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Preliminaries: Part 1

• Disclosures

–The views expressed in this tutorial are those of the 

people delivering the tutorial. 

–We are not speaking for our employers.

–We are not speaking for the OpenMP ARB

• We take these tutorials VERY seriously:

–Help us improve … tell us how you would make this 

tutorial better.
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Preliminaries: Part 2

• Our plan for the day .. Active learning!
–We will mix short lectures with short exercises.

–You will use your laptop to connect to a multiprocessor 
server.

• Please follow these simple rules
–Do the exercises that we assign and then change things 

around and experiment.
– Embrace active learning!

–Don’t cheat:  Do Not look at the solutions before you 
complete an exercise … even if you get really frustrated.
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Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data environment

• Memory model

• Irregular Parallelism and tasks

• Recap

• Beyond the common core:

– Worksharing revisited

– Synchronization: More than you ever wanted to know

– Thread private data

– Thread affinity and data locality
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OpenMP* overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL  REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok) 

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP  SINGLE PRIVATE(X)

C$OMP SECTIONS 

C$OMP MASTER
C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP  BARRIER

OpenMP:  An API for Writing Multithreaded 
Applications

A set of compiler directives and library routines  for 
parallel application programmers

Greatly simplifies writing multi-threaded (MT) programs 
in Fortran, C and C++

Standardizes established SMP practice + vectorization and 
heterogeneous device programming

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.



The growth of complexity in OpenMP
• OpenMP started out in 1997 as a simple interface for the application 

programmers more versed in their area of science than computer science.

• The complexity has grown considerably over the years!
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The complexity of the full spec is overwhelming, so we focus on the 16 constructs most 

OpenMP programmers restrict themselves to … the so called “OpenMP Common Core”



OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved 

execution across threads

int omp_get_thread_num()

int omp_get_num_threads()

Create threads with a parallel region and split up the work using 

the number of threads and thread ID

double omp_get_wtime() Speedup and Amdahl's law.

False Sharing and other performance issues

setenv OMP_NUM_THREADS  N Internal control variables. Setting the default number of threads 

with an environment variable

#pragma omp barrier

#pragma omp critical

Synchronization and race conditions. Revisit interleaved 

execution.   

#pragma omp for

#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies

reduction(op:list) Reductions of values across a team of threads

schedule(dynamic [,chunk])

schedule (static [,chunk])

Loop schedules, loop overheads and load balance

private(list), firstprivate(list), shared(list) Data environment

nowait Disabling implied barriers on workshare constructs, the high cost of 

barriers, and the flush concept (but not the flush directive)

#pragma omp single Workshare with a single thread

#pragma omp task

#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 19 items

7
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OpenMP basic definitions: Basic Solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

Directives,

Compiler
OpenMP library

Environment 

variables

Application

End User

Shared Address Space

Proc3Proc2Proc1 ProcN
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OpenMP basic syntax
• Most of the constructs in OpenMP are compiler directives.

C and C++ Fortran

Compiler directives

#pragma omp construct [clause [clause]…] !$OMP construct [clause [clause] …]

Example

#pragma omp parallel private(x)

{

}

!$OMP PARALLEL

!$OMP END PARALLEL

Function prototypes and types:

#include <omp.h> use OMP_LIB

• Most OpenMP* constructs apply to a “structured block”.
– Structured block: a block of one or more statements with one point of entry at the top and 

one point of exit at the bottom. 

– It’s OK to have an exit() within the structured block.
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Exercise, Part A: Hello world
Verify that your environment works

• Write a program that prints “hello world”.

#include<stdio.h>

int main()

{

printf(“ hello ”);

printf(“ world \n”);

}

http://www.nersc.gov/users/software/programming-models/openmp/sc17-openmp/

• For detailed NERSC instructions and to download the slides:

git clone https://github.com/tgmattso/OpenMP_Exercises
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Exercise, Part B: Hello world
Verify that your OpenMP environment works

• Write a multithreaded program that prints “hello world”.

#include <stdio.h>

int main()

{

printf(“ hello ”);

printf(“ world \n”);

}

Switches for compiling and linking

gcc –fopenmp Gnu (Linux, OSX)

pgcc -mp pgi PGI (Linux)

icl /Qopenmp Intel (windows)

icc –fopenmp Intel (Linux, OSX)

#pragma omp parallel

{

}

#include <omp.h>

}

http://www.nersc.gov/users/software/programming-models/openmp/sc17-openmp/

• For detailed NERSC instructions and to download the slides:

git clone https://github.com/tgmattso/OpenMP_Exercises
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Solution
A multi-threaded “Hello world” program

• Write a multithreaded program where each thread prints “hello world”.

#include <omp.h>

#include <stdio.h>

int main()

{

#pragma omp parallel

{

printf(“ hello ”);

printf(“ world \n”);

}

}

Sample Output:

hello hello world

world

hello hello world

world

OpenMP include file

Parallel region with 

default number of threads

End of the Parallel region

The statements are interleaved based on how the operating schedules the threads 
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Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data environment

• Memory model

• Irregular Parallelism and tasks

• Recap

• Beyond the common core:

– Worksharing revisited

– Synchronization: More than you ever wanted to know

– Thread private data

– Thread affinity and data locality
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OpenMP programming model: 

Fork-Join Parallelism: 
Master thread spawns a team of threads as needed.

Parallelism added incrementally until performance goals are met, 
i.e., the sequential program evolves into a parallel program.

Parallel Regions

Master 

Thread 

in red

A Nested 

Parallel 

region

Sequential Parts
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Thread creation: Parallel regions

• You create threads in OpenMP* with the parallel construct.

• For example, To create a 4 thread Parallel region:

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

pooh(ID,A);

}

 Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread 

executes  a 

copy of the 

code within 

the 

structured 

block

Runtime function to 

request a certain 

number of threads

Runtime function 

returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board
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Thread creation: Parallel regions example

• Each thread executes the 
same code redundantly.

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

pooh(ID, A);

}

printf(“all done\n”);omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single 

copy of A is 

shared 

between all 

threads.

Threads wait  here  for all threads to finish 

before proceeding (i.e., a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board



17

Thread creation: How many threads did 
you actually get?

• You create a team threads in OpenMP* with the parallel construct.

• You can request a number of threads with omp_set_num_threads()

• But is the number of threads requested the number you actually get?
– NO!  An implementation can silently decide to give you a team with fewer threads.

– Once a team of threads is established … the system will not reduce the size of the team.

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

int nthrds = omp_get_num_threads();

pooh(ID,A);

}

 Each thread calls pooh(ID,A) for ID = 0 to nthrds-1

Each thread 

executes  a 

copy of the 

code within 

the 

structured 

block

Runtime function to 

request a certain 

number of threads

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

Runtime function to 

return actual 

number of threads 

in the team
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An interesting problem to play with 
Numerical integration


4.0

(1+x2)
dx = 

0

1

 F(xi)x  
i = 0

N

Mathematically, we know that:

We can approximate the integral as a 

sum of rectangles:

Where each rectangle has width x and 

height F(xi) at the middle of interval i.

4.0

2.0

1.0

X
0.0



19

Serial PI program

static long num_steps = 100000;

double step;

int main ()

{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}

See OMP_exercises/pi.c
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Serial PI program

#include <omp.h>

static long num_steps = 100000;

double step;

int main ()

{ int i; double x, pi, sum = 0.0, tdata;

step = 1.0/(double) num_steps;

double tdata = omp_get_wtime();

for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

tdata = omp_get_wtime() - tdata;

printf(“ pi = %f in %f secs\n”,pi, tdata);

}

See OMP_exercises/pi.c

The library routine 

get_omp_wtime() 

is used to find the 

elapsed “wall 

time” for blocks of 

code
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Exercise: the parallel Pi program

• Create a parallel version of the pi program using a parallel 

construct:

#pragma omp parallel.

• Pay close attention to shared versus private variables.

• In addition to a parallel construct, you will need the runtime 

library routines

– int omp_get_num_threads();

– int omp_get_thread_num();

–double omp_get_wtime();

–omp_set_num_threads(); Time in Seconds since a 

fixed point in the past

Thread ID or rank

Number of threads in the team

Request a number of 

threads in the team

http://www.nersc.gov/users/software/programming-models/openmp/sc17-openmp/

git clone https://github.com/tgmattso/OpenMP_Exercises
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Hints: the Parallel Pi program

• Use a parallel construct:

#pragma omp parallel

• The challenge is to:

– divide loop iterations between threads (use the thread ID and the 

number of threads).

– Create an accumulator for each thread to hold partial sums that you 

can later combine to generate the global sum.

• In addition to a parallel construct, you will need the runtime 

library routines

– int omp_set_num_threads();

– int omp_get_num_threads();

– int omp_get_thread_num();

– double omp_get_wtime();



Results*
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threads 1st

SPMD*

1 1.86

2 1.03

3 1.08

4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

*SPMD: Single Program Multiple Data

*Intel compiler (icpc) with default optimization level (O2) on Apple OS X 10.7.3 with a dual core 

(four HW thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.
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SPMD: Single Program Mulitple Data

• Run the same program on P processing elements where P 

can be arbitrarily large. 

• Use P and the rank … an ID ranging from 0 to (P-1) … to 

select between a set of tasks and to manage any shared 

data structures. 

This design pattern is very general and has been used to 

support most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is 

probably the most commonly used pattern in the history of 

parallel programming.
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Why such poor scaling?    False sharing
• If independent data elements happen to sit on the same cache line, each 

update will cause the cache lines to “slosh back and forth” between threads 

… This is called “false sharing”.

• If you promote scalars to an array to support creation of an SPMD program, 

the array elements are contiguous in memory and hence share cache lines 

… Results in poor scalability.

• Solution: Pad arrays so elements you use are on distinct cache lines.

