
1
1

The OpenMP* Common Core:
A hands on exploration

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Alice Koniges

Berkeley Lab
AEKoniges@lbl.gov

Tim Mattson

Intel Corp.

timothy.g.mattson@ intel.com

Yun (Helen) He

Berkeley Lab

yhe@lbl.gov

Barbara Chapman

Stony Brook University
Barbara.chapman@stonybrook.edu

2

Preliminaries: Part 1

• Disclosures

–The views expressed in this tutorial are those of the

people delivering the tutorial.

–We are not speaking for our employers.

–We are not speaking for the OpenMP ARB

• We take these tutorials VERY seriously:

–Help us improve … tell us how you would make this

tutorial better.

3

Preliminaries: Part 2

• Our plan for the day .. Active learning!
–We will mix short lectures with short exercises.

–You will use your laptop to connect to a multiprocessor
server.

• Please follow these simple rules
–Do the exercises that we assign and then change things

around and experiment.
– Embrace active learning!

–Don’t cheat: Do Not look at the solutions before you
complete an exercise … even if you get really frustrated.

4

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data environment

• Memory model

• Irregular Parallelism and tasks

• Recap

• Beyond the common core:

– Worksharing revisited

– Synchronization: More than you ever wanted to know

– Thread private data

– Thread affinity and data locality

5

OpenMP* overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTER
C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

A set of compiler directives and library routines for
parallel application programmers

Greatly simplifies writing multi-threaded (MT) programs
in Fortran, C and C++

Standardizes established SMP practice + vectorization and
heterogeneous device programming

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

The growth of complexity in OpenMP
• OpenMP started out in 1997 as a simple interface for the application

programmers more versed in their area of science than computer science.

• The complexity has grown considerably over the years!

6

0

50

100

150

200

250

300

350

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

2.5

2.02.0
1.0 1.0 1.1

4.5

4.0

3.1
3.0

Merged C/C++ and Fortran spec

C/C++ spec

Fortran spec

Page counts (not counting front matter, appendices or index) for versions of OpenMP

year

P
a

g
e

 c
o

u
n

ts
 (s

p
e

c
 o

n
ly

)

The complexity of the full spec is overwhelming, so we focus on the 16 constructs most

OpenMP programmers restrict themselves to … the so called “OpenMP Common Core”

OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved

execution across threads

int omp_get_thread_num()

int omp_get_num_threads()

Create threads with a parallel region and split up the work using

the number of threads and thread ID

double omp_get_wtime() Speedup and Amdahl's law.

False Sharing and other performance issues

setenv OMP_NUM_THREADS N Internal control variables. Setting the default number of threads

with an environment variable

#pragma omp barrier

#pragma omp critical

Synchronization and race conditions. Revisit interleaved

execution.

#pragma omp for

#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies

reduction(op:list) Reductions of values across a team of threads

schedule(dynamic [,chunk])

schedule (static [,chunk])

Loop schedules, loop overheads and load balance

private(list), firstprivate(list), shared(list) Data environment

nowait Disabling implied barriers on workshare constructs, the high cost of

barriers, and the flush concept (but not the flush directive)

#pragma omp single Workshare with a single thread

#pragma omp task

#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 19 items

7

8

OpenMP basic definitions: Basic Solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

Directives,

Compiler
OpenMP library

Environment

variables

Application

End User

Shared Address Space

Proc3Proc2Proc1 ProcN

9

OpenMP basic syntax
• Most of the constructs in OpenMP are compiler directives.

C and C++ Fortran

Compiler directives

#pragma omp construct [clause [clause]…] !$OMP construct [clause [clause] …]

Example

#pragma omp parallel private(x)

{

}

!$OMP PARALLEL

!$OMP END PARALLEL

Function prototypes and types:

#include <omp.h> use OMP_LIB

• Most OpenMP* constructs apply to a “structured block”.
– Structured block: a block of one or more statements with one point of entry at the top and

one point of exit at the bottom.

– It’s OK to have an exit() within the structured block.

10

Exercise, Part A: Hello world
Verify that your environment works

• Write a program that prints “hello world”.

#include<stdio.h>

int main()

{

printf(“ hello ”);

printf(“ world \n”);

}

http://www.nersc.gov/users/software/programming-models/openmp/sc17-openmp/

• For detailed NERSC instructions and to download the slides:

git clone https://github.com/tgmattso/OpenMP_Exercises

11

Exercise, Part B: Hello world
Verify that your OpenMP environment works

• Write a multithreaded program that prints “hello world”.

#include <stdio.h>

int main()

{

printf(“ hello ”);

printf(“ world \n”);

}

Switches for compiling and linking

gcc –fopenmp Gnu (Linux, OSX)

pgcc -mp pgi PGI (Linux)

icl /Qopenmp Intel (windows)

icc –fopenmp Intel (Linux, OSX)

#pragma omp parallel

{

}

#include <omp.h>

}

http://www.nersc.gov/users/software/programming-models/openmp/sc17-openmp/

• For detailed NERSC instructions and to download the slides:

git clone https://github.com/tgmattso/OpenMP_Exercises

12

Solution
A multi-threaded “Hello world” program

• Write a multithreaded program where each thread prints “hello world”.

#include <omp.h>

#include <stdio.h>

int main()

{

#pragma omp parallel

{

printf(“ hello ”);

printf(“ world \n”);

}

}

Sample Output:

hello hello world

world

hello hello world

world

OpenMP include file

Parallel region with

default number of threads

End of the Parallel region

The statements are interleaved based on how the operating schedules the threads

13

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data environment

• Memory model

• Irregular Parallelism and tasks

• Recap

• Beyond the common core:

– Worksharing revisited

– Synchronization: More than you ever wanted to know

– Thread private data

– Thread affinity and data locality

14

OpenMP programming model:

Fork-Join Parallelism:
Master thread spawns a team of threads as needed.

Parallelism added incrementally until performance goals are met,
i.e., the sequential program evolves into a parallel program.

Parallel Regions

Master

Thread

in red

A Nested

Parallel

region

Sequential Parts

15

Thread creation: Parallel regions

• You create threads in OpenMP* with the parallel construct.

• For example, To create a 4 thread Parallel region:

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

pooh(ID,A);

}

 Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread

executes a

copy of the

code within

the

structured

block

Runtime function to

request a certain

number of threads

Runtime function

returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

16

Thread creation: Parallel regions example

• Each thread executes the
same code redundantly.

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

pooh(ID, A);

}

printf(“all done\n”);omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single

copy of A is

shared

between all

threads.

Threads wait here for all threads to finish

before proceeding (i.e., a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

17

Thread creation: How many threads did
you actually get?

• You create a team threads in OpenMP* with the parallel construct.

• You can request a number of threads with omp_set_num_threads()

• But is the number of threads requested the number you actually get?
– NO! An implementation can silently decide to give you a team with fewer threads.

– Once a team of threads is established … the system will not reduce the size of the team.

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

int nthrds = omp_get_num_threads();

pooh(ID,A);

}

 Each thread calls pooh(ID,A) for ID = 0 to nthrds-1

Each thread

executes a

copy of the

code within

the

structured

block

Runtime function to

request a certain

number of threads

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

Runtime function to

return actual

number of threads

in the team

18

An interesting problem to play with
Numerical integration

4.0

(1+x2)
dx =

0

1

 F(xi)x
i = 0

N

Mathematically, we know that:

We can approximate the integral as a

sum of rectangles:

Where each rectangle has width x and

height F(xi) at the middle of interval i.

4.0

2.0

1.0

X
0.0

19

Serial PI program

static long num_steps = 100000;

double step;

int main ()

{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}

See OMP_exercises/pi.c

20

Serial PI program

#include <omp.h>

static long num_steps = 100000;

double step;

int main ()

{ int i; double x, pi, sum = 0.0, tdata;

step = 1.0/(double) num_steps;

double tdata = omp_get_wtime();

for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

tdata = omp_get_wtime() - tdata;

printf(“ pi = %f in %f secs\n”,pi, tdata);

}

See OMP_exercises/pi.c

The library routine

get_omp_wtime()

is used to find the

elapsed “wall

time” for blocks of

code

21

Exercise: the parallel Pi program

• Create a parallel version of the pi program using a parallel

construct:

#pragma omp parallel.

• Pay close attention to shared versus private variables.

• In addition to a parallel construct, you will need the runtime

library routines

– int omp_get_num_threads();

– int omp_get_thread_num();

–double omp_get_wtime();

–omp_set_num_threads(); Time in Seconds since a

fixed point in the past

Thread ID or rank

Number of threads in the team

Request a number of

threads in the team

http://www.nersc.gov/users/software/programming-models/openmp/sc17-openmp/

git clone https://github.com/tgmattso/OpenMP_Exercises

22

Hints: the Parallel Pi program

• Use a parallel construct:

#pragma omp parallel

• The challenge is to:

– divide loop iterations between threads (use the thread ID and the

number of threads).

– Create an accumulator for each thread to hold partial sums that you

can later combine to generate the global sum.

• In addition to a parallel construct, you will need the runtime

library routines

– int omp_set_num_threads();

– int omp_get_num_threads();

– int omp_get_thread_num();

– double omp_get_wtime();

Results*

23

threads 1st

SPMD*

1 1.86

2 1.03

3 1.08

4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

*SPMD: Single Program Multiple Data

*Intel compiler (icpc) with default optimization level (O2) on Apple OS X 10.7.3 with a dual core

(four HW thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

24

SPMD: Single Program Mulitple Data

• Run the same program on P processing elements where P

can be arbitrarily large.

• Use P and the rank … an ID ranging from 0 to (P-1) … to

select between a set of tasks and to manage any shared

data structures.

This design pattern is very general and has been used to

support most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is

probably the most commonly used pattern in the history of

parallel programming.

25

Why such poor scaling? False sharing
• If independent data elements happen to sit on the same cache line, each

update will cause the cache lines to “slosh back and forth” between threads

… This is called “false sharing”.

• If you promote scalars to an array to support creation of an SPMD program,

the array elements are contiguous in memory and hence share cache lines

… Results in poor scalability.

• Solution: Pad arrays so elements you use are on distinct cache lines.

Sum[0] Sum[1] Sum[2] Sum[3] Sum[0] Sum[1] Sum[2] Sum[3]
Core 0 Core 1

L1 $ lines L1 $ lines

HW thrd. 0 HW thrd. 1 HW thrd. 2 HW thrd. 3

Shared last level cache and connection to I/O and DRAM

26

#include <omp.h>

static long num_steps = 100000; double step;

#define PAD 8 // assume 64 byte L1 cache line size

#define NUM_THREADS 2

void main ()

{ int i, nthreads; double pi, sum[NUM_THREADS][PAD];

step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{ int i, id,nthrds;

double x;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id == 0) nthreads = nthrds;

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {

x = (i+0.5)*step;

sum[id][0] += 4.0/(1.0+x*x);

}

}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i][0] * step;

}

Example: Eliminate false sharing by padding the sum array

Pad the array so

each sum value is

in a different

cache line

Results*: pi program padded accumulator

27

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD

1st

SPMD

padded

1 1.86 1.86

2 1.03 1.01

3 1.08 0.69

4 0.97 0.53

*Intel compiler (icpc) with default optimization level (O2) on Apple OS X 10.7.3 with a dual core

(four HW thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

Changing the Number of Threads

• Inside the OpenMP runtime is an Internal Control Variable (ICV) for the

default number of threads requested by a parallel construct.

• The system has an implementation defined value for that ICV

• When an OpenMP program starts up, it queries an environment variable

OMP_NUM_THREADS and sets the appropriate internal control variable to

the value of OMP_NUM_THREADS

– For example, to set the default number of threads on my apple laptop

 export OMP_NUM_THREADS=12

• The omp_set_num_threads() runtime function overrides the value from the

environment and resets the ICV to a new value.

