0%	29.4%	3_tachyon_omp.exe	
grid_bounds_intersect	16.5%	11.3%	8.7%	31.8%	31.8%	3_tachyon_omp.exe	
▶ shader	16.3%	20.3%	4.1%	100.0%	0.0%	3_tachyon_omp.exe	
▶ pos2grid	50.9%	4.6%	0.0%	72.2%	0.0%	3_tachwer_omp.exe	
▶ tri_intersect	23.8%	14.3%	0.0%			chyon_omp.exe	
Raypnt	39.2%	4.9%	0.0%	0.0%	90.2%	3_tachyon_omp.exe	
▶ func@0x140150ef0	80.9%	0.0%	0.0%	15.6%	10.9%	ntoskrnl.exe	
libm_sse2_sqrt_precise	0.0%	30.8%	38.5%	0.0%	30.8%	msvcr120.dll	
▶ aullrem	46.9%	0.0%	0.0%	26.6%	26.6%	libiomp5md.dll	
▶ func@0x10013010	41.0%	16.4%	0.0%	0.0%	50.8%	gdiplus.dll	
_kmp_linear_barrier_release	33.3%	0.0%	41.7%	7.1%	17.9%	libiomp5md.dll	
libm_sse2_pow_precise	0.0%	9.1%	18.2%			msvcr120.dll	
▶ ColorScale	30.6%	0.0%	0.0%			3_tachyon_omp.exe	
intersect_objects	20.8%	10.4%	0.0%	0.0%	100.0%	3_tachyon_omp.exe	
▶ func@0x10009c00	35.7%	23.8%	0.0%	0.0%	64.3%	gdiplus.dll	

This data is collected statistically with event multiplexing. Gray data has low confidence levels.

General Exploration Analysis Shows the Hardware Bottleneck in the Application

> amplxe-cl -collect general-exploration -- ./myapp.out

Rebuild and Compare Results

Compare	-12	× r002h	;	primes.cpp	r001hs	r000hs	primes_omp.cpp		-
🔛 Choo	ose	Results	to Co	mpare				INT	EL VTUNE AMPLIFIER XE 2017
Result 1:	r00	3ah.amplxe	2					✓ Browse	Ompare Compare
Result 2:	r00	4ah.amplxe	:					✓ Browse	X Cancel
The	se re	esults can b	e compa	red. Click the C	ompare button to	continue.			

😔 CPU Usage Histogram 📑

This histogram displays a percentage of the wall time the specific number of CPUs were running

Summary

- Start with the lowest hanging fruit for performance tuning
- Use Intel[®] VTune[™] Amplifier for system and application profiling
- Hotspots, HPC Characterization, and General Exploration are good starting points
- Performance tuning is an iterative process

Legal Disclaimer & Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit <u>www.intel.com/benchmarks</u>.

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Software