Sum[0] Sum[1] Sum[2] Sum[3] Sum[0] Sum[1] Sum[2] Sum[3]
Core 0 Core 1

L1 $ lines L1 $ lines

HW thrd. 0 HW thrd. 1 HW thrd. 2 HW thrd. 3

Shared last level cache and connection to I/O and DRAM
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#include <omp.h>

static long num_steps = 100000;         double step;

#define    PAD      8            // assume 64 byte L1 cache line size

#define NUM_THREADS 2

void main ()

{ int i, nthreads;  double pi, sum[NUM_THREADS][PAD];

step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{ int i, id,nthrds;

double x;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id == 0)   nthreads = nthrds;

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {

x = (i+0.5)*step;

sum[id][0] += 4.0/(1.0+x*x);

}

}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i][0] * step;

}

Example: Eliminate false sharing by padding the sum array

Pad the array so 

each sum value is 

in a different 

cache line



Results*: pi program padded accumulator

27

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st

SPMD

1st

SPMD 

padded

1 1.86 1.86

2 1.03 1.01

3 1.08 0.69

4 0.97 0.53

*Intel compiler (icpc) with default optimization level (O2) on Apple OS X 10.7.3 with a dual core 

(four HW thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.



Changing the Number of Threads

• Inside the OpenMP runtime is an Internal Control Variable (ICV) for the 

default number of threads requested by a parallel construct.

• The system has an implementation defined value for that ICV

• When an OpenMP program starts up, it queries an environment variable 

OMP_NUM_THREADS and sets the appropriate internal control variable to 

the value of OMP_NUM_THREADS

– For example, to set the default number of threads on my apple laptop

 export OMP_NUM_THREADS=12

• The omp_set_num_threads() runtime function overrides the value from the 

environment and resets the ICV to a new value.

• A clause on the parallel construct requests a number of threads for that 

parallel region, but it does not change the ICV

– #pragma omp parallel num_threads(4)

28
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Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data environment

• Memory model

• Irregular Parallelism and tasks

• Recap

• Beyond the common core:

– Worksharing revisited

– Synchronization: More than you ever wanted to know

– Threadprivate data

– Thread affinity and data locality
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Synchronization

• High level synchronization included in the common core 
(the full OpenMP specification has MANY more):

–critical

–barrier

Synchronization is used to 

impose order constraints and 

to protect access to shared 

data
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Synchronization: critical  

• Mutual exclusion: Only one thread at a time can enter a 
critical region.

float  res;

#pragma omp parallel

{     float B;   int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for(i=id;i<niters;i+=nthrds){

B =  big_job(i);

#pragma omp critical 

res += consume (B);

}

}

Threads wait 

their turn – only 

one at a time 

calls consume()
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Synchronization: barrier
• Barrier: a point in a program all threads much reach before any threads are 

allowed to proceed.

• It is a “stand alone” pragma meaning it is not associated with user code … it 
is an executable statement. 

double Arr[8], Brr[8];            int numthrds;

omp_set_num_threads(8)

#pragma omp parallel

{    int id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id==0) numthrds = nthrds; 

Arr[id] = big_ugly_calc(id, nthrds);

#pragma omp barrier 

Brr[id] = really_big_and_ugly(id, nthrds, Arr); 

}

Threads 

wait until all 

threads hit 

the barrier.  

Then they 

can go on.
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Exercise
• In your first Pi program, you probably used an array to create 

space for each thread to store its partial sum.

• If array elements happen to share a cache line, this leads to 

false sharing.
– Non-shared data in the same cache line so each update invalidates the 

cache line … in essence “sloshing independent data” back and forth 

between threads.

• Modify your “pi program” to avoid false sharing due to the 

partial sum array.
– #pragma omp critical

– #pragma omp parallel

– omp_set_num_threads()

– omp_get_num_threads()

– omp_get_thread_num()

– export OMP_NUM_THREADS=42



Pi program with false sharing*
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threads 1st

SPMD

1 1.86

2 1.03

3 1.08

4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

Recall that promoting sum to an 

array made the coding easy, 

but led to false sharing and 

poor performance.

*Intel compiler (icpc) with default optimization level (O2) on Apple OS X 10.7.3 with a dual core 

(four HW thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.
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#include <omp.h>

static long num_steps = 100000;         double step;

#define NUM_THREADS 2

void main ()

{ int nthreads; double  pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

int i, id, nthrds;    double x, sum;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id == 0)   nthreads = nthrds;   

for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {

x = (i+0.5)*step;

sum += 4.0/(1.0+x*x);

}

#pragma omp critical

pi += sum * step;

}

}

Example: Using a  critical section to remove impact of false sharing 

Sum goes “out of scope” beyond the parallel 

region … so you must sum it in here.   Must 

protect summation into pi in a critical region so 

updates don’t conflict

No array, so 

no false 

sharing. 

Create a scalar local 

to each thread to 

accumulate partial 

sums.



Results*: pi program critical section
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• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st

SPMD

1st

SPMD 

padded

SPMD 

critical

1 1.86 1.86 1.87

2 1.03 1.01 1.00

3 1.08 0.69 0.68

4 0.97 0.53 0.53

*Intel compiler (icpc) with default optimization level (O2) on Apple OS X 10.7.3 with a dual core 

(four HW thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.
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#include <omp.h>

static long num_steps = 100000;         double step;

#define NUM_THREADS 2

void main ()

{ int nthreads; double  pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

int i, id,nthrds;    double x;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id == 0)   nthreads = nthrds;   

for (i=id, sum=0.0;i< num_steps; i=i+nthreads){

x = (i+0.5)*step;

#pragma omp critical

pi += 4.0/(1.0+x*x);

}

}

pi *= step;

}

Example: Using a  critical section to remove impact of false sharing 

What would happen if 

you put the critical 

section inside the 

loop?

Be careful where 

you put a critical 

section
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Outline
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• Creating Threads
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– Worksharing revisited

– Synchronization: More than you ever wanted to know

– Threadprivate data

– Thread affinity and data locality
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The loop worksharing constructs

• The loop worksharing construct splits up loop iterations 
among the threads in a team

#pragma omp parallel

{

#pragma omp for 

for (I=0;I<N;I++){

NEAT_STUFF(I);

}

}

Loop construct name:

•C/C++: for

•Fortran: do

The loop control index I is made 

“private” to each thread  by default.  

Threads wait here until all 

threads are finished with the 

parallel loop before any proceed 

past the end of the loop



40

Loop worksharing constructs
A motivating example

for(i=0;i<N;i++)   { a[i] = a[i] + b[i];}

#pragma omp parallel

{

int id, i, Nthrds, istart, iend;

id = omp_get_thread_num();

Nthrds = omp_get_num_threads();

istart = id * N / Nthrds;

iend = (id+1) * N / Nthrds;

if (id == Nthrds-1)iend = N;

for(i=istart;i<iend;i++)   { a[i] = a[i] + b[i];}

}

#pragma omp parallel 

#pragma omp for   

for(i=0;i<N;i++)   { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel 

region

OpenMP parallel 

region and a 

worksharing for 

construct
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Loop worksharing constructs:
The schedule clause

• The schedule clause affects how loop iterations are mapped onto threads

– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.

– schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations have 
been handled.

Schedule Clause When To Use

STATIC Pre-determined and 
predictable by the 
programmer

DYNAMIC Unpredictable, highly 
variable work per 
iteration

Least work at 

runtime : 

scheduling done 

at compile-time

Most work at 

runtime : 

complex 

scheduling logic 

used at run-time
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Combined parallel/worksharing construct

• OpenMP shortcut: Put the “parallel” and the 
worksharing directive on the same line

double  res[MAX];  int i;

#pragma omp parallel 

{

#pragma omp for

for (i=0;i< MAX; i++) {

res[i] = huge();

} 

}

These are equivalent 

double  res[MAX];  int i;

#pragma omp parallel for

for (i=0;i< MAX; i++) {

res[i] = huge();

} 
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Working with loops

• Basic approach

– Find compute intensive loops

– Make the loop iterations independent ... So they can safely execute in 

any order without loop-carried dependencies

– Place the appropriate OpenMP directive and test

int i, j, A[MAX];

j = 5;

for (i=0;i< MAX; i++) {

j +=2;

A[i] = big(j); 

} 

int i,  A[MAX];

#pragma omp parallel for

for (i=0;i< MAX; i++) {

int j = 5 + 2*(i+1);

A[i] = big(j); 

} 
Remove loop 

carried 

dependence

Note: loop index 

“i” is private by 

default
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Reduction

• We are combining values into a single accumulation variable (ave) … 
there is a true dependence between loop iterations that can’t be trivially 
removed

• This is a very common situation … it is called a “reduction”.

• Support for reduction operations is included in most parallel programming 
environments.

double  ave=0.0, A[MAX];    int i;

for (i=0;i< MAX; i++) {

ave + = A[i];

} 

ave = ave/MAX; 

 How do we handle this case?
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Reduction
• OpenMP reduction clause:   

reduction (op : list)

• Inside a parallel or a work-sharing construct:

– A local copy of each list variable is made and initialized depending 

on the “op” (e.g. 0 for “+”).

– Updates occur on the local copy. 

– Local copies are reduced into a single value and combined with 

the original global value.

• The variables in “list” must be shared in the enclosing 

parallel region.  

double  ave=0.0, A[MAX];    int i;

#pragma omp parallel for reduction (+:ave)

for (i=0;i< MAX; i++) {

ave + = A[i];

} 

ave = ave/MAX; 
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OpenMP: Reduction operands/initial-values

• Many different associative operands can be used with reduction:

• Initial values are the ones that make sense mathematically.

Operator Initial value

+ 0

* 1

- 0

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value

& ~0

| 0

^ 0

&& 1

|| 0

Fortran Only

Operator Initial value

.AND. .true.