• A clause on the parallel construct requests a number of threads for that

parallel region, but it does not change the ICV

– #pragma omp parallel num_threads(4)

28

29

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data environment

• Memory model

• Irregular Parallelism and tasks

• Recap

• Beyond the common core:

– Worksharing revisited

– Synchronization: More than you ever wanted to know

– Threadprivate data

– Thread affinity and data locality

30

Synchronization

• High level synchronization included in the common core
(the full OpenMP specification has MANY more):

–critical

–barrier

Synchronization is used to

impose order constraints and

to protect access to shared

data

31

Synchronization: critical

• Mutual exclusion: Only one thread at a time can enter a
critical region.

float res;

#pragma omp parallel

{ float B; int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for(i=id;i<niters;i+=nthrds){

B = big_job(i);

#pragma omp critical

res += consume (B);

}

}

Threads wait

their turn – only

one at a time

calls consume()

32

Synchronization: barrier
• Barrier: a point in a program all threads much reach before any threads are

allowed to proceed.

• It is a “stand alone” pragma meaning it is not associated with user code … it
is an executable statement.

double Arr[8], Brr[8]; int numthrds;

omp_set_num_threads(8)

#pragma omp parallel

{ int id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id==0) numthrds = nthrds;

Arr[id] = big_ugly_calc(id, nthrds);

#pragma omp barrier

Brr[id] = really_big_and_ugly(id, nthrds, Arr);

}

Threads

wait until all

threads hit

the barrier.

Then they

can go on.

33

Exercise
• In your first Pi program, you probably used an array to create

space for each thread to store its partial sum.

• If array elements happen to share a cache line, this leads to

false sharing.
– Non-shared data in the same cache line so each update invalidates the

cache line … in essence “sloshing independent data” back and forth

between threads.

• Modify your “pi program” to avoid false sharing due to the

partial sum array.
– #pragma omp critical

– #pragma omp parallel

– omp_set_num_threads()

– omp_get_num_threads()

– omp_get_thread_num()

– export OMP_NUM_THREADS=42

Pi program with false sharing*

34

threads 1st

SPMD

1 1.86

2 1.03

3 1.08

4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

Recall that promoting sum to an

array made the coding easy,

but led to false sharing and

poor performance.

*Intel compiler (icpc) with default optimization level (O2) on Apple OS X 10.7.3 with a dual core

(four HW thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

35

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

int i, id, nthrds; double x, sum;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id == 0) nthreads = nthrds;

for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {

x = (i+0.5)*step;

sum += 4.0/(1.0+x*x);

}

#pragma omp critical

pi += sum * step;

}

}

Example: Using a critical section to remove impact of false sharing

Sum goes “out of scope” beyond the parallel

region … so you must sum it in here. Must

protect summation into pi in a critical region so

updates don’t conflict

No array, so

no false

sharing.

Create a scalar local

to each thread to

accumulate partial

sums.

Results*: pi program critical section

36

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD

1st

SPMD

padded

SPMD

critical

1 1.86 1.86 1.87

2 1.03 1.01 1.00

3 1.08 0.69 0.68

4 0.97 0.53 0.53

*Intel compiler (icpc) with default optimization level (O2) on Apple OS X 10.7.3 with a dual core

(four HW thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

37

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

int i, id,nthrds; double x;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id == 0) nthreads = nthrds;

for (i=id, sum=0.0;i< num_steps; i=i+nthreads){

x = (i+0.5)*step;

#pragma omp critical

pi += 4.0/(1.0+x*x);

}

}

pi *= step;

}

Example: Using a critical section to remove impact of false sharing

What would happen if

you put the critical

section inside the

loop?

Be careful where

you put a critical

section

38

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data environment

• Memory model

• Irregular Parallelism and tasks

• Recap

• Beyond the common core:

– Worksharing revisited

– Synchronization: More than you ever wanted to know

– Threadprivate data

– Thread affinity and data locality

39

The loop worksharing constructs

• The loop worksharing construct splits up loop iterations
among the threads in a team

#pragma omp parallel

{

#pragma omp for

for (I=0;I<N;I++){

NEAT_STUFF(I);

}

}

Loop construct name:

•C/C++: for

•Fortran: do

The loop control index I is made

“private” to each thread by default.

Threads wait here until all

threads are finished with the

parallel loop before any proceed

past the end of the loop

40

Loop worksharing constructs
A motivating example

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel

{

int id, i, Nthrds, istart, iend;

id = omp_get_thread_num();

Nthrds = omp_get_num_threads();

istart = id * N / Nthrds;

iend = (id+1) * N / Nthrds;

if (id == Nthrds-1)iend = N;

for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel

#pragma omp for

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel

region

OpenMP parallel

region and a

worksharing for

construct

41

Loop worksharing constructs:
The schedule clause

• The schedule clause affects how loop iterations are mapped onto threads

– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.

– schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations have
been handled.

Schedule Clause When To Use

STATIC Pre-determined and
predictable by the
programmer

DYNAMIC Unpredictable, highly
variable work per
iteration

Least work at

runtime :

scheduling done

at compile-time

Most work at

runtime :

complex

scheduling logic

used at run-time

42

Combined parallel/worksharing construct

• OpenMP shortcut: Put the “parallel” and the
worksharing directive on the same line

double res[MAX]; int i;

#pragma omp parallel

{

#pragma omp for

for (i=0;i< MAX; i++) {

res[i] = huge();

}

}

These are equivalent

double res[MAX]; int i;

#pragma omp parallel for

for (i=0;i< MAX; i++) {

res[i] = huge();

}

43

Working with loops

• Basic approach

– Find compute intensive loops

– Make the loop iterations independent ... So they can safely execute in

any order without loop-carried dependencies

– Place the appropriate OpenMP directive and test

int i, j, A[MAX];

j = 5;

for (i=0;i< MAX; i++) {

j +=2;

A[i] = big(j);

}

int i, A[MAX];

#pragma omp parallel for

for (i=0;i< MAX; i++) {

int j = 5 + 2*(i+1);

A[i] = big(j);

}
Remove loop

carried

dependence

Note: loop index

“i” is private by

default

44

Reduction

• We are combining values into a single accumulation variable (ave) …
there is a true dependence between loop iterations that can’t be trivially
removed

• This is a very common situation … it is called a “reduction”.

• Support for reduction operations is included in most parallel programming
environments.

double ave=0.0, A[MAX]; int i;

for (i=0;i< MAX; i++) {

ave + = A[i];

}

ave = ave/MAX;

 How do we handle this case?

45

Reduction
• OpenMP reduction clause:

reduction (op : list)

• Inside a parallel or a work-sharing construct:

– A local copy of each list variable is made and initialized depending

on the “op” (e.g. 0 for “+”).

– Updates occur on the local copy.

– Local copies are reduced into a single value and combined with

the original global value.

• The variables in “list” must be shared in the enclosing

parallel region.

double ave=0.0, A[MAX]; int i;

#pragma omp parallel for reduction (+:ave)

for (i=0;i< MAX; i++) {

ave + = A[i];

}

ave = ave/MAX;

46

OpenMP: Reduction operands/initial-values

• Many different associative operands can be used with reduction:

• Initial values are the ones that make sense mathematically.

Operator Initial value

+ 0

* 1

- 0

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value

& ~0

| 0

^ 0

&& 1

|| 0

Fortran Only

Operator Initial value

.AND. .true.

.OR. .false.

.NEQV. .false.

.IEOR. 0

.IOR. 0

.IAND. All bits on

.EQV. .true.

47

Exercise: Pi with loops and a reduction

• Go back to the serial pi program and parallelize it with a loop

construct

• Your goal is to minimize the number of changes made to the

serial program.

#pragma omp parallel

#pragma omp for

#pragma omp parallel for

#pragma omp for reduction(op:list)

#pragma omp critical

int omp_get_num_threads();

int omp_get_thread_num();

double omp_get_wtime();

Remember: OpenMP makes the loop control index in a loop workshare construct

private for you … you don’t need to do this yourself

48

Example: Pi with a loop and a reduction

#include <omp.h>

static long num_steps = 100000; double step;

void main ()

{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

#pragma omp parallel

{

double x;

#pragma omp for reduction(+:sum)

for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

}

pi = step * sum;

}

Create a scalar local to each thread to hold

value of x at the center of each interval

Create a team of threads …

without a parallel construct, you’ll

never have more than one thread

Break up loop iterations

and assign them to

threads … setting up a

reduction into sum.

Note … the loop index is

local to a thread by default.

Results*: pi with a loop and a reduction

49

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD

1st

SPMD

padded

SPMD

critical

PI Loop

and

reduction

1 1.86 1.86 1.87 1.91

2 1.03 1.01 1.00 1.02

3 1.08 0.69 0.68 0.80

4 0.97 0.53 0.53 0.68

*Intel compiler (icpc) with default optimization level (O2) on Apple OS X 10.7.3 with a dual core

(four HW thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

50

The nowait clause

• Barriers are really expensive. You need to understand when
they are implied and how to skip them when its safe to do so.

double A[big], B[big], C[big];

#pragma omp parallel

{

int id=omp_get_thread_num();

A[id] = big_calc1(id);

#pragma omp barrier

#pragma omp for

for(i=0;i<N;i++){C[i]=big_calc3(i,A);}

#pragma omp for nowait

for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }

A[id] = big_calc4(id);

}
implicit barrier at the end

of a parallel region

implicit barrier at the end of a for

worksharing construct

no implicit barrier

due to nowait

51

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data environment

• Memory model

• Irregular Parallelism and tasks

• Recap

• Beyond the common core:

– Worksharing revisited

– Synchronization: More than you ever wanted to know

– Thread private data

– Thread affinity and data locality

52

Data environment:
Default storage attributes

• Shared memory programming model:
–Most variables are shared by default

• Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE variables

– C: File scope variables, static

– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called

from parallel regions are PRIVATE

– Automatic variables within a statement block are PRIVATE.

53

double A[10];

int main() {

int index[10];

#pragma omp parallel

work(index);

printf(“%d\n”, index[0]);

}

extern double A[10];

void work(int *index) {

double temp[10];

static int count;

...

}

Data sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are

shared by all threads.

temp is local to each

thread

54

Data sharing:
Changing storage attributes

• One can selectively change storage attributes for constructs
using the following clauses* (note: list is a comma-separated list of variables)

–shared(list)

–private(list)

– firstprivate(list)

• These can be used on parallel and for constructs … other

than shared which can only be used on a parallel construct

• Force the programmer to explicitly define storage attributes

–default (none)

These clauses apply to

the OpenMP construct

NOT to the entire region.

default() can be used on

parallel constructs

55

Data sharing: Private clause

void wrong() {

int tmp = 0;

#pragma omp parallel for private(tmp)

for (int j = 0; j < 1000; ++j)

tmp += j;

printf(“%d\n”, tmp);

}

• private(var) creates a new local copy of var for each thread.

– The value of the private copies is uninitialized

– The value of the original variable is unchanged after the region

tmp was not

initialized

tmp is 0 here

When you need

to reference the

variable tmp that

exists prior to the

construct, we call

it the original

variable.

56

Data sharing: Private clause
When is the original variable valid?

int tmp;

void danger() {

tmp = 0;

#pragma omp parallel private(tmp)

work();

printf(“%d\n”, tmp);

}

• The original variable’s value is unspecified if it is referenced
outside of the construct

– Implementations may reference the original variable or a copy ….. a

dangerous programming practice!

– For example, consider what would happen if the compiler inlined work()?

extern int tmp;

void work() {

tmp = 5;

}

unspecified which

copy of tmptmp has unspecified value

Firstprivate clause

• Variables initialized from a shared variable

• C++ objects are copy-constructed

57

incr = 0;

#pragma omp parallel for firstprivate(incr)

for (i = 0; i <= MAX; i++) {

if ((i%2)==0) incr++;

A[i] = incr;

}

Each thread gets its own copy of

incr with an initial value of 0

58

Data sharing:
A data environment test

• Consider this example of PRIVATE and FIRSTPRIVATE

• Are A,B,C private to each thread or shared inside the parallel region?

• What are their initial values inside and values after the parallel region?

variables: A = 1,B = 1, C = 1

#pragma omp parallel private(B) firstprivate(C)

Inside this parallel region ...

 “A” is shared by all threads; equals 1

 “B” and “C” are private to each thread.

– B’s initial value is undefined

– C’s initial value equals 1

Following the parallel region ...

 B and C revert to their original values of 1

 A is either 1 or the value it was set to inside the parallel region

59

Data sharing: Default clause
• default(none): Forces you to define the storage attributes for

variables that appear inside the static extent of the construct … if you fail
the compiler will complain. Good programming practice!

• You can put the default clause on parallel and parallel + workshare
constructs.

The full OpenMP specification has other versions of the default clause, but they

are not used very often so we skip them in the common core

#include <omp.h>

int main()

{

int i, j=5; double x=1.0, y=42.0;

#pragma omp parallel for default(none) reduction(*:x)

for (i=0;i<N;i++){

for(j=0; j<3; j++)

x+= foobar(i, j, y);

}

printf(“ x is %f\n”,(float)x);

}

The static

extent is the

code in the

compilation unit

that contains

the construct.

The compiler would

complain about j and y,

which is important since

you don’t want j to be

shared

Mandelbrot Set

60

For each point c in the complex plane,

is z = z*z + c bounded?

Black is inside set. Other colors indicate how quickly it crossed threshold.

61

Exercise: Mandelbrot set area

• The supplied program (mandel.c) computes the area of a

Mandelbrot set.

• The program has been parallelized with OpenMP, but we

were lazy and didn’t do it right.

• Find and fix the errors (hint … the problem is with the data
environment).

• Once you have a working version, try to optimize the
program.
– Try different schedules on the parallel loop.

– Try different mechanisms to support mutual exclusion … do the
efficiencies change?

The Mandelbrot area program
#include <omp.h>

define NPOINTS 1000

define MXITR 1000

struct d_complex{

double r; double i;

};

void testpoint(struct d_complex);

struct d_complex c;

int numoutside = 0;

int main(){

int i, j;

double area, error, eps = 1.0e-5;

#pragma omp parallel for default(shared) private(c, j) \

firstprivate(eps)

for (i=0; i<NPOINTS; i++) {

for (j=0; j<NPOINTS; j++) {

c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;

c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;

testpoint(c);

}

}

area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-

numoutside)/(double)(NPOINTS*NPOINTS);

error=area/(double)NPOINTS;

} 62

void testpoint(struct d_complex c){

struct d_complex z;

int iter;

double temp;

z=c;

for (iter=0; iter<MXITR; iter++){

temp = (z.r*z.r)-(z.i*z.i)+c.r;

z.i = z.r*z.i*2+c.i;

z.r = temp;

if ((z.r*z.r+z.i*z.i)>4.0) {

#pragma omp critical

numoutside++;

break;

}

}

}

• eps was not initialized

• Protect updates of numoutside

• Which value of c does testpoint()

see? Global or private?

63

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data environment

• Memory model

• Irregular Parallelism and tasks

• Recap

• Beyond the common core:

– Worksharing revisited

– Synchronization: More than you ever wanted to know

– Thread private data

– Thread affinity and data locality

64

OpenMP memory model

 Multiple copies of data may be present in memory, various levels of cache, or in
registers

 OpenMP supports a shared memory model

 All threads share an address space, but it can get complicated:

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

a

a

. . .

a

65

OpenMP and relaxed consistency

• OpenMP supports a relaxed-consistency

shared memory model

– Threads can maintain a temporary view of shared memory

that is not consistent with that of other threads

– These temporary views are made consistent only at certain

points in the program

– The operation that enforces consistency is called the flush operation

66

Flush operation

• A flush is a sequence point at which a thread is guaranteed

to see a consistent view of memory

– All previous read/writes by this thread have completed and are visible

to other threads

– No subsequent read/writes by this thread have occurred

• A flush operation is analogous to a fence in other shared

memory APIs

67

Flush and synchronization

• A flush operation is implied by OpenMP synchronizations, e.g.,

– at entry/exit of parallel regions

– at implicit and explicit barriers

– at entry/exit of critical regions

….

(but not at entry to worksharing regions)

This means if you are mixing reads and writes of a variable across multiple

threads, you cannot assume the reading threads see the results of the writes

unless:

• the writing threads follow the writes with a construct that implies a flush.

• the reading threads precede the reads with a construct that implies a flush.

This is a rare event … or putting this another way, you should avoid writing

code that depends on ordering reads/writes around flushes.

68

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data environment

• Memory model

• Irregular Parallelism and tasks

• Recap

• Beyond the common core:

– Worksharing revisited

– Synchronization: More than you ever wanted to know

– Thread private data

– Thread affinity and data locality

What are tasks?

• Tasks are independent units of work

• Tasks are composed of:

– code to execute

– data to compute with

• Threads are assigned to perform the

work of each task.

– The thread that encounters the task construct

may execute the task immediately.

– The threads may defer execution until later Serial Parallel

69

What are tasks?

• The task construct includes a structured

block of code

• Inside a parallel region, a thread

encountering a task construct will

package up the code block and its data

for execution

• Tasks can be nested: i.e. a task may

itself generate tasks.
Serial Parallel

A common Pattern is to have one thread create the tasks while the

other threads wait at a barrier and execute the tasks

70

71

Single worksharing Construct

• The single construct denotes a block of code that is
executed by only one thread (not necessarily the master
thread).

• A barrier is implied at the end of the single block (can
remove the barrier with a nowait clause).

#pragma omp parallel

{

do_many_things();

#pragma omp single

{ exchange_boundaries(); }

do_many_other_things();

}

Task Directive

#pragma omp parallel

{

#pragma omp single

{

#pragma omp task

fred();

#pragma omp task

daisy();

#pragma omp task

billy();

}

}

One Thread

packages tasks

Create some threads

Tasks executed by

some thread in some

order

All tasks complete before this barrier is released

#pragma omp task [clauses]

structured-block

Exercise: Simple tasks
• Write a program using tasks that will “randomly” generate one of two

strings:

– I think race cars are fun

– I think car races are fun

• Hint: use tasks to print the indeterminate part of the output (i.e. the “race”

or “car” parts).

• This is called a “Race Condition”. It occurs when the result of a program

depends on how the OS schedules the threads.

• NOTE: A “data race” is when threads “race to update a shared variable”.

They produce race conditions. Programs containing data races are

undefined (in OpenMP but also ANSI standards C++’11 and beyond).

#pragma omp parallel

#pragma omp task

#pragma omp single
73

Racey cars: solution

#include <stdio.h>

#include <omp.h>

int main()

{ printf("I think");

#pragma omp parallel

{

#pragma omp single

{

#pragma omp task

printf(" car");

#pragma omp task

printf(" race");

}

}

printf("s");

printf(" are fun!\n");

} 74

75

When/where are tasks complete?

• At thread barriers (explicit or implicit)

– applies to all tasks generated in the current parallel region up to the

barrier

• At taskwait directive

– i.e. Wait until all tasks defined in the current task have completed.

#pragma omp taskwait

– Note: applies only to tasks generated in the current task, not to

“descendants” .

Example

76

#pragma omp parallel

{

#pragma omp single

{

#pragma omp task

fred();

#pragma omp task

daisy();

#pragma taskwait

#pragma omp task

billy();

}

}

fred() and daisy()

must complete before
billy() starts

77

Linked list traversal

• Classic linked list traversal

• Do some work on each item in the list

• Assume that items can be processed independently

• Cannot use an OpenMP loop directive

p = listhead ;

while (p) {

process(p);

p=next(p) ;

}

78

Parallel linked list traversal

#pragma omp parallel

{

#pragma omp single

{

p = listhead ;

while (p) {

#pragma omp task firstprivate(p)

{

process (p);

}

p=next (p) ;

}

}

}

makes a copy of p

when the task is

packaged

Only one thread

packages tasks

Data scoping with tasks

• Variables can be shared, private or firstprivate with respect to

task

• These concepts are a little bit different compared with

threads:

– If a variable is shared on a task construct, the references to it inside

the construct are to the storage with that name at the point where the

task was encountered

– If a variable is private on a task construct, the references to it inside

the construct are to new uninitialized storage that is created when the

task is executed

– If a variable is firstprivate on a construct, the references to it inside the

construct are to new storage that is created and initialized with the

value of the existing storage of that name when the task is

encountered

79

80

Data scoping defaults

• The behavior you want for tasks is usually firstprivate, because the task

may not be executed until later (and variables may have gone out of

scope)

– Variables that are private when the task construct is encountered are firstprivate by

default

• Variables that are shared in all constructs starting from the innermost

enclosing parallel construct are shared by default

#pragma omp parallel shared(A) private(B)

{

...

#pragma omp task

{

int C;

compute(A, B, C);

}

}

A is shared

B is firstprivate

C is private

Example: Fibonacci numbers

• Fn = Fn-1 + Fn-2

• Inefficient O(n2) recursive

implementation!

int fib (int n)

{

int x,y;

if (n < 2) return n;

x = fib(n-1);

y = fib (n-2);

return (x+y);

}

Int main()

{

int NW = 5000;

fib(NW);

}
81

Parallel Fibonacci

82

• Binary tree of tasks

• Traversed using a recursive

function

• A task cannot complete until all

tasks below it in the tree are

complete (enforced with taskwait)

• x,y are local, and so by default

they are private to current task

– must be shared on child tasks so they

don’t create their own firstprivate

copies at this level!

int fib (int n)

{ int x,y;

if (n < 2) return n;

#pragma omp task shared(x)

x = fib(n-1);

#pragma omp task shared(y)

y = fib (n-2);

#pragma omp taskwait

return (x+y);

}

Int main()

{ int NW = 5000;

#pragma omp parallel

{

#pragma omp single

fib(NW);

}

}

Divide and conquer

• Split the problem into smaller sub-problems; continue until
the sub-problems can be solve directly

 3 Options:

 Do work as you split

into sub-problems

 Do work only at the

leaves

 Do work as you

recombine

83

84

Exercise: Pi with tasks

• Consider the program Pi_recur.c. This program uses a

recursive algorithm in integrate the function in the pi program.

– Parallelize this program using OpenMP tasks

#pragma omp parallel

#pragma omp task

#pragma omp taskwait

#pragma omp single

double omp_get_wtime()

int omp_get_thread_num();

int omp_get_num_threads();

Program: OpenMP tasks
#include <omp.h>

static long num_steps = 100000000;

#define MIN_BLK 10000000

double pi_comp(int Nstart,int Nfinish,double step)

{ int i,iblk;

double x, sum = 0.0,sum1, sum2;

if (Nfinish-Nstart < MIN_BLK){

for (i=Nstart;i< Nfinish; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

}

else{

iblk = Nfinish-Nstart;

#pragma omp task shared(sum1)

sum1 = pi_comp(Nstart, Nfinish-iblk/2,step);

#pragma omp task shared(sum2)

sum2 = pi_comp(Nfinish-iblk/2, Nfinish, step);

#pragma omp taskwait

sum = sum1 + sum2;

}return sum;

} 85

int main ()

{

int i;

double step, pi, sum;

step = 1.0/(double) num_steps;

#pragma omp parallel

{

#pragma omp single

sum =

pi_comp(0,num_steps,step);

}

pi = step * sum;

}

Results*: pi with tasks

86

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st SPMD SPMD

critical

PI Loop Pi tasks

1 1.86 1.87 1.91 1.87

2 1.03 1.00 1.02 1.00

3 1.08 0.68 0.80 0.76

4 0.97 0.53 0.68 0.52

*Intel compiler (icpc) with default optimization level (O2) on Apple OS X 10.7.3 with a dual core

(four HW thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

87

Using tasks

• Don’t use tasks for things already well supported by

OpenMP

–e.g. standard do/for loops

– the overhead of using tasks is greater

• Don’t expect miracles from the runtime

–best results usually obtained where the user controls the

number and granularity of tasks

88

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data environment

• Memory model

• Irregular Parallelism and tasks

• Recap

• Beyond the common core:

– Worksharing revisited

– Synchronization: More than you ever wanted to know

– Thread private data

– Thread affinity and data locality

OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved

execution across threads

int omp_get_thread_num()

int omp_get_num_threads()

Create threads with a parallel region and split up the work using

the number of threads and thread ID

double omp_get_wtime() Speedup and Amdahl's law.

False Sharing and other performance issues

setenv OMP_NUM_THREADS N Internal control variables. Setting the default number of threads

with an environment variable

#pragma omp barrier

#pragma omp critical

Synchronization and race conditions. Revisit interleaved

execution.

#pragma omp for

#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies

reduction(op:list) Reductions of values across a team of threads

schedule(dynamic [,chunk])

schedule (static [,chunk])

Loop schedules, loop overheads and load balance

private(list), firstprivate(list), shared(list) Data environment

nowait Disabling implied barriers on workshare constructs, the high cost of

barriers, and the flush concept (but not the flush directive)

#pragma omp single Workshare with a single thread

#pragma omp task

#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 19 items

89

There is much more to OpenMP than the

Common Core.