.OR. .false.

.NEQV. .false.

.IEOR. 0

.IOR. 0

.IAND. All bits on

.EQV. .true.
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Exercise: Pi with loops and a reduction

• Go back to the serial pi program and parallelize it with a loop 

construct

• Your goal is to minimize the number of changes made to the 

serial program.

#pragma omp parallel

#pragma omp for

#pragma omp parallel for

#pragma omp for reduction(op:list)

#pragma omp critical

int omp_get_num_threads();

int omp_get_thread_num();

double omp_get_wtime();

Remember: OpenMP makes the loop control index in a loop workshare construct 

private for you … you don’t need to do this yourself
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Example: Pi with a loop and a reduction

#include <omp.h>

static long num_steps = 100000;         double step;

void main ()

{    int i; double x, pi, sum = 0.0; 

step = 1.0/(double) num_steps;

#pragma omp parallel 

{

double x;

#pragma omp for reduction(+:sum)

for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

}

pi = step * sum;

}

Create a scalar local to each thread to hold 

value of x at the center of each interval

Create a team of threads … 

without a parallel construct, you’ll 

never have more than one thread

Break up loop iterations 

and assign them to 

threads … setting up a 

reduction into sum.  

Note … the loop index is 

local to a thread by default.



Results*: pi with a loop and a reduction
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• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st

SPMD

1st

SPMD 

padded

SPMD 

critical

PI Loop 

and 

reduction

1 1.86 1.86 1.87 1.91

2 1.03 1.01 1.00 1.02

3 1.08 0.69 0.68 0.80

4 0.97 0.53 0.53 0.68

*Intel compiler (icpc) with default optimization level (O2) on Apple OS X 10.7.3 with a dual core 

(four HW thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.
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The nowait clause

• Barriers are really expensive.  You need to understand when 
they are implied and how to skip them when its safe to do so. 

double A[big], B[big], C[big];

#pragma omp parallel 

{

int id=omp_get_thread_num();

A[id] = big_calc1(id);

#pragma omp barrier 

#pragma omp for 

for(i=0;i<N;i++){C[i]=big_calc3(i,A);}

#pragma omp for nowait

for(i=0;i<N;i++){ B[i]=big_calc2(C,  i); }

A[id] = big_calc4(id);

}
implicit barrier at the end 

of a parallel region

implicit barrier at the end of a for 

worksharing construct

no implicit barrier 

due to nowait
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Data environment:
Default storage attributes

• Shared memory programming model: 
–Most variables are shared by default

• Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE variables

– C: File scope variables, static

– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called 

from parallel regions are PRIVATE

– Automatic variables within a statement block are PRIVATE.
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double A[10];

int main() {

int index[10];

#pragma omp parallel  

work(index);

printf(“%d\n”, index[0]);

}

extern double A[10];

void work(int *index) {

double temp[10];

static int count;

...

}

Data sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are 

shared by all threads.

temp is local to each 

thread
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Data sharing:
Changing storage attributes

• One can selectively change storage attributes for constructs 
using the following clauses* (note: list is a comma-separated list of variables)

–shared(list)

–private(list)

– firstprivate(list)

• These can be used on parallel and for constructs … other 

than shared which can only be used on a parallel construct

• Force the programmer to explicitly define storage attributes

–default (none)

These clauses apply to 

the OpenMP construct 

NOT to the entire region.

default() can be used on 

parallel constructs
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Data sharing: Private clause

void wrong() {

int tmp = 0;

#pragma omp parallel for private(tmp)

for (int j = 0; j < 1000; ++j) 

tmp += j;

printf(“%d\n”, tmp);

}

• private(var)  creates a new local copy of var for each thread.

– The value of the private copies is uninitialized

– The value of the original variable is unchanged after the region

tmp was not 

initialized

tmp is 0 here

When you need 

to reference the 

variable tmp that 

exists prior to the 

construct, we call 

it the original 

variable.
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Data sharing: Private clause
When is the original variable valid?

int tmp;

void danger() {

tmp = 0;

#pragma omp parallel private(tmp)

work();

printf(“%d\n”, tmp);

}

• The original variable’s value is unspecified if it is referenced 
outside of the construct

– Implementations may reference the original variable or a copy ….. a 

dangerous programming practice!

– For example, consider what would happen if the compiler inlined work()?

extern int tmp;

void work() {

tmp = 5;

}

unspecified which 

copy of tmptmp has unspecified value



Firstprivate clause

• Variables initialized from a shared variable

• C++ objects are copy-constructed
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incr = 0;

#pragma omp parallel for firstprivate(incr)

for (i = 0; i <= MAX; i++) {

if ((i%2)==0) incr++;

A[i] = incr;

}

Each thread gets its own copy of 

incr with an initial value of 0
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Data sharing: 
A data environment test

• Consider this example of PRIVATE and FIRSTPRIVATE

• Are A,B,C private to each thread or shared inside the parallel region?

• What are their initial values inside and values after the parallel region?

variables:  A = 1,B = 1, C = 1

#pragma omp parallel private(B)  firstprivate(C)

Inside this parallel region ...

 “A” is shared by all threads; equals 1

 “B” and “C” are private to each thread.

– B’s initial value is undefined

– C’s initial value equals  1

Following the parallel region ...

 B and C revert to their original values of 1

 A is either 1 or the value  it was set to inside the parallel region
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Data sharing: Default clause
• default(none): Forces you to define the storage attributes for 

variables that appear inside the static extent of the construct … if you fail 
the compiler will complain.   Good programming practice!

• You can put the default clause on parallel and parallel + workshare 
constructs. 

The full OpenMP specification has other versions of the default clause, but they 

are not used very often so we skip them in the common core

#include <omp.h>

int main()

{

int i, j=5;      double x=1.0, y=42.0;

#pragma omp parallel for default(none) reduction(*:x)

for (i=0;i<N;i++){

for(j=0; j<3; j++)

x+= foobar(i, j, y);

}

printf(“ x is %f\n”,(float)x);

}

The static 

extent is the 

code in the 

compilation unit 

that contains 

the construct.

The compiler would 

complain about j and y, 

which is important since 

you don’t want j to be 

shared



Mandelbrot Set
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For each point c in the complex plane, 

is  z = z*z + c  bounded?

Black is inside set.  Other colors indicate how quickly it crossed threshold. 
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Exercise: Mandelbrot set area

• The supplied program (mandel.c) computes the area of a 

Mandelbrot set. 

• The program has been parallelized with OpenMP, but we 

were lazy and didn’t do it right.

• Find and fix the errors (hint … the problem is with the data 
environment).

• Once you have a working version,  try to optimize the 
program.
– Try different schedules on the parallel loop.

– Try different mechanisms to support mutual exclusion … do the 
efficiencies change?



The Mandelbrot area program
#include <omp.h>

# define NPOINTS 1000

# define MXITR 1000

struct d_complex{

double r;     double i;

};

void testpoint(struct d_complex);

struct d_complex c;

int numoutside = 0;

int main(){

int i, j;

double area, error, eps = 1.0e-5;

#pragma omp parallel for default(shared) private(c, j) \

firstprivate(eps)

for (i=0; i<NPOINTS; i++) {

for (j=0; j<NPOINTS; j++) {

c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;

c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;

testpoint(c);

}

}

area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-

numoutside)/(double)(NPOINTS*NPOINTS);

error=area/(double)NPOINTS;

} 62

void testpoint(struct d_complex c){

struct d_complex z;

int iter;

double temp;

z=c;

for (iter=0; iter<MXITR; iter++){

temp = (z.r*z.r)-(z.i*z.i)+c.r;

z.i = z.r*z.i*2+c.i;

z.r = temp;

if ((z.r*z.r+z.i*z.i)>4.0) {

#pragma omp critical

numoutside++;

break;

}

}

}

• eps was not initialized

• Protect updates of numoutside

• Which value of c does testpoint() 

see?  Global or private?
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OpenMP memory model

 Multiple copies of data may be present in memory, various levels of cache, or in 
registers

 OpenMP supports a shared memory model

 All threads share an address space, but it can get complicated: 

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

a

a

. . .

a
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OpenMP and relaxed consistency

• OpenMP supports a relaxed-consistency

shared memory model

– Threads can maintain a temporary view of shared memory 

that is not consistent with that of other threads

– These temporary views are made consistent only at certain 

points in the program

– The operation that enforces consistency is called the flush operation
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Flush operation

• A flush is a sequence point at which a thread is guaranteed 

to see a consistent view of memory

– All previous read/writes by this thread have completed and are visible 

to other threads

– No subsequent read/writes by this thread have occurred

• A flush operation is analogous to a fence in other shared 

memory APIs
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Flush and synchronization

• A flush operation is implied by OpenMP synchronizations, e.g.,

– at entry/exit of parallel regions

– at implicit and explicit barriers

– at entry/exit of critical regions

….

(but not at entry to worksharing regions) 

This means if you are mixing reads and writes of a variable across multiple 

threads, you cannot assume the reading threads see the results of the writes 

unless:

• the writing threads follow the writes with a construct that implies a flush.

• the reading threads precede the reads with a construct that implies a flush.

This is a rare event … or putting this another way, you should avoid writing 

code that depends on ordering reads/writes around flushes.
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What are tasks?

• Tasks are independent units of work

• Tasks are composed of:

– code to execute

– data to compute with

• Threads are assigned to perform the 

work of each task.

– The thread that encounters the task construct 

may execute the task immediately.

– The threads may defer execution until later Serial Parallel
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What are tasks?

• The task construct includes a structured 

block of code

• Inside a parallel region, a thread 

encountering a task construct will 

package up the code block and its data 

for execution

• Tasks can be nested: i.e. a task may 

itself generate tasks.
Serial Parallel

A common Pattern is to have one thread create the tasks while the 

other threads wait at a barrier and execute the tasks

70
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Single worksharing Construct

• The single construct denotes a block of code that is 
executed by only one thread (not necessarily the master 
thread).