• Synchronization mechanisms

– locks, flush and several forms of atomic

• Data environment

– lastprivate, threadprivate, default(private|shared)

• Fine grained task control

– dependencies, tied vs. untied tasks, task groups, task loops …

• Vectorization constructs

– simd, uniform, simdlen, inbranch vs. nobranch, ….

• Map work onto an attached device

– target, teams distribute parallel for, target data …

• … and much more. The OpenMP 4.5 specification is over

350 pages!!!

90

Don’t become overwhelmed. Master the common core and move on to other

constructs when you encounter problems that require them.

91

OpenMP organizations

• OpenMP architecture review board URL, the

“owner” of the OpenMP specification:

www.openmp.org

• OpenMP User’s Group (cOMPunity) URL:

www.compunity.org

Get involved, join the ARB and cOMPunity

and help define the future of OpenMP

92

Books about OpenMP

• A book about OpenMP by a

team of authors at the forefront

of OpenMP’s evolution.

 A book about how to “think
parallel” with examples in
OpenMP, MPI and java

Resources:

93

A great new book that

covers OpenMP

features beyond

OpenMP 2.5

Visit the OpenMP booth and enter a drawing for a chance to win a copy of the book.

Drawing Tues and Wed @ 4:30, Thurs @ 2:00. You must be present to win.

Background references

94

A great book that explores key

patterns with Cilk, TBB,

OpenCL, and OpenMP (by

McCool, Robison, and Reinders)

An excellent introduction and

overview of multithreaded

programming in general (by Clay

Breshears)

Please tell our SC tutorial overlords how

amazingly GREAT this tutorial is!!!!

95

Evaluation site URL: http://bit.ly/sc17-eval

Online feedback forms available through the following URL or QR code

http://bit.ly/sc17-eval

96

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data environment

• Memory model

• Irregular Parallelism and tasks

• Recap

• Beyond the common core:

– Worksharing revisited

– Synchronization: More than you ever wanted to know

– Thread private data

– Thread affinity and data locality

97

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data environment

• Memory model

• Irregular Parallelism and tasks

• Recap

• Beyond the common core:

– Worksharing revisited

– Synchronization: More than you ever wanted to know

– Thread private data

– Thread affinity and data locality

98

The loop worksharing constructs

• The loop worksharing construct splits up loop iterations
among the threads in a team

#pragma omp parallel

{

#pragma omp for

for (I=0;I<N;I++){

NEAT_STUFF(I);

}

}

Loop construct name:

•C/C++: for

•Fortran: do

The variable I is made “private” to each

thread by default. You could do this

explicitly with a “private(I)” clause

99

Loop worksharing constructs:
The schedule clause

• The schedule clause affects how loop iterations are mapped onto threads

– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.

– schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations have
been handled.

– schedule(guided[,chunk])

– Threads dynamically grab blocks of iterations. The size of the block starts
large and shrinks down to size “chunk” as the calculation proceeds.

– schedule(runtime)

– Schedule and chunk size taken from the OMP_SCHEDULE environment
variable (or the runtime library).

– schedule(auto)

– Schedule is left up to the runtime to choose (does not have to be any of the
above).

OpenMP 4.5 added modifiers monotonic, nonmontonic and simd.

100

Schedule Clause When To Use

STATIC Pre-determined and
predictable by the
programmer

DYNAMIC Unpredictable, highly
variable work per
iteration

GUIDED Special case of dynamic
to reduce scheduling
overhead

AUTO When the runtime can
“learn” from previous
executions of the same
loop

loop work-sharing constructs:
The schedule clause

Least work at

runtime :

scheduling done

at compile-time

Most work at

runtime :

complex

scheduling logic

used at run-time

#pragma omp parallel for collapse(2)

for (int i=0; i<N; i++) {

for (int j=0; j<M; j++) {

.....

}

}

101

Nested loops

• Will form a single loop of length NxM and then parallelize

that.

• Useful if N is O(no. of threads) so parallelizing the outer loop

makes balancing the load difficult.

Number of loops

to be

parallelized,

counting from

the outside

 For perfectly nested rectangular loops we can parallelize
multiple loops in the nest with the collapse clause:

101

102

Sections worksharing Construct

• The Sections worksharing construct gives a different
structured block to each thread.

#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

X_calculation();

#pragma omp section

y_calculation();

#pragma omp section

z_calculation();

}

}

By default, there is a barrier at the end of the “omp sections”.

Use the “nowait” clause to turn off the barrier.

Array sections with reduce

#include <stdio.h>

#define N 100

void init(int n, float (*b)[N]);

int main(){

int i,j; float a[N], b[N][N]; init(N,b);

for(i=0; i<N; i++) a[i]=0.0e0;

#pragma omp parallel for reduction(+:a[0:N]) private(j)

for(i=0; i<N; i++){

for(j=0; j<N; j++){

a[j] += b[i][j];

}

}

printf(" a[0] a[N-1]: %f %f\n", a[0], a[N-1]);

return 0;

103

Works the same as any

other reduce … a private

array is formed for each

thread, element wise

combination across

threads and then with

original array at the end

104

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data environment

• Memory model

• Irregular Parallelism and tasks

• Recap

• Beyond the common core:

– Worksharing revisited

– Synchronization: More than you ever wanted to know

– Thread private data

– Thread affinity and data locality

105

Synchronization

• High level synchronization:

–critical

–barrier

–atomic

–ordered

• Low level synchronization

– flush

– locks (both simple and nested)

Synchronization is used to

impose order constraints and

to protect access to shared

data

Covered earlier

106

Synchronization: atomic

• Atomic provides mutual exclusion but only applies to the update
of a memory location (the update of X in the following example)

#pragma omp parallel

{

double tmp, B;

B = DOIT();

#pragma omp atomic

X += big_ugly(B);

}

#pragma omp parallel

{

double B;

B = DOIT();

#pragma omp atomic

X += big_ugly(B);

}

107

Synchronization: atomic

• Atomic provides mutual exclusion but only applies to the update
of a memory location (the update of X in the following example)

#pragma omp parallel

{

double B, tmp;

B = DOIT();

tmp = big_ugly(B);

#pragma omp atomic

X += tmp;

}

Atomic only protects the

read/update of X

Additional forms of atomic were added in 3.1 (discussed later)

108

Exercise

• In your first Pi program, you probably used an array to create

space for each thread to store its partial sum.

• You fixed this by using a critical section instead of updating

the array (remember .. the array you created by promoting

the scalar “sum” to an array).

• Use and atomic instead. Does the performance improve?

Parallel loop with ordered region

• An ordered clause on a loop worksharing construct

– indicates that the loop contains an ordered region

• The ordered construct defines an ordered region

– The Statements in ordered region execute in iteration order

#pragma omp for ordered
for (i=0; i<N; i++) {

float res = work(i);
#pragma omp ordered
{

printf("result for %d was %f\n", i, res);
fflush(stdout);

}
}

109

Parallelizing nested loops

• Pattern of dependencies between elements of x prevent

straightforward parallelization

• is there a way to manage the synchronization so we can

parallelize this loop?

#pragma omp parallel for collapse(2)
for (r=1; r<N; r++) {

for (c=1; c<N; c++) {

x[r][c] += fn(x[r-1][c], x[r][c-1]);

}
}

110

• Will these nested parallel loops execute correctly?

x[r][c]

x[r-1][c]

x[r][c-1]

An array section of x

Ordered stand-alone directive
• Specifies cross-iteration dependencies in a doacross loop nest

… i.e. loop level parallelism over nested loops with a regular

pattern of synchronization to manage dependencies.

111

#pragma omp ordered depend(sink : vec)

#pragma omp ordered depend(source)

• Depend clauses specify the order the threads execute

ordered regions.

– The sink dependence-type

– specifies a cross-iteration dependence, where the iteration vector vec

indicates the iteration that satisfies the dependence.

– The source dependence-type

– specifies the cross-iteration dependences that arise from the current

iteration.

vec is a comma

separated list of

decencies …

one per loop

involved in the

dependencies

Parallelizing DOACROSS loops

#pragma omp for ordered(2) collapse(2)
for (r=1; r<N; r++) {

for (c=1; c<N; c++) {
// other parallel work ...
#pragma omp ordered depend(sink:r-1,c) \

depend(sink:r,c-1)
x[r][c] += fn(x[r-1][c], x[r][c-1]);

#pragma omp ordered depend(source)
}

}

112

x[r][c] is complete and

released for use by

other threads

Threads wait here until x[r-1][c]

and x[r][c-1] have been

released

2 loops contribute to the pattern

of dependencies … so the

dependency relations for each

depend(sink) is of length 2

113

OpenMP memory model
 OpenMP supports a shared memory model

 All threads share an address space, where variable can be stored or
retrieved:

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

 Threads maintain their own temporary view of memory as well … the
details of which are not defined in OpenMP but this temporary view
typically resides in caches, registers, write-buffers, etc.

a

a

. . .

114

Flush operation

• Defines a sequence point at which a thread enforces a

consistent view of memory.

• For variables visible to other threads and associated with the

flush operation (the flush-set)

– The compiler can’t move loads/stores of the flush-set around a flush:

– All previous read/writes of the flush-set by this thread have completed

– No subsequent read/writes of the flush-set by this thread have occurred

– Variables in the flush set are moved from temporary storage to shared

memory.

– Reads of variables in the flush set following the flush are loaded from

shared memory.

IMPORTANT POINT: The flush makes the calling threads temporary view match the

view in shared memory. Flush by itself does not force synchronization.

115

Memory consistency: flush example

 Flush forces data to be updated in memory so other threads see the most
recent value

double A;

A = compute();

#pragma omp flush(A)

// flush to memory to make sure other

// threads can pick up the right value

Note: OpenMP’s flush is analogous to a fence in other shared memory APIs

Flush without a list: flush set is all

thread visible variables

Flush with a list: flush set is the list of

variables

116

Flush and synchronization

• A flush operation is implied by OpenMP synchronizations, e.g.,

– at entry/exit of parallel regions

– at implicit and explicit barriers

– at entry/exit of critical regions

– whenever a lock is set or unset

….

(but not at entry to worksharing regions or entry/exit of master regions)

117

Example: prod_cons.c

int main()
{
double *A, sum, runtime; int flag = 0;

A = (double *) malloc(N*sizeof(double));

runtime = omp_get_wtime();

fill_rand(N, A); // Producer: fill an array of data

sum = Sum_array(N, A); // Consumer: sum the array

runtime = omp_get_wtime() - runtime;

printf(" In %lf secs, The sum is %lf \n",runtime,sum);
}

• Parallelize a producer/consumer program

– One thread produces values that another thread consumes.

– The key is to

implement

pairwise

synchronization

between threads

– Often used with a

stream of

produced values

to implement

“pipeline

parallelism”

118

Pairwise synchronization in OpenMP

• OpenMP lacks synchronization constructs that work between

pairs of threads.

• When needed, you have to build it yourself.

• Pairwise synchronization

– Use a shared flag variable

– Reader spins waiting for the new flag value

– Use flushes to force updates to and from memory

119

Exercise: Producer/consumer
int main()
{

double *A, sum, runtime; int numthreads, flag = 0;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{

fill_rand(N, A);

flag = 1;

}
#pragma omp section
{

while (flag == 0){

}

sum = Sum_array(N, A);
}

}
}

Put the flushes in the right places to

make this program race-free.

Do you need any other

synchronization constructs to make

this work?

120

Solution (try 1): Producer/consumer
int main()
{

double *A, sum, runtime; int numthreads, flag = 0;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{

fill_rand(N, A);
#pragma omp flush
flag = 1;
#pragma omp flush (flag)

}
#pragma omp section
{

#pragma omp flush (flag)
while (flag == 0){

#pragma omp flush (flag)
}
#pragma omp flush
sum = Sum_array(N, A);

}
}

}

Use flag to Signal when the

“produced” value is ready

Flush forces refresh to memory;

guarantees that the other thread

sees the new value of A

Notice you must put the flush inside the

while loop to make sure the updated flag

variable is seen

Flush needed on both “reader” and “writer”

sides of the communication

This program works with the x86 memory model (loads and stores use relaxed

atomics), but it technically has a race … on the store and later load of flag

The OpenMP 3.1 atomics (1 of 2)

• Atomic was expanded to cover the full range of common scenarios

where you need to protect a memory operation so it occurs atomically:

pragma omp atomic [read | write | update | capture]

121

• Atomic can protect loads

pragma omp atomic read

v = x;

• Atomic can protect stores

pragma omp atomic write

x = expr;

• Atomic can protect updates to a storage location (this is the default

behavior … i.e. when you don’t provide a clause)

pragma omp atomic update

x++; or ++x; or x--; or –x; or

x binop= expr; or x = x binop expr;

This is the

original OpenMP

atomic

The OpenMP 3.1 atomics (2 of 2)
• Atomic can protect the assignment of a value (its capture) AND an

associated update operation:

pragma omp atomic capture

statement or structured block

122

• Where the statement is one of the following forms:

v = x++; v = ++x; v = x--; v = –x; v = x binop expr;

• Where the structured block is one of the following forms:

{v = x; x binop = expr;} {x binop = expr; v = x;}

{v=x; x=x binop expr;} {X = x binop expr; v = x;}

{v = x; x++;} {v=x; ++x:}

{++x; v=x:} {x++; v = x;}

{v = x; x--;} {v= x; --x;}

{--x; v = x;} {x--; v = x;}

The capture semantics in atomic were added to map onto common hardware

supported atomic operations and to support modern lock free algorithms

Atomics and synchronization flags

123

int main()
{ double *A, sum, runtime;

int numthreads, flag = 0, flg_tmp;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{ fill_rand(N, A);

#pragma omp flush
#pragma omp atomic write

flag = 1;
#pragma omp flush (flag)

}
#pragma omp section
{ while (1){

#pragma omp flush(flag)
#pragma omp atomic read

flg_tmp= flag;
if (flg_tmp==1) break;

}
#pragma omp flush
sum = Sum_array(N, A);

}
}

}

This program is truly race

free … the reads and

writes of flag are

protected so the two

threads cannot conflict

Still painful and error

prone due to all of the

flushes that are required

OpenMP 4.0 Atomic: Sequential consistency

• Sequential consistency:

– The order of loads and stores in a race-free program appear in some

interleaved order and all threads in the team see this same order.

• OpenMP 4.0 added an optional clause to atomics

– #pragma omp atomic [read | write | update | capture] [seq_cst]

• In more pragmatic terms:

– If the seq_cst clause is included, OpenMP adds a flush without an

argument list to the atomic operation so you don’t need to.

• In terms of the C++’11 memory model:

– Use of the seq_cst clause makes atomics follow the sequentially

consistent memory order.

– Leaving off the seq_cst clause makes the atomics relaxed.

124

4.0

Advice to programmers: save yourself a world of hurt … let OpenMP take

care of your flushes for you whenever possible … use seq_cst

Atomics and synchronization flags (4.0)

125

int main()
{ double *A, sum, runtime;

int numthreads, flag = 0, flg_tmp;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{ fill_rand(N, A);

#pragma omp atomic write seq_cst
flag = 1;

}
#pragma omp section
{ while (1){

#pragma omp atomic read seq_cst
flg_tmp= flag;

if (flg_tmp==1) break;
}

sum = Sum_array(N, A);
}

}
}

This program is truly race

free … the reads and

writes of flag are protected

so the two threads cannot

conflict – and you do not

use any explicit flush

constructs (OpenMP does

them for you)

126

Synchronization: Lock routines

• Simple Lock routines:

–A simple lock is available if it is unset.

–omp_init_lock(), omp_set_lock(),
omp_unset_lock(), omp_test_lock(), omp_destroy_lock()

• Nested Locks

–A nested lock is available if it is unset or if it is set but owned by
the thread executing the nested lock function

–omp_init_nest_lock(), omp_set_nest_lock(),
omp_unset_nest_lock(), omp_test_nest_lock(),
omp_destroy_nest_lock()

Note: a thread always accesses the most recent copy of the lock,

so you don’t need to use a flush on the lock variable.

A lock implies a

memory fence (a

“flush”) of all thread

visible variables

Locks with hints were added in OpenMP 4.5 to suggest a lock strategy based on

intended use (e.g. contended, unconteded, speculative,, unspeculative)

127

Synchronization: Simple locks
• Example: conflicts are rare, but to play it safe, we must assure mutual

exclusion for updates to histogram elements.

#pragma omp parallel for

for(i=0;i<NBUCKETS; i++){

omp_init_lock(&hist_locks[i]); hist[i] = 0;

}

#pragma omp parallel for

for(i=0;i<NVALS;i++){

ival = (int) sample(arr[i]);

omp_set_lock(&hist_locks[ival]);

hist[ival]++;

omp_unset_lock(&hist_locks[ival]);

}

for(i=0;i<NBUCKETS; i++)

omp_destroy_lock(&hist_locks[i]);
Free-up storage when done.

One lock per element of hist

Enforce mutual

exclusion on update

to hist array

128

Lock Example from Gafort (SpecOMP’2001)

• Genetic algorithm in Fortran

• Most “interesting” loop: shuffle the population.
– Original loop is not parallel; performs pair-wise swap of an array

element with another, randomly selected element. There are 40,000

elements.

– Parallelization idea:

– Perform the swaps in parallel

– Need to prevent simultaneous access to same array element: use one

lock per array element 40,000 locks.

129

!$OMP PARALLEL PRIVATE(rand, iother, itemp, temp, my_cpu_id)

my_cpu_id = 1

!$ my_cpu_id = omp_get_thread_num() + 1

!$OMP DO

DO j=1,npopsiz-1

CALL ran3(1,rand,my_cpu_id,0)

iother=j+1+DINT(DBLE(npopsiz-j)*rand)

!$ IF (j < iother) THEN

!$ CALL omp_set_lock(lck(j))

!$ CALL omp_set_lock(lck(iother))

!$ ELSE

!$ CALL omp_set_lock(lck(iother))

!$ CALL omp_set_lock(lck(j))

!$ END IF

itemp(1:nchrome)=iparent(1:nchrome,iother)

iparent(1:nchrome,iother)=iparent(1:nchrome,j)

iparent(1:nchrome,j)=itemp(1:nchrome)

temp=fitness(iother)

fitness(iother)=fitness(j)

fitness(j)=temp

!$ IF (j < iother) THEN

!$ CALL omp_unset_lock(lck(iother))

!$ CALL omp_unset_lock(lck(j))

!$ ELSE

!$ CALL omp_unset_lock(lck(j))

!$ CALL omp_unset_lock(lck(iother))

!$ END IF

END DO

!$OMP END DO

!$OMP END PARALLEL

Parallel loop

In shuffle.f

of Gafort

Exclusive access

to array

elements.

Ordered locking

prevents

deadlock.

Exercise

• We provide a program in the file hist.c

• This program tests our random number generator by calling

it many times and producing a histogram of the results.

• Parallelize this program.

130

131

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data environment

• Memory model

• Irregular Parallelism and tasks

• Recap

• Beyond the common core:

– Worksharing revisited

– Synchronization: More than you ever wanted to know

– Thread private data

– Thread affinity and data locality

132

Data sharing: Threadprivate

• Makes global data private to a thread

– Fortran: COMMON blocks

– C: File scope and static variables, static class members

• Different from making them PRIVATE

– with PRIVATE global variables are masked.

– THREADPRIVATE preserves global scope within each thread

• Threadprivate variables can be initialized using COPYIN

or at time of definition (using language-defined
initialization capabilities)

133

A threadprivate example (C)

int counter = 0;

#pragma omp threadprivate(counter)

int increment_counter()

{

counter++;

return (counter);

}

Use threadprivate to create a counter for each thread.

134

Data copying: Copyin

parameter (N=1000)

common/buf/A(N)

!$OMP THREADPRIVATE(/buf/)

!$ Initialize the A array

call init_data(N,A)

!$OMP PARALLEL COPYIN(A)

… Now each thread sees threadprivate array A initialized

… to the global value set in the subroutine init_data()

!$OMP END PARALLEL

end

You initialize threadprivate data using a copyin

clause.

135

Data copying: Copyprivate

#include <omp.h>

void input_parameters (int, int); // fetch values of input parameters

void do_work(int, int);

void main()

{

int Nsize, choice;

#pragma omp parallel private (Nsize, choice)

{

#pragma omp single copyprivate (Nsize, choice)

input_parameters (*Nsize, *choice);

do_work(Nsize, choice);

}

}

Used with a single region to broadcast values of privates from one member of a

team to the rest of the team

136

Exercise: Monte Carlo calculations
Using random numbers to solve tough problems

• Sample a problem domain to estimate areas, compute probabilities,
find optimal values, etc.

• Example: Computing π with a digital dart board:

 Throw darts at the circle/square.

 Chance of falling in circle is
proportional to ratio of areas:

Ac = r2 * π

As = (2*r) * (2*r) = 4 * r2

P = Ac/As = π /4

 Compute π by randomly
choosing points; π is four times
the fraction that falls in the circle

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000 π = 3.148

137

Exercise: Monte Carlo pi (cont)

• We provide three files for this exercise
– pi_mc.c: the Monte Carlo method pi program

– random.c: a simple random number generator

– random.h: include file for random number generator

• Create a parallel version of this program without changing
the interfaces to functions in random.c
– This is an exercise in modular software … why should a user of your

parallel random number generator have to know any details of the
generator or make any changes to how the generator is called?

– The random number generator must be thread-safe.

• Extra Credit:
– Make your random number generator numerically correct (non-

overlapping sequences of pseudo-random numbers).

138

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data environment

• Memory model

• Irregular Parallelism and tasks

• Recap

• Beyond the common core:

– Worksharing revisited

– Synchronization: More than you ever wanted to know

– Thread private data

– Thread affinity and data locality

Thread Affinity and Data Locality

• Affinity

– Process Affinity: bind processes (MPI tasks, etc.) to CPUs

– Thread Affinity: further binding threads to CPUs that are

allocated to their parent process

• Data Locality

–Memory Locality: allocate memory as close as possible to the

core on which the task that requested the memory is running

–Cache Locality: use data in cache as much as possible

• Correct process, thread and memory affinity is the basis for

getting optimal performance.

139

Memory Locality
• Most systems today are Non-Uniform Memory Access (NUMA)

• Example, the Intel® Xeon Phi™ processor

140

Diagram is for conceptual purposes only and only illustrates a CPU and memory – it is not to scale and does not include

all functional areas of the CPU, nor does it represent actual component layout.

MCDRAM MCDRAM MCDRAM

MCDRAM

MCDRAM

MCDRAM MCDRAM MCDRAM

DDR4

DDR4

DDR4

Up to
72 cores

HFI

DDR4

DDR4

DDR4

PCIe Gen3

x36

6 channels

DDR4

Up to

384GB

~90 GB/s

On-package

2 ports OPA

Integrated Fabric

Up to 16GB high-bandwidth on-

package memory (MCDRAM)

Exposed as NUMA node

>400 GB/s sustained BW

Up to 72 cores (36 tiles)

2D mesh architecture

Over 6 TF SP peak

Full Xeon ISA compatibility

through AVX-512

Core Core

2 VPU 2
VPU

1
M

B

L

2
H

U
B

Tile

M
ic

ro
-C

o
a

x
 C

a
b
le

 (
IF

P
)

M
ic

ro
-C

o
a

x
 C

a
b
le

 (
IF

P
)

2x 512b VPU per core

(Vector Processing Units)

Based on Intel® Atom™ processor with

many HPC enhancements

Deep out-of-order buffers

Gather/scatter in hardware

Improved branch prediction

4 threads/core

High cache bandwidth

Memory Locality

• Memory access in different NUMA domains are different

– Accessing memory in remote NUMA is slower than accessing

memory in local NUMA

– Accessing High Bandwidth Memory on KNL* is faster than DDR

• OpenMP does not explicitly map data across shared

memories

• Memory locality is important since it impacts both memory

and intra-node performance

141

*KNL: Intel® Xeon Phi™ processor 7250 with 68 cores @ 1.4 Ghz …

the “bootable” version that sits in a socket, not a co-processor

Example Compute Nodes (Intel Haswell*)

• An Intel Haswell node has 32 cores (64 CPUs), 128 MB DDR memory.