• A barrier is implied at the end of the single block (can 
remove the barrier with a nowait clause).

#pragma omp parallel  

{

do_many_things();

#pragma omp single

{     exchange_boundaries();   }

do_many_other_things();

}



Task Directive

#pragma omp parallel

{ 

#pragma omp single

{ 

#pragma omp task

fred(); 

#pragma omp task

daisy(); 

#pragma omp task

billy(); 

} 

}

One Thread 

packages tasks

Create some threads

Tasks executed by 

some thread in some 

order

All tasks complete before this barrier is released

#pragma omp task [clauses]

structured-block    



Exercise: Simple tasks
• Write a program using tasks that will “randomly” generate one of two 

strings:

– I think race cars are fun

– I think car races are fun

• Hint: use tasks to print the indeterminate part of the output (i.e. the “race” 

or “car” parts).    

• This is called a “Race Condition”.  It occurs when the result of a program 

depends on how the OS schedules the threads.

• NOTE: A “data race” is when threads “race to update a shared variable”.  

They produce race conditions.  Programs containing data races are 

undefined (in OpenMP but also ANSI standards C++’11 and beyond).

#pragma omp parallel

#pragma omp task

#pragma omp single
73



Racey cars: solution

#include <stdio.h>

#include <omp.h>

int main()

{  printf("I think");

#pragma omp parallel

{

#pragma omp single

{

#pragma omp task

printf(" car");

#pragma omp task

printf(" race");

}

}

printf("s");

printf(" are fun!\n");

} 74
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When/where are tasks complete?

• At thread barriers (explicit or implicit)

– applies to all tasks generated in the current parallel region up to the 

barrier

• At taskwait directive

– i.e. Wait until all tasks defined in the current task have completed.  

#pragma omp taskwait

– Note: applies only to tasks generated in the current task, not to 

“descendants” .



Example
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#pragma omp parallel

{ 

#pragma omp single 

{ 

#pragma omp task

fred(); 

#pragma omp task

daisy(); 

#pragma taskwait

#pragma omp task

billy(); 

} 

}

fred() and daisy()

must complete before 
billy() starts
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Linked list traversal

• Classic linked list traversal

• Do some work on each item in the list

• Assume that items can be processed independently

• Cannot use an OpenMP loop directive

p = listhead ;

while (p) { 

process(p);

p=next(p) ;

} 
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Parallel linked list traversal

#pragma omp parallel

{ 

#pragma omp single

{ 

p = listhead ;

while (p) { 

#pragma omp task firstprivate(p)       

{         

process (p);

}

p=next (p) ;

} 

} 

}

makes a copy of p 

when the task is 

packaged

Only one thread 

packages tasks



Data scoping with tasks

• Variables can be shared, private or firstprivate with respect to 

task

• These concepts are a little bit different compared with 

threads:

– If a variable is shared on a task construct, the references to it inside 

the construct are to the storage with that name at the point where the 

task was encountered

– If a variable is private on a task construct, the references to it inside 

the construct are to new uninitialized storage that is created when the 

task is executed

– If a variable is firstprivate on a construct, the references to it inside the 

construct are to new storage that is created and initialized with the 

value of the existing storage of that name when the task is 

encountered

79
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Data scoping defaults

• The behavior you want for tasks is usually firstprivate, because the task 

may not be executed until later (and variables may have gone out of 

scope)

– Variables that are private when the task construct is encountered are firstprivate by 

default

• Variables that are shared in all constructs starting from the innermost 

enclosing parallel construct are shared by default

#pragma omp parallel shared(A) private(B)

{

...

#pragma omp task

{

int C;

compute(A, B, C);

}

}

A is shared

B is firstprivate

C is private



Example: Fibonacci numbers

• Fn = Fn-1 + Fn-2

• Inefficient O(n2) recursive 

implementation!

int fib (int n)

{

int x,y;

if (n < 2) return n;

x = fib(n-1);

y = fib (n-2);

return (x+y);

}

Int main()

{

int NW = 5000;

fib(NW);

}
81



Parallel Fibonacci
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• Binary tree of tasks

• Traversed using a recursive 

function

• A task cannot complete until all 

tasks below it in the tree are 

complete (enforced with taskwait)

• x,y are local, and so by default 

they are  private to current task

– must be shared on child tasks so they 

don’t create their own firstprivate

copies at this level! 

int fib (int n)

{   int x,y;

if (n < 2) return n;

#pragma omp task shared(x)

x = fib(n-1);

#pragma omp task shared(y)

y = fib (n-2);

#pragma omp taskwait

return (x+y);

}

Int main()

{  int NW = 5000;

#pragma omp parallel

{ 

#pragma omp single

fib(NW);

}

}



Divide and conquer

• Split the problem into smaller sub-problems; continue until 
the sub-problems can be solve directly

 3 Options:

 Do work as you split 

into sub-problems

 Do work only at the 

leaves

 Do work as you 

recombine

83
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Exercise: Pi with tasks

• Consider the program Pi_recur.c.  This program uses a 

recursive algorithm in integrate the function in the pi program.

– Parallelize this program using OpenMP tasks

#pragma omp parallel

#pragma omp task

#pragma omp taskwait

#pragma omp single

double omp_get_wtime()

int omp_get_thread_num();

int omp_get_num_threads();



Program: OpenMP tasks  
#include <omp.h>

static long num_steps = 100000000;

#define MIN_BLK  10000000

double pi_comp(int Nstart,int Nfinish,double step)

{   int i,iblk;

double x, sum = 0.0,sum1, sum2;

if (Nfinish-Nstart < MIN_BLK){

for (i=Nstart;i< Nfinish; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x); 

}

}

else{

iblk = Nfinish-Nstart;

#pragma omp task shared(sum1)

sum1 = pi_comp(Nstart,         Nfinish-iblk/2,step);

#pragma omp task shared(sum2)

sum2 = pi_comp(Nfinish-iblk/2, Nfinish,       step);

#pragma omp taskwait

sum = sum1 + sum2;

}return sum;

} 85

int main ()

{

int i;

double step, pi, sum;

step = 1.0/(double) num_steps;

#pragma omp parallel  

{

#pragma omp single

sum =    

pi_comp(0,num_steps,step);

}

pi = step * sum;

}



Results*: pi with tasks
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• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st SPMD SPMD 

critical

PI Loop Pi tasks

1 1.86 1.87 1.91 1.87

2 1.03 1.00 1.02 1.00

3 1.08 0.68 0.80 0.76

4 0.97 0.53 0.68 0.52

*Intel compiler (icpc) with default optimization level (O2) on Apple OS X 10.7.3 with a dual core 

(four HW thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.



87

Using tasks

• Don’t use tasks for things already well supported by 

OpenMP

–e.g. standard do/for loops

– the overhead of using tasks is greater

• Don’t expect miracles from the runtime

–best results usually obtained where the user controls the 

number and granularity of tasks
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OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved 

execution across threads

int omp_get_thread_num()

int omp_get_num_threads()

Create threads with a parallel region and split up the work using 

the number of threads and thread ID

double omp_get_wtime() Speedup and Amdahl's law.

False Sharing and other performance issues

setenv OMP_NUM_THREADS  N Internal control variables. Setting the default number of threads 

with an environment variable

#pragma omp barrier

#pragma omp critical

Synchronization and race conditions. Revisit interleaved 

execution.   

#pragma omp for

#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies

reduction(op:list) Reductions of values across a team of threads

schedule(dynamic [,chunk])

schedule (static [,chunk])

Loop schedules, loop overheads and load balance

private(list), firstprivate(list), shared(list) Data environment

nowait Disabling implied barriers on workshare constructs, the high cost of 

barriers, and the flush concept (but not the flush directive)

#pragma omp single Workshare with a single thread

#pragma omp task

#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 19 items
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There is much more to OpenMP than the 

Common Core.

• Synchronization mechanisms

– locks, flush and several forms of atomic

• Data environment

– lastprivate, threadprivate, default(private|shared)

• Fine grained task control

– dependencies, tied vs. untied tasks, task groups, task loops …

• Vectorization constructs

– simd, uniform, simdlen, inbranch vs. nobranch, ….

• Map work onto an attached device

– target, teams distribute parallel for, target data …

• … and much more.  The OpenMP 4.5 specification is over 

350 pages!!! 
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Don’t become overwhelmed.   Master the common core and move on to other 

constructs when you encounter problems that require them.
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OpenMP organizations

• OpenMP architecture review  board URL, the 

“owner” of the OpenMP specification:

www.openmp.org  

• OpenMP User’s Group (cOMPunity) URL:

www.compunity.org

Get involved, join the ARB and cOMPunity

and help define the future of OpenMP
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Books about OpenMP

• A book about OpenMP by a 

team of authors at the forefront 

of OpenMP’s evolution.

 A book about how to “think 
parallel” with examples in 
OpenMP, MPI and java



Resources:
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A great new book that 

covers OpenMP

features beyond 

OpenMP 2.5

Visit the OpenMP booth and enter a drawing for a chance to win a copy of the book.  

Drawing Tues and Wed @ 4:30, Thurs @ 2:00.  You must be present to win.