• 2 NUMA domains per node, 16 cores per NUMA domain. 2 hardware

threads (CPUs) per core.

• Memory bandwidth is non-homogeneous among NUMA domains.
– CPUs 0-15, 32-47 are closer to memory in NUMA domain 0, farther to memory in NUMA

domain 1.

– CPUs 16-31, 48-64 are closer to memory in NUMA domain 1, farther to memory in NUMA

domain 0.

142*Haswell: 16-core Intel® Xeon™ Processor E5-2698 v3 at 2.3 GHz

Tools to Check Compute Node Information (1)

• numactl: controls NUMA policy for processes or shared

memory

– numactl -H: provides NUMA info of the CPUs

% numactl –H

% numactl -H

available: 2 nodes (0-1)

node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

node 0 size: 64430 MB

node 0 free: 63002 MB

node 1 cpus: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 48 49 50 51 52 53 54 55 56 57 58 59 60 61

62 63

node 1 size: 64635 MB

node 1 free: 63395 MB

node distances:node 0 1

0: 10 21

1: 21 10

143

Tools to Check Compute Node Information (2)

• Portable Hardware Locality (hwloc)

– hwloc-ls: provides a graphical representation of the system

topology, NUMA nodes, cache info, and the mapping of procs.

% hwloc-ls
Cori Haswell* node example

32 cores, 2 sockets

144*Haswell: 16-core Intel® Xeon™ Processor E5-2698 v3 at 2.3 GHz

Memory Affinity: “First Touch” Memory

Red: step 1.1 + step 2. No First Touch

Blue: step 1.2 + step 2. First Touch

Step 1.1 Initialization

by master thread only

for (j=0; j<VectorSize; j++) {

a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

Step 1.2 Initialization

by all threads

#pragma omp parallel for

for (j=0; j<VectorSize; j++) {

a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

Step 2 Compute

#pragma omp parallel for

for (j=0; j<VectorSize; j++) {

a[j]=b[j]+d*c[j];}

Memory affinity is not defined when

memory was allocated, instead it will

be defined at initialization. Memory will

be local to the thread which initializes

it. This is called first touch policy.

145

OMP_PROC_BIND=close

“Perfect Touch” is Hard

146

• Hard to do “perfect touch” for real applications.

• General recommendation is to use number of threads fewer

than number of CPUs per NUMA domain.

• In the previous example, 16 cores (32 CPUs) per NUMA

domain. Sample run options:

– 2 MPI tasks, 1 MPI task per NUMA domain, with 32 OpenMP threads

(if using hyperthreads) or 16 OpenMP threads (if not using

hyperthreads) per MPI task

– 4 MPI tasks, 2 MPI tasks per NUMA domain, with 16 OpenMP

threads (if using hyperthreads) or 8 OpenMP threads (if not using

hyperthreads) per MPI task

– …

Runtime Environment Variable:

OMP_PROC_BIND

• Controls thread affinity within and between OpenMP places

• OpenMP 3.1 only has OMP_PROC_BIND, either TRUE or

FALSE.

– If true, the runtime will not move threads around between processors.

• OpenMP 4.0 still allows the above. Added options:

– close: bind threads close to the master thread

– spread: bind threads as evenly distributed (spreaded) as possible

– master: bind threads to the same place as the master thread

• Examples:

– OMP_PROC_BIND=spread

– OMP_PROC_BIND=spread,close (for nested levels)

147

Runtime Environment Variable:

OMP_PROC_BIND (2)

- 148 -

• Use 4 cores total, 2 hyperthreads per core, and OMP_NUM_THREADS=4 an

example

• none: no affinity setting.

• close: Bind threads as close to each other as possible

• spread: Bind threads as far apart as possible.

• master: bind threads to the same place as the master thread

Node Core 0 Core 1 Core 2 Core 3

HT1 HT2 HT1 HT2 HT

1

HT2 HT1 HT

2

Thread 0 1 2 3

Node Core 0 Core 1 Core 2 Core 3

HT1 HT2 HT1 HT2 HT

1

HT2 HT1 HT

2

Thread 0 1 2 3

Runtime Environment Variable:

OMP_PLACES (1)
• OpenMP 4.0 added OMP_PLACES environment variable

– To control thread allocation

– defines a series of places to which the threads are assigned

• OMP_PLACES can be

– threads: each place corresponds to a single hardware thread on the

target machine.

– cores: each place corresponds to a single core (having one or more

hardware threads) on the target machine.

– sockets: each place corresponds to a single socket (consisting of one

or more cores) on the target machine.

– A list with explicit CPU ids (see next slide)

• Examples:

– export OMP_PLACES=threads

– export OMP_PLACES=cores

149

Runtime Environment Variable:

OMP_PLACES (2)
• OMP_PLACES can also be

– A list with explicit place values of CPU ids, such as:

– "{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}”

– “{0:4},{4:4},{8:4},{12:4}” (default stride is 1)

– Format: {lower-bound:length:stride}. Thus, specifying {0:3:2} is the

same as specifying {0,2,4}

• Examples:

– export OMP_PLACES=“ {0:4:2},{1:4:2}” (which is equivalent to

“{0,2,4,6},{1,3,5,7}”)

– export OMP_PLACES=“{0:8:1}” (which is equivalent to

“{0,1,2,3,4,5,6,7}”

150

Other Runtime Environment Variables

for Affinity Support

• OMP_NUM_THREADS

• OMP_THREAD_LIMIT

• OMP_NESTED

• OMP_MAX_ACTIVE_LEVELS

• Names are upper case, values are case insensitive

151

OMP_PROC_BIND Choices for STREAM

OMP_NUM_THREADS=32

OMP_PLACES=threads

OMP_PROC_BIND=close

Threads 0 to 31 bind to

CPUs

0,32,1,33,2,34,…15,47. All

threads are in the first

socket. The second socket

is idle. Not optimal.

OMP_PROC_BIND=spread

Threads 0 to 31 bind to

CPUs 0,1,2,… to 31. Both

sockets and memory are

used to maximize memory

bandwidth.

Blue: OMP_PROC_BIND=close

Red: OMP_PROC_BIND=spread

Both with First Touch

152

Affinity Clauses for OpenMP Parallel

Construct

• The “num_threads” and “proc_bind” clauses can be used

– The values set with these clauses take precedence over values set

by runtime environment variables

• Helps code portability

• Examples:

– C/C++:

#pragma omp parallel num_threads(2) proc_bind(spread)

– Fortran:

!$omp parallel num_threads (2) proc_bind (spread)

...

!$omp end parallel

153

Runtime APIs for Thread Affinity Support

• OpenMP 4.5 added runtime functions to determine the effect

of thread affinity clauses

• Query functions for OpenMP thread affinity were added

– omp_get_num_places: returns the number of places

– omp_get_place_num_procs: returns number of processors in the

given place

– omp_get_place_proc_ids: returns the ids of the processors in the

given place

– omp_get_place_num: returns the place number of the place to

which the current thread is bound

– omp_get_partition_num_places: returns the number of places in

the current partition

– omp_get_partition_place_nums: returns the list of place numbers

corresponding to the places in the current partition

154

Other Runtime APIs for Thread Affinity

Support

• omp_get_nested, omp_set_nested

• omp_get_thread_limit

• omp_get_level

• omp_get_active_level

• omp_get_max_active_levels, omp_set_max_active_levels

• omp_get_proc_bind, omp_set_proc_bind

• omp_get_num_threads, omp_set_num_threads

• omp_get_max_threads

- 155 -
155

Exercise: “First Touch” with STREAM

benchmark

• STREAM benchmark codes: stream.c, stream.f

• Check the source codes to see if “first touch” is implemented

• With “first touch” on (stream.c) and off (stream_nft.c), experiment with

different OMP_NUM_THREADS and OMP_PROC_BIND settings to

understand how “first touch” and OMP_PROC_BIND choices affect

STREAM memory bandwidth results (look at the Best Rate for Triad in

the output).

• Compare your results with the two STREAM plots shown earlier in this

slide deck.

156

Sample Nested OpenMP Program

#include <omp.h>

#include <stdio.h>

void report_num_threads(int level)

{

#pragma omp single {

printf("Level %d: number of threads in the

team: %d\n", level, omp_get_num_threads());

}

}

int main()

{

omp_set_dynamic(0);

#pragma omp parallel num_threads(2) {

report_num_threads(1);

#pragma omp parallel num_threads(2) {

report_num_threads(2);

#pragma omp parallel num_threads(2) {

report_num_threads(3);

}

}

}

return(0);

}

% a.out

Level 1: number of threads in the team: 2

Level 2: number of threads in the team: 1

Level 3: number of threads in the team: 1

Level 2: number of threads in the team: 1

Level 3: number of threads in the team: 1

% export OMP_NESTED=true

% export OMP_MAX_ACTIVE_LEVELS=3

% a.out

Level 1: number of threads in the team: 2

Level 2: number of threads in the team: 2

Level 2: number of threads in the team: 2

Level 3: number of threads in the team: 2

Level 3: number of threads in the team: 2

Level 3: number of threads in the team: 2

Level 3: number of threads in the team: 2

Level 0: P0

Level 1: P0 P1

Level 2: P0 P2; P1 P3

Level 3: P0 P4; P2 P5; P1 P6; P3 P7

157

Process and Thread Affinity in Nested OpenMP

• A combination of OpenMP environment variables and run time flags are needed
for different compilers and different batch schedulers on different systems.

• Use num_threads clause in source codes to set threads for nested regions.

• For most other non-nested regions, use OMP_NUM_THREADS environment
variable for simplicity and flexibility.

Example: Use Intel compiler with SLURM on Cori Haswell:

export OMP_NESTED=true

export OMP_MAX_ACTIVE_LEVELS=2

export OMP_NUM_THREADS=4,4

export OMP_PROC_BIND=spread,close

export OMP_PLACES=threads

srun -n 4 -c 16 –cpu_bind=cores ./nested.intel.cori

spread

close

Illustration of a system with:

2 sockets, 4 cores per

socket,

4 hyper-threads per core

158

When to Use Nested OpenMP

• Beneficial to use nested OpenMP to allow more fine-grained

thread parallelism.

• Some application teams are exploring with nested OpenMP

to allow more fine-grained thread parallelism.

– Hybrid MPI/OpenMP not using node fully packed

– Top level OpenMP loop does not use all available threads

– Multiple levels of OpenMP loops are not easily collapsed

– Certain computational intensive kernels could use more threads

– MKL can use extra cores with nested OpenMP

• Nested level can be arbitrarily deep.

159

Use Multiple Threads in MKL

• By Default, in OpenMP parallel regions, only 1 thread will be

used for MKL calls.

– MKL_DYNAMICS is true by default

• Nested OpenMP can be used to enable multiple threads for

MKL calls. Treat MKL as a nested inner OpenMP region.

• Sample settings

export OMP_NESTED=true

export OMP_PLACES=cores

export OMP_PROC_BIND=sprad,close

export OMP_NUM_THREADS=6,4

export MKL_DYNAMICS=false

export OMP_MAX_ACTIVE_LEVELS=2
FFT3D on KNC, Ng=643 example

Courtesy of Jeongnim Kim, Intel

160
*KNC: Intel® Xeon Phi™ processor (Knights Corner) … the first generation co-processor version of the chip.

Example Compute Nodes (Cori KNL*)

• A quad,cache node has only 1 NUMA node with all CPUs on the NUMA node 0

(DDR memory). The MCDRAM is hidden from the “numactl –H” result since it is a

cache.

• A quad,flat node has only 2 NUMA nodes with all CPUs on the NUMA node 0 (DDR

memory). And NUMA node 1 has MCDRAM only.

• A snc2,flat node has 4 NUMA domains with DDR memory and all CPUs on NUMA

nodes 0 and 1. (NUMA node 0 has physical cores 0 to 33 and all corresponding

hyperthreads, and NUMA node 1 has physical cores 34 to 67 and all corresponding

hyperthreads). NUMA nodes 2 and 3 have MCDRAM only.

• A Cori KNL node has 68 cores/272 CPUs, 96 GB DDR memory, 16 GB

high bandwidth on package memory (MCDRAM).

• Three cluster modes, all-to-all, quadrant, sub-NUMA clustering, are

available at boot time to configure the KNL mesh interconnect.