Background references 
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A great book that  explores key 

patterns with Cilk, TBB, 

OpenCL, and OpenMP (by 

McCool, Robison, and Reinders)

An excellent introduction and 

overview of multithreaded 

programming in general (by Clay 

Breshears) 



Please tell our SC tutorial overlords how 

amazingly GREAT this tutorial is!!!!
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Evaluation site URL: http://bit.ly/sc17-eval

Online feedback forms available through the following URL or QR code

http://bit.ly/sc17-eval
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The loop worksharing constructs

• The loop worksharing construct splits up loop iterations 
among the threads in a team

#pragma omp parallel

{

#pragma omp for 

for (I=0;I<N;I++){

NEAT_STUFF(I);

}

}

Loop construct name:

•C/C++: for

•Fortran: do

The variable I is made “private” to each 

thread  by default.  You could do this 

explicitly with a “private(I)” clause
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Loop worksharing constructs:
The schedule clause

• The schedule clause affects how loop iterations are mapped onto threads

– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.

– schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations have 
been handled.

– schedule(guided[,chunk])

– Threads dynamically grab blocks of iterations. The size of the block starts 
large and shrinks down to size “chunk” as the calculation proceeds.

– schedule(runtime)

– Schedule  and chunk size taken from the OMP_SCHEDULE environment 
variable (or the runtime library).

– schedule(auto)

– Schedule is left up to the runtime to choose (does not have to be any of the 
above).

OpenMP 4.5 added modifiers monotonic, nonmontonic and simd.  
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Schedule Clause When To Use

STATIC Pre-determined and 
predictable by the 
programmer

DYNAMIC Unpredictable, highly 
variable work per 
iteration

GUIDED Special case of dynamic 
to reduce scheduling 
overhead

AUTO When the runtime can 
“learn” from previous 
executions of the same 
loop

loop work-sharing constructs:
The schedule clause

Least work at 

runtime : 

scheduling done 

at compile-time

Most work at 

runtime : 

complex 

scheduling logic 

used at run-time



#pragma omp parallel for collapse(2)

for (int i=0; i<N; i++) {

for (int j=0; j<M; j++) {

.....

} 

}
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Nested loops

• Will form a single loop of length NxM and then parallelize 

that.

• Useful if N is O(no. of threads) so parallelizing the outer loop 

makes balancing the load difficult.

Number of loops 

to be 

parallelized, 

counting from 

the outside

 For perfectly nested rectangular loops we can parallelize 
multiple loops in the nest with the collapse clause: 

101
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Sections worksharing Construct

• The Sections worksharing construct gives a different 
structured block to each thread.  

#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

X_calculation();

#pragma omp section

y_calculation();

#pragma omp section

z_calculation();

}

}

By default, there is a barrier at the end of the “omp sections”.  

Use the “nowait” clause to turn off the barrier.



Array sections with reduce

#include <stdio.h> 

#define N 100 

void init(int n, float (*b)[N]); 

int main(){ 

int i,j; float a[N], b[N][N]; init(N,b); 

for(i=0; i<N; i++) a[i]=0.0e0; 

#pragma omp parallel for reduction(+:a[0:N]) private(j) 

for(i=0; i<N; i++){ 

for(j=0; j<N; j++){ 

a[j] += b[i][j]; 

} 

} 

printf(" a[0] a[N-1]: %f %f\n", a[0], a[N-1]); 

return 0; 
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Works the same as any 

other reduce … a private 

array is formed for each 

thread, element wise 

combination across 

threads and then with 

original array at the end
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Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data environment

• Memory model

• Irregular Parallelism and tasks

• Recap

• Beyond the common core:

– Worksharing revisited

– Synchronization: More than you ever wanted to know

– Thread private data

– Thread affinity and data locality
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Synchronization

• High level synchronization:

–critical

–barrier

–atomic

–ordered

• Low level synchronization

– flush

– locks (both simple and nested)

Synchronization is used to 

impose order constraints and 

to protect access to shared 

data

Covered earlier
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Synchronization: atomic

• Atomic provides mutual exclusion but only applies to the update 
of a memory location (the update of X in the following example)

#pragma omp parallel

{ 

double tmp, B;

B =  DOIT();

#pragma omp atomic 

X += big_ugly(B);

}

#pragma omp parallel

{ 

double B; 

B =  DOIT();

#pragma omp atomic 

X +=  big_ugly(B);

}
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Synchronization: atomic

• Atomic provides mutual exclusion but only applies to the update 
of a memory location (the update of X in the following example)

#pragma omp parallel

{ 

double B, tmp;

B =  DOIT();

tmp = big_ugly(B);

#pragma omp atomic 

X +=  tmp;

}

Atomic only protects the 

read/update of X

Additional forms of atomic were added in 3.1  (discussed later)
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Exercise

• In your first Pi program, you probably used an array to create 

space for each thread to store its partial sum.

• You fixed this by using a critical section instead of updating 

the array (remember .. the array you created by promoting 

the scalar “sum” to an array).

• Use and atomic instead.   Does the performance improve?



Parallel loop with ordered region

• An ordered clause on a loop worksharing construct

– indicates that the loop contains an ordered region

• The ordered construct defines an ordered region

– The Statements in ordered region execute in iteration order

#pragma omp for ordered
for (i=0; i<N; i++) {

float res = work(i);
#pragma omp ordered
{

printf("result for %d was %f\n", i, res);
fflush(stdout);

}
}   
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Parallelizing nested loops

• Pattern of dependencies between elements of x prevent 

straightforward parallelization

• is there a way to manage the synchronization so we can 

parallelize this loop?

#pragma omp parallel for collapse(2)
for (r=1; r<N; r++) {

for (c=1; c<N; c++) {

x[r][c] += fn(x[r-1][c], x[r][c-1]);

}   
}   
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• Will these nested parallel loops execute correctly?

x[r][c]

x[r-1][c]

x[r][c-1]

An array section  of x



Ordered stand-alone directive
• Specifies cross-iteration dependencies in a doacross loop nest 

… i.e. loop level parallelism over nested loops with a regular 

pattern of synchronization to manage dependencies.
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#pragma omp ordered depend(sink : vec)

#pragma omp ordered depend(source) 

• Depend clauses specify the order the threads execute 

ordered regions. 

– The sink dependence-type 

– specifies a cross-iteration dependence, where the iteration vector vec

indicates the iteration that satisfies the dependence. 

– The source dependence-type 

– specifies the cross-iteration dependences that arise from the current 

iteration. 

vec is a comma 

separated list of 

decencies …

one per loop 

involved in the 

dependencies 



Parallelizing DOACROSS loops

#pragma omp for ordered(2) collapse(2)
for (r=1; r<N; r++) {

for (c=1; c<N; c++) {
// other parallel work ...
#pragma omp ordered depend(sink:r-1,c) \

depend(sink:r,c-1)
x[r][c] += fn(x[r-1][c], x[r][c-1]);

#pragma omp ordered depend(source)
}   

}   
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x[r][c] is complete and 

released for use by 

other threads

Threads wait here until x[r-1][c] 

and x[r][c-1] have been 

released

2 loops contribute to the pattern 

of dependencies … so the 

dependency relations for each 

depend(sink) is of length 2
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OpenMP memory model
 OpenMP supports a shared memory model

 All threads share an address space, where variable can be stored or 
retrieved: 

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

 Threads maintain their own temporary view of memory as well … the 
details of which are not defined in OpenMP but this temporary view 
typically resides in caches, registers, write-buffers, etc.

a

a

. . .
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Flush operation

• Defines a sequence point at which a thread enforces a 

consistent view of memory.

• For variables visible to other threads and associated with the 

flush operation (the flush-set) 

– The compiler can’t move loads/stores of the flush-set around a flush:

– All previous read/writes of the flush-set  by this thread have completed 

– No subsequent read/writes of the flush-set by this thread have occurred

– Variables in the flush set are moved from temporary storage to shared 

memory.

– Reads of variables in the flush set following the flush are loaded from 

shared memory.

IMPORTANT POINT: The flush makes the calling threads temporary view match the 

view in shared memory.  Flush by itself does not force synchronization.
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Memory consistency: flush example

 Flush forces data to be updated in memory so other threads see the most 
recent value

double A;

A = compute();

#pragma omp flush(A)

// flush to memory to make sure other

//  threads can pick up the right value  

Note: OpenMP’s flush is analogous to a fence in other shared memory APIs

Flush without a list: flush set is all 

thread visible variables

Flush with a list: flush set is the list of 

variables
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Flush and synchronization

• A flush operation is implied by OpenMP synchronizations, e.g.,

– at entry/exit of parallel regions

– at implicit and explicit barriers

– at entry/exit of critical regions

– whenever a lock is set or unset

….

(but not at entry to worksharing regions or entry/exit of master regions) 
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Example: prod_cons.c

int main()
{
double *A, sum, runtime;     int flag = 0;

A = (double *) malloc(N*sizeof(double));

runtime = omp_get_wtime();

fill_rand(N, A);        // Producer: fill an array of data

sum = Sum_array(N, A);  // Consumer: sum the array

runtime = omp_get_wtime() - runtime;

printf(" In %lf secs, The sum is %lf \n",runtime,sum);
}

• Parallelize a producer/consumer program

– One thread produces values that another thread consumes.

– The key is to 

implement 

pairwise 

synchronization 

between threads

– Often used with a 

stream of 

produced values 

to implement 

“pipeline 

parallelism”
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Pairwise synchronization in OpenMP

• OpenMP lacks synchronization constructs that work between 

pairs of threads.

• When needed, you have to build it yourself.

• Pairwise synchronization

– Use a shared flag variable

– Reader spins waiting for the new flag value

– Use flushes to force updates to and from memory
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Exercise: Producer/consumer
int main()
{

double *A, sum, runtime; int numthreads, flag = 0;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{

fill_rand(N, A);

flag = 1;

}
#pragma omp section
{

while (flag == 0){

}

sum = Sum_array(N, A);
}

}
}

Put the flushes in the right places to 

make this program race-free.