161*KNL: Intel® Xeon Phi™ processor 7250 with 68 cores @ 1.4 GHz

available: 2 nodes (0-1)

node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

270 271

node 0 size: 96723 MB

node 0 free: 93924 MB

node 1 cpus:

node 1 size: 16157 MB

node 1 free: 16088 MB

node distances:

node 0 1

0: 10 31

1: 31 10

Intel KNL Quad,Flat Node Example

% numactl –H

• The quad,flat mode has only 2 NUMA nodes with all CPUs

on the NUMA node 0 (DDR memory).

• And NUMA node 1 has MCDRAM (high bandwidth memory).

Cori KNL quad,flat node example

68 cores (272 CPUs)

162

Exercise: Affinity Choices and Results

• Pure OpenMP code: xthi-omp.c

• Nested OpenMP code: xthi-nested-omp.c

• Sample output:

% ./xthi-omp |sort –k4n

Hello from thread 0, on nid00011. (core affinity = 0)

Hello from thread 1, on nid00011. (core affinity = 4)

Hello from thread 2, on nid00011. (core affinity = 8) ...

• Experiment with different OMP_NUM_THREADS,

OMP_PROC_BIND, and OMP_PLACES settings to check thread

affinity on different compute node architectures (for example, Cori

Haswell and KNL).

163

Essential runtime settings for KNL MCDRAM

Memory Affinity

• In quad, cache mode, no special setting is needed to use

MCDRAM

• In quad,flat mode, using quad,flat as an example

– NUMA node 1 is MCDRAM

• Enforced memory mapping to MCDRAM

– If using >16 GB, malloc will fail

– Use “numactl -m 1 ./myapp” as the executable

(instead of “./myapp”)

• Preferred memory mapping to MCDRAM:

– If using >16 GB, malloc will spill to DDR

– Use “numactl -p 1 ./myapp” as the executable

(instead of “./myapp”)

164

Summary for Thread Affinity and Data Locality

• Achieving best data locality, and optimal process and thread affinity is

crucial in getting good performance with OpenMP, yet it is not

straightforward to do so.

– Understand the node architecture with tools such as “numactl -H” first.

– Always use simple examples with the same settings for your real application

to verify first.

• Exploit first touch data policy, optimize code for cache locality.

• Pay special attention to avoid false sharing.

• Put threads far apart (spread) may improve aggregated memory

bandwidth and available cache size for your application, but may also

increase synchronization overhead. And putting threads “close” have

the reverse impact as “spread”.

• For nested OpenMP, set OMP_PROC_BIND=spread,close is generally

recommended.

• Use numactl -m or -p option to explicitly request memory allocation in

specific NUMA domain (for example: high bandwidth memory in KNL)

165*KNL: Intel® Xeon Phi™ processor 7250 with 68 cores @ 1.4 GHz

166

Appendices
• Challenge Problems

• Challenge Problems: solutions

– Monte Carlo PI and random number generators

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

Challenge problems

• Long term retention of acquired skills is best supported by

“random practice”.

– i.e., a set of exercises where you must draw on multiple facets of the

skills you are learning.

• To support “Random Practice” we have assembled a set of

“challenge problems”

1. Parallel molecular dynamics

2. Optimizing matrix multiplication

3. Traversing linked lists in different ways

4. Recursive matrix multiplication algorithms

167

168

Challenge 1: Molecular dynamics

• The code supplied is a simple molecular dynamics

simulation of the melting of solid argon

• Computation is dominated by the calculation of force pairs in
subroutine forces (in forces.c)

• Parallelise this routine using a parallel for construct and

atomics; think carefully about which variables should be

SHARED, PRIVATE or REDUCTION variables

• Experiment with different schedule kinds

169

Challenge 1: MD (cont.)

• Once you have a working version, move the parallel region
out to encompass the iteration loop in main.c
– Code other than the forces loop must be executed by a single thread

(or workshared).

– How does the data sharing change?

• The atomics are a bottleneck on most systems.
– This can be avoided by introducing a temporary array for the force

accumulation, with an extra dimension indexed by thread number

– Which thread(s) should do the final accumulation into f?

170

Challenge 1 MD: (cont.)

• Another option is to use locks
– Declare an array of locks

– Associate each lock with some subset of the particles

– Any thread that updates the force on a particle must hold the
corresponding lock

– Try to avoid unnecessary acquires/releases

– What is the best number of particles per lock?

171

Challenge 2: Matrix multiplication

• Parallelize the matrix multiplication program in the file

matmul.c

• Can you optimize the program by playing with how the loops

are scheduled?

• Try the following and see how they interact with the

constructs in OpenMP

– Alignment

– Cache blocking

– Loop unrolling

– Vectorization

• Goal: Can you approach the peak performance of the

computer?

172

Challenge 3: Traversing linked lists

• Consider the program linked.c

– Traverses a linked list, computing a sequence of Fibonacci numbers

at each node

• Parallelize this program two different ways

1. Use OpenMP tasks

2. Use anything you choose in OpenMP other than tasks.

• The second approach (no tasks) can be difficult and may

take considerable creativity in how you approach the

problem (why its such a pedagogically valuable problem)

173

Challenge 4: Recursive matrix multiplication

• The following three slides explain how to use a recursive

algorithm to multiply a pair of matrices

• Source code implementing this algorithm is provided in the

file matmul_recur.c

• Parallelize this program using OpenMP tasks

Challenge 4: Recursive matrix multiplication

• Quarter each input matrix and output matrix

• Treat each submatrix as a single element and multiply

• 8 submatrix multiplications, 4 additions

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2

174

Challenge 4: Recursive matrix multiplication

How to multiply submatrices?

• Use the same routine that is computing the full matrix

multiplication

– Quarter each input submatrix and output submatrix

– Treat each sub-submatrix as a single element and multiply

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C111,1 = A111,1·B111,1 + A111,2·B112,1 +

A121,1·B211,1 + A121,2·B212,1

C1,1 = A1,1·B1,1 + A1,2·B2,1

175

A1,1

A111,1 A111,2

A112,1 A112,2

B1,1

B111,1 B111,2

B112,1 B112,2

C1,1

C111,1 C111,2

C112,1 C112,2

C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2

Challenge 4: Recursive matrix multiplication

Recursively multiply submatrices

• Also need stopping criteria for recursion
176

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,

double **A, double **B, double **C)

{// Dimensions: A[mf..ml][pf..pl] B[pf..pl][nf..nl] C[mf..ml][nf..nl]

// C11 += A11*B11

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A,B,C);

// C11 += A12*B21

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A,B,C);

. . .

}

 Need range of indices to define each submatrix to be used

177

Appendices
• Challenge Problems

• Challenge Problems: solutions

– Monte Carlo PI and random number generators

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

178

Computers and random numbers

• We use “dice” to make random numbers:
– Given previous values, you cannot predict the next value.

– There are no patterns in the series … and it goes on forever.

• Computers are deterministic machines … set an initial state,
run a sequence of predefined instructions, and you get a
deterministic answer
– By design, computers are not random and cannot produce random

numbers.

• However, with some very clever programming, we can make
“pseudo random” numbers that are as random as you need
them to be … but only if you are very careful.

• Why do I care? Random numbers drive statistical methods
used in countless applications:
– Sample a large space of alternatives to find statistically good answers

(Monte Carlo methods).

179

Monte Carlo Calculations
Using Random numbers to solve tough problems

• Sample a problem domain to estimate areas, compute probabilities,
find optimal values, etc.

• Example: Computing π with a digital dart board:

 Throw darts at the circle/square.

 Chance of falling in circle is
proportional to ratio of areas:

Ac = r2 * π

As = (2*r) * (2*r) = 4 * r2

P = Ac/As = π /4

 Compute π by randomly
choosing points, count the
fraction that falls in the circle,
compute pi.

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000 π = 3.148

180

Parallel Programmers love Monte Carlo

algorithms

#include “omp.h”
static long num_trials = 10000;
int main ()
{

long i; long Ncirc = 0; double pi, x, y;
double r = 1.0; // radius of circle. Side of squrare is 2*r
seed(0,-r, r); // The circle and square are centered at the origin
#pragma omp parallel for private (x, y) reduction (+:Ncirc)
for(i=0;i<num_trials; i++)
{

x = random(); y = random();
if (x*x + y*y) <= r*r) Ncirc++;

}

pi = 4.0 * ((double)Ncirc/(double)num_trials);
printf("\n %d trials, pi is %f \n",num_trials, pi);

}

Embarrassingly parallel: the
parallelism is so easy its
embarrassing.

Add two lines and you have a
parallel program.

181

Linear Congruential Generator (LCG)

• LCG: Easy to write, cheap to compute, portable, OK quality

 If you pick the multiplier and addend correctly, LCG has a period of
PMOD.

 Picking good LCG parameters is complicated, so look it up
(Numerical Recipes is a good source). I used the following:

 MULTIPLIER = 1366

 ADDEND = 150889

 PMOD = 714025

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;

random_last = random_next;

182

LCG code

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;
double random ()
{

long random_next;

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

return ((double)random_next/(double)PMOD);
}

Seed the pseudo random

sequence by setting

random_last

183

Running the PI_MC program with LCG generator

0.00001

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6

LCG - one thread

LCG, 4 threads,

trail 1

LCG 4 threads,

trial 2

LCG, 4 threads,

trial 3

L
o

g
 1

0
R

e
la

tiv
e

 e
rro

r

Log10 number of samples

Run the same

program the

same way and

get different

answers!

That is not

acceptable!

Issue: my LCG

generator is not

threadsafe

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core laptop (Intel

T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP.

184

LCG code: threadsafe version

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;
#pragma omp threadprivate(random_last)
double random ()
{

long random_next;

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

return ((double)random_next/(double)PMOD);
}

random_last carries state

between random number

computations,

To make the generator

threadsafe, make

random_last threadprivate

so each thread has its

own copy.

185

Thread safe random number generators

L
o

g
1

0
R

e
la

tiv
e

 e
rro

r

Log10 number of samples
Thread safe

version gives the

same answer each

time you run the

program.

But for large

number of

samples, its

quality is lower

than the one

thread result!

Why?

0.00001

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6 LCG - one

thread

LCG 4 threads,

trial 1

LCT 4 threads,

trial 2

LCG 4 threads,

trial 3

LCG 4 threads,

thread safe

186

Pseudo Random Sequences
• Random number Generators (RNGs) define a sequence of pseudo-random

numbers of length equal to the period of the RNG

 In a typical problem, you grab a subsequence of the RNG range

Seed determines starting point

 Grab arbitrary seeds and you may generate overlapping sequences

 E.g. three sequences … last one wraps at the end of the RNG period.

 Overlapping sequences = over-sampling and bad statistics … lower quality or
even wrong answers!

Thread 1

Thread 2

Thread 3

187

Parallel random number generators

• Multiple threads cooperate to generate and use random
numbers.

• Solutions:
– Replicate and Pray
– Give each thread a separate, independent generator
– Have one thread generate all the numbers.
– Leapfrog … deal out sequence values “round robin”

as if dealing a deck of cards.
– Block method … pick your seed so each threads gets

a distinct contiguous block.
• Other than “replicate and pray”, these are difficult to

implement. Be smart … buy a math library that does it
right.

If done right, can

generate the

same sequence

regardless of the

number of

threads …

Nice for

debugging, but

not really needed

scientifically.

Intel’s Math kernel Library supports all of these

methods.

188

MKL Random number generators (RNG)

#define BLOCK 100

double buff[BLOCK];

VSLStreamStatePtr stream;

vslNewStream(&ran_stream, VSL_BRNG_WH, (int)seed_val);

vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream,

BLOCK, buff, low, hi)

vslDeleteStream(&stream);

 MKL includes several families of RNGs in its vector statistics library.

 Specialized to efficiently generate vectors of random numbers

Initialize a

stream or

pseudo

random

numbers

Select type of RNG

and set seed

Fill buff with BLOCK pseudo rand.

nums, uniformly distributed with values

between lo and hi.

Delete the stream when you are done

189

Wichmann-Hill generators (WH)

• WH is a family of 273 parameter sets each defining a non-

overlapping and independent RNG.

• Easy to use, just make each stream threadprivate and initiate RNG

stream so each thread gets a unique WG RNG.

VSLStreamStatePtr stream;

#pragma omp threadprivate(stream)

…

vslNewStream(&ran_stream, VSL_BRNG_WH+Thrd_ID, (int)seed);

190

Independent Generator for each thread

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6

WH one

thread

WH, 2

threads

WH, 4

threads

L
o

g
1

0
R

e
la

tiv
e

 e
rro

r

Log10 number of samples

Notice that once

you get beyond

the high error,

small sample

count range,

adding threads

doesn’t

decrease quality

of random

sampling.

191

#pragma omp single

{ nthreads = omp_get_num_threads();

iseed = PMOD/MULTIPLIER; // just pick a seed

pseed[0] = iseed;

mult_n = MULTIPLIER;

for (i = 1; i < nthreads; ++i)

{

iseed = (unsigned long long)((MULTIPLIER * iseed) % PMOD);

pseed[i] = iseed;

mult_n = (mult_n * MULTIPLIER) % PMOD;

}

}

random_last = (unsigned long long) pseed[id];

Leap Frog method
• Interleave samples in the sequence of pseudo random numbers:

– Thread i starts at the ith number in the sequence

– Stride through sequence, stride length = number of threads.

• Result … the same sequence of values regardless of the number of

threads.

One thread

computes offsets

and strided

multiplier

LCG with Addend = 0 just

to keep things simple

Each thread stores offset starting

point into its threadprivate “last

random” value

192

Same sequence with many threads.

• We can use the leapfrog method to generate the same

answer for any number of threads

Steps One thread 2 threads 4 threads

1000 3.156 3.156 3.156

10000 3.1168 3.1168 3.1168

100000 3.13964 3.13964 3.13964

1000000 3.140348 3.140348 3.140348

10000000 3.141658 3.141658 3.141658

Used the MKL library with two generator streams per computation: one for the x values (WH) and one for the

y values (WH+1). Also used the leapfrog method to deal out iterations among threads.

193

Appendices
• Challenge Problems

• Challenge Problems: solutions

– Monte Carlo PI and random number generators

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

Molecular dynamics: Solution

#pragma omp parallel for default (none) \

shared(x,f,npart,rcoff,side) \

reduction(+:epot,vir) \

schedule (static,32)

for (int i=0; i<npart*3; i+=3) {

……… Loop is not well load

balanced: best

schedule has to be

found by experiment.

Compiler will warn you

if you have missed

some variables

194

........

#pragma omp atomic

f[j] -= forcex;

#pragma omp atomic

f[j+1] -= forcey;

#pragma omp atomic

f[j+2] -= forcez;

}

}

#pragma omp atomic

f[i] += fxi;

#pragma omp atomic

f[i+1] += fyi;

#pragma omp atomic

f[i+2] += fzi;

}

}

All updates to f must be

atomic

Molecular dynamics : Solution (cont.)

195

Molecular dynamics : With orphaning

#pragma omp single

{

vir = 0.0;

epot = 0.0;

}

#pragma omp for reduction(+:epot,vir) schedule (static,32)

for (int i=0; i<npart*3; i+=3) {

………
All variables which used to

be shared here are now

implicitly determined

Implicit barrier needed to avoid race

condition with update of reduction variables

at end of the for construct

196

Molecular dynamics : With array reduction

ftemp[myid][j] -= forcex;

ftemp[myid][j+1] -= forcey;

ftemp[myid][j+2] -= forcez;

}

}

ftemp[myid][i] += fxi;

ftemp[myid][i+1] += fyi;

ftemp[myid][i+2] += fzi;

}

Replace atomics with

accumulation into array

with extra dimension

197

Molecular dynamics : With array reduction

….

#pragma omp for

for(int i=0;i<(npart*3);i++){

for(int id=0;id<nthreads;id++){

f[i] += ftemp[id][i];

ftemp[id][i] = 0.0;

}

}

Reduction can be done

in parallel

Zero ftemp for next time

round

198

199

Appendices
• Challenge Problems

• Challenge Problems: solutions

– Monte Carlo PI and random number generators

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

200

Challenge: Matrix Multiplication

• Parallelize the matrix multiplication program in the file

matmul.c

• Can you optimize the program by playing with how the loops

are scheduled?

• Try the following and see how they interact with the

constructs in OpenMP

– Cache blocking

– Loop unrolling

– Vectorization

• Goal: Can you approach the peak performance of the

computer?

201

Matrix multiplication

#pragma omp parallel for private(tmp, i, j, k)
for (i=0; i<Ndim; i++){

for (j=0; j<Mdim; j++){
tmp = 0.0;
for(k=0;k<Pdim;k++){

/* C(i,j) = sum(over k) A(i,k) * B(k,j) */
tmp += *(A+(i*Ndim+k)) * *(B+(k*Pdim+j));

}
*(C+(i*Ndim+j)) = tmp;

}
}

•On a dual core laptop

•13.2 seconds 153 Mflops one thread

•7.5 seconds 270 Mflops two threads

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

There is much more that can be

done. This is really just the first

and most simple step

202

Appendices
• Challenge Problems

• Challenge Problems: solutions

– Monte Carlo PI and random number generators

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

203

Exercise: traversing linked lists

• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at

each node.

• Parallelize this program two different ways

1. Use OpenMP tasks

2. Use anything you choose in OpenMP other than tasks.

• The second approach (no tasks) can be difficult and may

take considerable creativity in how you approach the

problem (hence why its such a pedagogically valuable

problem).

204

Linked lists with tasks
• See the file Linked_omp3_tasks.c

#pragma omp parallel

{

#pragma omp single

{

p=head;

while (p) {

#pragma omp task firstprivate(p)

processwork(p);

p = p->next;

}

}

}

Creates a task with its own

copy of “p” initialized to the

value of “p” when the task is

defined

205

Exercise: traversing linked lists

• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at

each node.

• Parallelize this program two different ways

1. Use OpenMP tasks

2. Use anything you choose in OpenMP other than tasks.

• The second approach (no tasks) can be difficult and may

take considerable creativity in how you approach the

problem (hence why its such a pedagogically valuable

problem).

206

Linked lists without tasks
• See the file Linked_omp25.c

while (p != NULL) {

p = p->next;

count++;

}

p = head;

for(i=0; i<count; i++) {

parr[i] = p;

p = p->next;

}

#pragma omp parallel

{

#pragma omp for schedule(static,1)

for(i=0; i<count; i++)

processwork(parr[i]);

}

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Default schedule Static,1

One Thread 48 seconds 45 seconds

Two Threads 39 seconds 28 seconds

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

207

Linked lists without tasks: C++ STL
• See the file Linked_cpp.cpp

std::vector<node *> nodelist;

for (p = head; p != NULL; p = p->next)

nodelist.push_back(p);

int j = (int)nodelist.size();

#pragma omp parallel for schedule(static,1)

for (int i = 0; i < j; ++i)

processwork(nodelist[i]);

C++, default sched. C++, (static,1) C, (static,1)

One Thread 37 seconds 49 seconds 45 seconds

Two Threads 47 seconds 32 seconds 28 seconds

Copy pointer to each node into an array

Count number of items in the linked list

Process nodes in parallel with a for loop

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

208

Appendices
• Challenge Problems

• Challenge Problems: solutions

– Monte Carlo PI and random number generators

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

#define THRESHOLD 32768 // product size below which simple matmult code is called

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,
double **A, double **B, double **C)

// Dimensions: A[mf..ml][pf..pl] B[pf..pl][nf..nl] C[mf..ml][nf..nl]

{
if ((ml-mf)*(nl-nf)*(pl-pf) < THRESHOLD)

matmult (mf, ml, nf, nl, pf, pl, A, B, C);
else
{

#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C); // C11 += A11*B11
matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C); // C11 += A12*B21

}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{

matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C); // C12 += A11*B12
matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C); // C12 += A12*B22

}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{

matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C); // C21 += A21*B11
matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C); // C21 += A22*B21

}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{

matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C); // C22 += A21*B12
matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C); // C22 += A22*B22

}
#pragma omp taskwait

}
}

Recursive matrix multiplication

209

• Could be executed in parallel as 4 tasks

– Each task executes the two calls for the same output submatrix of C

• However, the same number of multiplication operations needed

210

Appendices
• Challenge Problems

• Challenge Problems: solutions

– Monte Carlo PI and random number generators

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

Fortran and OpenMP

• We were careful to design the OpenMP constructs so they

cleanly map onto C, C++ and Fortran.

• There are a few syntactic differences that once understood,

will allow you to move back and forth between languages.

• In the specification, language specific notes are included

when each construct is defined.

211

OpenMP:
Some syntax details for Fortran programmers

• Most of the constructs in OpenMP are compiler directives.
– For Fortran, the directives take one of the forms:

C$OMP construct [clause [clause]…]

!$OMP construct [clause [clause]…]

*$OMP construct [clause [clause]…]

• The OpenMP include file and lib module
use omp_lib

Include omp_lib.h

212

OpenMP:
Structured blocks (Fortran)

C$OMP PARALLEL

10 wrk(id) = garbage(id)

res(id) = wrk(id)**2

if(conv(res(id)) goto 10

C$OMP END PARALLEL

print *,id

–Most OpenMP constructs apply to structured blocks.

–Structured block: a block of code with one point of
entry at the top and one point of exit at the bottom.

–The only “branches” allowed are STOP statements
in Fortran and exit() in C/C++.

C$OMP PARALLEL

10 wrk(id) = garbage(id)

30 res(id)=wrk(id)**2

if(conv(res(id))goto 20

go to 10

C$OMP END PARALLEL

if(not_DONE) goto 30

20 print *, id

A structured block Not A structured block 213

OpenMP:
Structured Block Boundaries

 In Fortran: a block is a single statement or a group of statements between
directive/end-directive pairs.

C$OMP PARALLEL

10 wrk(id) = garbage(id)

res(id) = wrk(id)**2

if(conv(res(id)) goto 10

C$OMP END PARALLEL

C$OMP PARALLEL DO

do I=1,N

res(I)=bigComp(I)

end do

C$OMP END PARALLEL DO

 The “construct/end construct” pairs is done anywhere a structured block
appears in Fortran. Some examples:

 DO … END DO

 PARALLEL … END PARREL

 CRICITAL … END CRITICAL

 SECTION … END SECTION

 SECTIONS … END SECTIONS

 SINGLE … END SINGLE

 MASTER … END MASTER

214

Runtime library routines

• The include file or module defines parameters

– Integer parameter omp_locl_kind

– Integer parameter omp_nest_lock_kind

– Integer parameter omp_sched_kind

– Integer parameter openmp_version

–With value that matches C’s _OPEMMP macro

• Fortran interfaces are similar to those used with C

– Subroutine omp_set_num_threads (num_threads)

– Integer function omp_get_num_threads()

– Integer function omp_get_thread_num()\

– Subroutine omp_init_lock(svar)

– Integer(kind=omp_lock_kind) svar

– Subroutine omp_destroy_lock(svar)

– Subroutine omp_set_lock(svar)

– Subroutine omp_unset_lock(svar)

215

OpenMP compilers on Apple laptops: MacPorts

• To use OpenMP on your Apple laptop:

• Download Xcode. Be sure to setup the command line tools.

• Download and use MacPorts to install the latest gnu compilers.

sudo port selfupdate

sudo port install gcc6

port select --list gcc

sudo port select –set gcc mp-gcc6

gcc –fopenmp hello.c

216

Update to latest version of

MacPorts

Grab version 6 gnu

compilers (5-10 mins)

List versions of gcc on your

system

Select the mp enabled version of

the most recent gcc release

Test the installation with a simple

program

OpenMP compilers on Apple laptops: Homebrew

• An alternate way to use OpenMP on your Apple laptop:

• Install Homebrew. If Hombrew is already installed, skip to the install gcc section.

echo $SHELL

/usr/bin/ruby -e "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/master/install)"

brew install gcc --without-multilib

which gcc-7

gcc-7 -fopenmp hello_par.c

./a.out

export OMP_NUM_THREADS=8

./a.out

217

Check that you are running

bash shell for ruby. Use the

ruby to install homebrew.

Install a homebrew version

of gcc without multilib, and

locate it

In my case, hombrew installed a

new version of gcc called it gcc-7

Test the installation with a simple

program

Slides and exercises at:

http://www.nersc.gov/users/software/programming-models/openmp/sc17-openmp