Do you need any other 

synchronization constructs to make 

this work?
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Solution (try 1): Producer/consumer
int main()
{

double *A, sum, runtime; int numthreads, flag = 0;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{

fill_rand(N, A);
#pragma omp flush
flag = 1;
#pragma omp flush (flag)

}
#pragma omp section
{

#pragma omp flush (flag)
while (flag == 0){

#pragma omp flush (flag)
}
#pragma omp flush 
sum = Sum_array(N, A);

}
}

}

Use flag to Signal when the 

“produced” value is ready

Flush forces refresh to memory;  

guarantees that the other thread 

sees the new value of A

Notice you must put the flush inside the 

while loop to make sure the updated flag 

variable is seen

Flush needed on both “reader” and “writer” 

sides of the communication

This program works with the x86 memory model (loads and stores use relaxed 

atomics), but it technically has a race … on the store and later load of flag 



The OpenMP 3.1 atomics (1 of 2)

• Atomic was expanded to cover the full range of common scenarios 

where you need to protect a memory operation so it occurs atomically:

# pragma omp atomic [read | write | update | capture]
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• Atomic can protect loads

# pragma omp atomic read

v = x; 

• Atomic can protect stores

# pragma omp atomic write

x = expr; 

• Atomic can protect updates to a storage location (this is the default 

behavior … i.e. when you don’t provide a clause)

# pragma omp atomic update

x++;  or ++x;  or x--;  or –x;  or 

x binop= expr; or x = x binop expr;

This is the 

original OpenMP

atomic



The OpenMP 3.1 atomics (2 of 2)
• Atomic can protect the assignment of a value (its capture) AND an 

associated update operation:

# pragma omp atomic capture

statement or structured block
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• Where the statement is one of the following forms:

v = x++;       v = ++x;        v = x--;       v =  –x;       v = x binop expr;

• Where the structured block is one of the following forms:

{v = x;  x binop = expr;} {x  binop = expr;     v = x;}

{v=x;    x=x binop expr;} {X = x binop expr;   v = x;}

{v = x;   x++;} {v=x;     ++x:}

{++x;     v=x:} {x++;      v = x;}

{v = x;    x--;} {v= x;     --x;}

{--x;        v = x;} {x--;        v = x;}

The capture semantics in atomic were added to map onto common hardware 

supported atomic operations and to support modern lock free algorithms



Atomics and synchronization flags
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int main()
{ double *A, sum, runtime;

int numthreads, flag = 0, flg_tmp;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{  fill_rand(N, A);

#pragma omp flush
#pragma omp atomic write

flag = 1;
#pragma omp flush (flag)

}
#pragma omp section
{  while (1){

#pragma omp flush(flag) 
#pragma omp atomic read

flg_tmp= flag; 
if (flg_tmp==1) break;

}
#pragma omp flush
sum = Sum_array(N, A);

}
}

}

This program is truly race 

free … the reads and 

writes of flag are 

protected so the two 

threads cannot conflict 

Still painful and error 

prone due to all of the 

flushes that are required 



OpenMP 4.0 Atomic: Sequential consistency

• Sequential consistency:

– The order of loads and stores in a race-free program appear in some 

interleaved order and all threads in the team see this same order.

• OpenMP 4.0 added an optional clause to atomics

– #pragma omp atomic [read | write | update | capture] [seq_cst]

• In more pragmatic terms:

– If the seq_cst clause is included, OpenMP adds a flush without an 

argument list to the atomic operation so you don’t need to.

• In terms of the C++’11 memory model:

– Use of the seq_cst clause makes atomics follow the sequentially 

consistent memory order.

– Leaving off the seq_cst clause makes the atomics relaxed.
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4.0

Advice to programmers: save yourself a world of hurt … let OpenMP take 

care of your flushes for you whenever possible … use seq_cst



Atomics and synchronization flags (4.0)
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int main()
{ double *A, sum, runtime;

int numthreads, flag = 0, flg_tmp;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{  fill_rand(N, A);

#pragma omp atomic write seq_cst
flag = 1;

}
#pragma omp section
{  while (1){

#pragma omp atomic read seq_cst
flg_tmp= flag; 

if (flg_tmp==1) break;
}

sum = Sum_array(N, A);
}

}
}

This program is truly race 

free … the reads and 

writes of flag are protected 

so the two threads cannot 

conflict – and you do not 

use any explicit flush 

constructs (OpenMP does 

them for you)
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Synchronization: Lock routines

• Simple Lock routines:

–A simple lock is available if it is unset.

–omp_init_lock(), omp_set_lock(), 
omp_unset_lock(), omp_test_lock(), omp_destroy_lock()

• Nested Locks

–A nested lock is available if it is unset or if it is set but owned by 
the thread executing the nested lock function

–omp_init_nest_lock(), omp_set_nest_lock(), 
omp_unset_nest_lock(), omp_test_nest_lock(), 
omp_destroy_nest_lock()

Note: a thread always accesses the most recent copy of the lock, 

so you don’t need to use a flush on the lock variable.

A lock implies a 

memory fence (a 

“flush”) of all thread 

visible variables

Locks with hints were added in OpenMP 4.5 to suggest a lock strategy based on 

intended use (e.g. contended, unconteded, speculative,, unspeculative) 
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Synchronization: Simple locks
• Example: conflicts are rare, but to play it safe, we must assure mutual 

exclusion for updates to histogram elements.

#pragma omp parallel for

for(i=0;i<NBUCKETS; i++){

omp_init_lock(&hist_locks[i]);    hist[i] = 0;

}

#pragma omp parallel for

for(i=0;i<NVALS;i++){

ival = (int)  sample(arr[i]);

omp_set_lock(&hist_locks[ival]);   

hist[ival]++;

omp_unset_lock(&hist_locks[ival]);

}

for(i=0;i<NBUCKETS; i++)

omp_destroy_lock(&hist_locks[i]); 
Free-up storage when done.

One lock per element of hist

Enforce mutual 

exclusion on update 

to hist array
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Lock Example from Gafort (SpecOMP’2001)

• Genetic algorithm in Fortran

• Most “interesting” loop: shuffle the population.
– Original loop is not parallel; performs pair-wise swap of an array 

element with another, randomly selected element. There are 40,000 

elements.

– Parallelization idea: 

– Perform the swaps in parallel

– Need to prevent simultaneous access to same array element: use one 

lock per array element    40,000 locks.
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!$OMP PARALLEL PRIVATE(rand, iother, itemp, temp, my_cpu_id) 

my_cpu_id = 1

!$   my_cpu_id = omp_get_thread_num() + 1

!$OMP DO

DO j=1,npopsiz-1

CALL ran3(1,rand,my_cpu_id,0)

iother=j+1+DINT(DBLE(npopsiz-j)*rand)

!$      IF (j < iother) THEN

!$         CALL omp_set_lock(lck(j))

!$         CALL omp_set_lock(lck(iother))

!$      ELSE

!$         CALL omp_set_lock(lck(iother))

!$         CALL omp_set_lock(lck(j))

!$      END IF

itemp(1:nchrome)=iparent(1:nchrome,iother)

iparent(1:nchrome,iother)=iparent(1:nchrome,j)

iparent(1:nchrome,j)=itemp(1:nchrome)

temp=fitness(iother)

fitness(iother)=fitness(j)

fitness(j)=temp

!$     IF (j < iother) THEN

!$         CALL omp_unset_lock(lck(iother))

!$         CALL omp_unset_lock(lck(j))

!$     ELSE

!$         CALL omp_unset_lock(lck(j))

!$         CALL omp_unset_lock(lck(iother))

!$     END IF

END DO

!$OMP END DO

!$OMP END PARALLEL

Parallel loop

In shuffle.f

of Gafort

Exclusive access 

to array 

elements. 

Ordered locking 

prevents 

deadlock.



Exercise

• We provide a program in the file hist.c

• This program tests our random number generator by calling 

it many times and producing a histogram of the results.

• Parallelize this program. 
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– Thread affinity and data locality
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Data sharing: Threadprivate

• Makes global data private to a thread

– Fortran: COMMON blocks

– C: File scope and static variables, static class members

• Different from making them PRIVATE

– with PRIVATE global variables are masked. 

– THREADPRIVATE preserves global scope within each thread

• Threadprivate variables can be initialized using COPYIN

or at time of definition (using language-defined 
initialization capabilities)
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A threadprivate example (C)

int counter = 0;

#pragma omp threadprivate(counter)

int increment_counter()

{

counter++;

return (counter);

}

Use threadprivate to create a counter for each thread.
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Data copying: Copyin

parameter (N=1000)

common/buf/A(N)

!$OMP THREADPRIVATE(/buf/)

!$ Initialize the A array

call init_data(N,A)

!$OMP PARALLEL COPYIN(A)

… Now each thread sees threadprivate array A initialized 

… to the global value set in the subroutine init_data()

!$OMP END PARALLEL

end

You initialize threadprivate data using a copyin 

clause. 
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Data copying: Copyprivate

#include <omp.h>

void input_parameters (int, int); // fetch values of input parameters 

void do_work(int, int); 

void main()

{

int Nsize, choice;

#pragma omp parallel private (Nsize, choice)

{

#pragma omp single copyprivate (Nsize, choice)

input_parameters (*Nsize, *choice);

do_work(Nsize, choice);

}

}

Used with a single region to broadcast values of privates from one member of a 

team to the rest of the team
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Exercise: Monte Carlo calculations 
Using random numbers to solve tough problems

• Sample a problem domain to estimate areas, compute probabilities, 
find optimal values, etc.

• Example: Computing π with a digital dart board:

 Throw darts at the circle/square.

 Chance of falling in circle is 
proportional to ratio of areas:

Ac = r2 * π

As = (2*r) * (2*r)  = 4 * r2

P = Ac/As =  π /4

 Compute π by randomly 
choosing points; π is four times 
the fraction that falls in the circle

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000    π = 3.148
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Exercise: Monte Carlo pi (cont)

• We provide three files for this exercise
– pi_mc.c: the Monte Carlo method pi program

– random.c: a simple random number generator

– random.h: include file for random number generator

• Create a parallel version of this program without changing 
the interfaces to functions in random.c
– This is an exercise in modular software … why should a user of your 

parallel random number generator have to know any details of the 
generator or make any changes to how the generator is called?

– The random number generator must be thread-safe. 

• Extra Credit:
– Make your random number generator numerically correct (non-

overlapping sequences of pseudo-random numbers).
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Thread Affinity and Data Locality

• Affinity

– Process Affinity: bind processes (MPI tasks, etc.) to CPUs

– Thread Affinity: further binding threads to CPUs that are 

allocated to their parent process

• Data Locality

–Memory Locality: allocate memory as close as possible to the 

core on which the task that requested the memory is running

–Cache Locality: use data in cache as much as possible 

• Correct process, thread and memory affinity is the basis for 

getting optimal performance. 
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Memory Locality
• Most systems today are Non-Uniform Memory Access (NUMA)

• Example, the Intel® Xeon Phi™ processor
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Diagram is for conceptual purposes only and only illustrates a CPU and memory – it is not to scale and does not include

all functional areas of the CPU, nor does it represent actual component layout.
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Memory Locality

• Memory access in different NUMA domains are different

– Accessing memory in remote NUMA is slower than accessing 

memory in local NUMA

– Accessing High Bandwidth Memory on KNL* is faster than DDR

• OpenMP does not explicitly map data across shared 

memories

• Memory locality is important since it impacts both memory 

and intra-node performance
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*KNL: Intel® Xeon Phi™ processor 7250 with 68 cores @ 1.4 Ghz …

the “bootable” version that sits in a socket, not a co-processor



Example Compute Nodes (Intel Haswell*)

• An Intel Haswell node has 32 cores (64 CPUs), 128 MB DDR memory.

• 2 NUMA domains per node, 16 cores per NUMA domain.  2 hardware 

threads (CPUs) per core.

• Memory bandwidth is non-homogeneous among NUMA domains.
– CPUs 0-15, 32-47 are closer to memory in NUMA domain 0, farther to memory in NUMA 

domain 1.

– CPUs 16-31, 48-64 are closer to memory in NUMA domain 1, farther to memory in NUMA 

domain 0.

142*Haswell: 16-core Intel® Xeon™ Processor E5-2698 v3 at 2.3 GHz



Tools to Check Compute Node Information (1)

• numactl: controls NUMA policy for processes or shared 

memory

– numactl -H: provides NUMA info of the CPUs

% numactl –H

% numactl -H 

available: 2 nodes (0-1)

node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

node 0 size: 64430 MB

node 0 free: 63002 MB

node 1 cpus: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 48 49 50 51 52 53 54 55 56 57 58 59 60 61 

62 63

node 1 size: 64635 MB

node 1 free: 63395 MB

node distances:node   0   1   

0:  10  21   

1:  21  10 
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Tools to Check Compute Node Information (2)

• Portable Hardware Locality (hwloc)

– hwloc-ls: provides a graphical representation of the system 

topology, NUMA nodes, cache info, and the mapping of procs.

% hwloc-ls
Cori Haswell* node example

32 cores, 2 sockets

144*Haswell: 16-core Intel® Xeon™ Processor E5-2698 v3 at 2.3 GHz



Memory Affinity: “First Touch” Memory

Red:  step 1.1 + step 2.  No First Touch

Blue: step 1.2 + step 2.  First Touch

Step 1.1 Initialization         

by master thread only

for (j=0; j<VectorSize; j++) { 

a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

Step 1.2 Initialization 

by all threads

#pragma omp parallel for 

for (j=0; j<VectorSize; j++) { 

a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

Step 2 Compute

#pragma omp parallel for

for (j=0; j<VectorSize; j++) {

a[j]=b[j]+d*c[j];}

Memory affinity is not defined when 

memory was allocated, instead it will 

be defined at initialization. Memory will 

be local to the thread which initializes 

it. This is called first touch policy. 
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“Perfect Touch” is Hard

146

• Hard to do “perfect touch” for real applications.  

• General recommendation is to use number of threads fewer 

than number of CPUs per NUMA domain.

• In the previous example, 16 cores (32 CPUs) per NUMA 

domain. Sample run options:

– 2 MPI tasks, 1 MPI task per NUMA domain, with 32 OpenMP threads 

(if using hyperthreads) or 16 OpenMP threads (if not using 

hyperthreads) per MPI task 

– 4 MPI tasks, 2 MPI tasks per NUMA domain, with 16 OpenMP

threads (if using hyperthreads) or 8 OpenMP threads (if not using 

hyperthreads) per MPI task

– …



Runtime Environment Variable: 

OMP_PROC_BIND

• Controls thread affinity within and between OpenMP places

• OpenMP 3.1 only has OMP_PROC_BIND, either TRUE or 

FALSE.

– If true, the runtime will not move threads around between processors.

• OpenMP 4.0 still allows the above. Added options:

– close: bind threads close to the master thread

– spread: bind threads as evenly distributed (spreaded) as possible

– master: bind threads to the same place as the master thread

• Examples: 

– OMP_PROC_BIND=spread

– OMP_PROC_BIND=spread,close (for nested levels)
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Runtime Environment Variable: 

OMP_PROC_BIND (2)

- 148 -

• Use 4 cores total, 2 hyperthreads per core, and OMP_NUM_THREADS=4 an 

example

• none: no affinity setting. 

• close: Bind threads as close to each other as possible

• spread: Bind threads as far apart as possible.   

• master: bind threads to the same place as the master thread

Node Core 0 Core 1 Core 2 Core 3

HT1 HT2 HT1 HT2 HT

1

HT2 HT1 HT

2

Thread 0 1 2 3

Node Core 0 Core 1 Core 2 Core 3

HT1 HT2 HT1 HT2 HT

1

HT2 HT1 HT

2

Thread 0 1 2 3



Runtime Environment Variable: 

OMP_PLACES (1)
• OpenMP 4.0 added OMP_PLACES environment variable

– To control thread allocation

– defines a series of places to which the threads are assigned

• OMP_PLACES can be

– threads: each place corresponds to a single hardware thread on the 

target machine. 

– cores: each place corresponds to a single core (having one or more 

hardware threads) on the target machine. 

– sockets: each place corresponds to a single socket (consisting of one 

or more cores) on the target machine. 

– A list with explicit CPU ids (see next slide) 

• Examples:

– export OMP_PLACES=threads

– export OMP_PLACES=cores
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Runtime Environment Variable: 

OMP_PLACES (2)
• OMP_PLACES can also be

– A list with explicit place values of CPU ids, such as: 

– "{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}” 

– “{0:4},{4:4},{8:4},{12:4}” (default stride is 1)

– Format: {lower-bound:length:stride}. Thus, specifying {0:3:2} is the 

same as specifying {0,2,4}

• Examples:

– export OMP_PLACES=“ {0:4:2},{1:4:2}”  (which is equivalent to 

“{0,2,4,6},{1,3,5,7}”)

– export OMP_PLACES=“{0:8:1}”  (which is equivalent to 

“{0,1,2,3,4,5,6,7}”
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Other Runtime Environment Variables 

for Affinity Support

• OMP_NUM_THREADS

• OMP_THREAD_LIMIT

• OMP_NESTED

• OMP_MAX_ACTIVE_LEVELS

• Names are upper case, values are case insensitive
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OMP_PROC_BIND Choices for STREAM

OMP_NUM_THREADS=32

OMP_PLACES=threads

OMP_PROC_BIND=close

Threads 0 to 31 bind to 

CPUs 

0,32,1,33,2,34,…15,47.  All 

threads are in the first 

socket.  The second socket 

is idle.  Not optimal.

OMP_PROC_BIND=spread

Threads 0 to 31 bind to 

CPUs 0,1,2,… to 31.  Both 

sockets and memory are 

used to maximize memory 

bandwidth.

Blue:  OMP_PROC_BIND=close

Red:   OMP_PROC_BIND=spread

Both with First Touch
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Affinity Clauses for OpenMP Parallel 

Construct

• The “num_threads” and “proc_bind” clauses can be used

– The values set with these clauses take precedence over values set 

by runtime environment variables

• Helps code portability

• Examples:

– C/C++:

#pragma omp parallel num_threads(2) proc_bind(spread)

– Fortran:

!$omp parallel num_threads (2) proc_bind (spread)

...

!$omp end parallel 

153



Runtime APIs for Thread Affinity Support

• OpenMP 4.5 added runtime functions to determine the effect 

of thread affinity clauses

• Query functions for OpenMP thread affinity were added 

– omp_get_num_places: returns the number of places

– omp_get_place_num_procs: returns number of processors in the 

given place

– omp_get_place_proc_ids: returns the ids of the processors in the 

given place

– omp_get_place_num: returns the place number of the place to 

which the current thread is bound

– omp_get_partition_num_places: returns the number of places in 

the current partition

– omp_get_partition_place_nums: returns the list of place numbers 

corresponding to the places in the current partition
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Other Runtime APIs for Thread Affinity 

Support

• omp_get_nested, omp_set_nested

• omp_get_thread_limit

• omp_get_level

• omp_get_active_level

• omp_get_max_active_levels, omp_set_max_active_levels

• omp_get_proc_bind, omp_set_proc_bind

• omp_get_num_threads, omp_set_num_threads

• omp_get_max_threads

- 155 -
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Exercise: “First Touch” with STREAM 

benchmark

• STREAM benchmark codes: stream.c, stream.f

• Check the source codes to see if “first touch” is implemented

• With “first touch” on (stream.c) and off (stream_nft.c), experiment with 

different OMP_NUM_THREADS and OMP_PROC_BIND settings to 

understand how “first touch” and OMP_PROC_BIND choices affect 

STREAM memory bandwidth results (look at the Best Rate for Triad in 

the output). 

• Compare your results with the two STREAM plots shown earlier in this 

slide deck.
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Sample Nested OpenMP Program

#include <omp.h>

#include <stdio.h>

void report_num_threads(int level)

{

#pragma omp single {

printf("Level %d: number of threads in the 

team: %d\n", level, omp_get_num_threads());

}

}

int main()

{

omp_set_dynamic(0);

#pragma omp parallel num_threads(2) {

report_num_threads(1);

#pragma omp parallel num_threads(2) {

report_num_threads(2);

#pragma omp parallel num_threads(2) {

report_num_threads(3);

}

}

}

return(0);

}

% a.out

Level 1: number of threads in the team: 2

Level 2: number of threads in the team: 1

Level 3: number of threads in the team: 1

Level 2: number of threads in the team: 1

Level 3: number of threads in the team: 1

% export OMP_NESTED=true

% export OMP_MAX_ACTIVE_LEVELS=3

% a.out

Level 1: number of threads in the team: 2

Level 2: number of threads in the team: 2

Level 2: number of threads in the team: 2

Level 3: number of threads in the team: 2

Level 3: number of threads in the team: 2

Level 3: number of threads in the team: 2

Level 3: number of threads in the team: 2

Level 0: P0

Level 1: P0 P1

Level 2: P0 P2; P1 P3

Level 3: P0 P4; P2 P5; P1 P6; P3 P7
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Process and Thread Affinity in Nested OpenMP

• A combination of OpenMP environment variables and run time flags are needed 
for different compilers and different batch schedulers on different systems. 

• Use num_threads clause in source codes to set threads for nested regions. 

• For most other non-nested regions, use OMP_NUM_THREADS environment 
variable for simplicity and flexibility.

Example: Use Intel compiler with SLURM on Cori Haswell:

export OMP_NESTED=true

export OMP_MAX_ACTIVE_LEVELS=2

export  OMP_NUM_THREADS=4,4

export OMP_PROC_BIND=spread,close

export OMP_PLACES=threads

srun -n 4 -c 16 –cpu_bind=cores ./nested.intel.cori

spread

close

Illustration of a system with:

2 sockets, 4 cores per 

socket, 

4 hyper-threads per core
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When to Use Nested OpenMP

• Beneficial to use nested OpenMP to allow more fine-grained 

thread parallelism. 

• Some application teams are exploring with nested OpenMP

to allow more fine-grained thread parallelism.

– Hybrid MPI/OpenMP not using node fully packed

– Top level OpenMP loop does not use all available threads

– Multiple levels of OpenMP loops are not easily collapsed

– Certain computational intensive kernels could use more threads

– MKL can use extra cores with nested OpenMP

• Nested level can be arbitrarily deep.
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Use Multiple Threads in MKL

• By Default, in OpenMP parallel regions, only 1 thread will be 

used for MKL calls. 

– MKL_DYNAMICS is true by default

• Nested OpenMP can be used to enable multiple threads for 

MKL calls.  Treat MKL as a nested inner OpenMP region.

• Sample settings

export OMP_NESTED=true

export OMP_PLACES=cores

export OMP_PROC_BIND=sprad,close

export OMP_NUM_THREADS=6,4

export MKL_DYNAMICS=false 

export OMP_MAX_ACTIVE_LEVELS=2
FFT3D on KNC, Ng=643 example 

Courtesy of Jeongnim Kim,  Intel

160
*KNC: Intel® Xeon Phi™ processor (Knights Corner) … the first generation co-processor version of the chip. 



Example Compute Nodes (Cori KNL*)

• A quad,cache node has only 1 NUMA node with all CPUs on the NUMA node 0 

(DDR memory). The MCDRAM is hidden from the “numactl –H” result since it is a 

cache. 

• A quad,flat node has only 2 NUMA nodes with all CPUs on the NUMA node 0 (DDR 

memory). And NUMA node 1 has MCDRAM only.

• A snc2,flat node has 4 NUMA domains with DDR memory and all CPUs on NUMA 

nodes 0 and 1.  (NUMA node 0 has physical cores 0 to 33 and all corresponding 

hyperthreads, and NUMA node 1 has physical cores 34 to 67 and all corresponding 

hyperthreads). NUMA nodes 2 and 3 have MCDRAM only.

• A Cori KNL node has 68 cores/272 CPUs, 96 GB DDR memory, 16 GB 

high  bandwidth on package memory (MCDRAM).

• Three cluster modes, all-to-all, quadrant, sub-NUMA clustering, are 

available at boot time to configure the KNL mesh interconnect.

161*KNL: Intel® Xeon Phi™ processor 7250 with 68 cores @ 1.4 GHz 



available: 2 nodes (0-1)

node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 

270 271

node 0 size: 96723 MB

node 0 free: 93924 MB

node 1 cpus: 

node 1 size: 16157 MB

node 1 free: 16088 MB

node distances:

node   0   1 

0:  10  31 

1:  31  10 

Intel KNL Quad,Flat Node Example

% numactl –H

• The quad,flat mode has only 2 NUMA nodes with all CPUs 

on the NUMA node 0 (DDR memory). 

• And NUMA node 1 has MCDRAM (high bandwidth memory).

Cori KNL quad,flat node example

68 cores (272 CPUs)
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Exercise: Affinity Choices and Results

• Pure OpenMP code: xthi-omp.c

• Nested OpenMP code: xthi-nested-omp.c

• Sample output:

% ./xthi-omp |sort –k4n

Hello from thread 0, on nid00011. (core affinity = 0)

Hello from thread 1, on nid00011. (core affinity = 4)

Hello from thread 2, on nid00011. (core affinity = 8) ...

• Experiment with different OMP_NUM_THREADS, 

OMP_PROC_BIND, and OMP_PLACES settings to check thread 

affinity on different compute node architectures (for example, Cori 

Haswell and KNL).
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Essential runtime settings for KNL MCDRAM 

Memory Affinity 

• In quad, cache mode, no special setting is needed to use 

MCDRAM

• In quad,flat mode, using quad,flat as an example

– NUMA node 1 is MCDRAM

• Enforced memory mapping to MCDRAM

– If using >16 GB, malloc will fail

– Use “numactl -m 1 ./myapp” as the executable    

(instead of “./myapp”)

• Preferred memory mapping to MCDRAM:  

– If using >16 GB, malloc will spill to DDR

– Use “numactl -p 1 ./myapp” as the executable 

(instead of “./myapp”)
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Summary for Thread Affinity and Data Locality

• Achieving best data locality, and optimal process and thread affinity is 

crucial in getting good performance with OpenMP, yet it is not 

straightforward to do so. 

– Understand the node architecture with tools such as “numactl -H” first.

– Always use simple examples with the same settings for your real application 

to verify first. 

• Exploit first touch data policy, optimize code for cache locality.

• Pay special attention to avoid false sharing.

• Put threads far apart (spread) may improve aggregated memory 

bandwidth and available cache size for your application, but may also 

increase synchronization overhead. And putting threads “close” have 

the reverse impact as “spread”.

• For nested OpenMP, set OMP_PROC_BIND=spread,close is generally 

recommended.

• Use numactl -m or -p option to explicitly request memory allocation in 

specific NUMA domain (for example: high bandwidth memory in KNL)

165*KNL: Intel® Xeon Phi™ processor 7250 with 68 cores @ 1.4 GHz 
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Appendices
• Challenge Problems

• Challenge Problems: solutions

– Monte Carlo PI and random number generators

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP



Challenge problems

• Long term retention of acquired skills is best supported by 

“random practice”.

– i.e., a set of exercises where you must draw on multiple facets of the 

skills you are learning.

• To support “Random Practice” we have assembled a set of 

“challenge problems”

1. Parallel molecular dynamics

2. Optimizing matrix multiplication

3. Traversing linked lists in different ways

4. Recursive matrix multiplication algorithms
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Challenge 1: Molecular dynamics

• The code supplied is a simple molecular dynamics 

simulation of the melting of solid argon 

• Computation is dominated by the calculation of force pairs in 
subroutine forces (in forces.c)

• Parallelise this routine using a parallel for construct and 

atomics; think carefully about which variables should be 

SHARED, PRIVATE or REDUCTION variables 

• Experiment with different schedule kinds
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Challenge 1: MD (cont.)

• Once you have a working version, move the parallel region 
out to encompass the iteration loop in main.c
– Code other than the forces loop must be executed by a single thread 

(or workshared).

– How does the data sharing change? 

• The atomics are a bottleneck on most systems. 
– This can be avoided by introducing a temporary array for the force 

accumulation, with an extra dimension indexed by thread number

– Which thread(s) should do the final accumulation into f? 
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Challenge 1 MD: (cont.)

• Another option is to use locks
– Declare an array of locks

– Associate each lock with some subset of the particles

– Any thread that updates the force on a particle must hold the 
corresponding lock

– Try to avoid unnecessary acquires/releases

– What is the best number of particles per lock? 
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Challenge 2: Matrix multiplication

• Parallelize the matrix multiplication program in the file 

matmul.c

• Can you optimize the program by playing with how the loops 

are scheduled?

• Try the following and see how they interact with the 

constructs in OpenMP

– Alignment

– Cache blocking

– Loop unrolling

– Vectorization

• Goal: Can you approach the peak performance of the 

computer?
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Challenge 3: Traversing linked lists  

• Consider the program linked.c

– Traverses a linked list, computing a sequence of Fibonacci numbers 

at each node

• Parallelize this program two different ways

1. Use OpenMP tasks

2. Use anything you choose in OpenMP other than tasks.

• The second approach (no tasks) can be difficult and may 

take considerable creativity in how you approach the 

problem (why its such a pedagogically valuable problem)
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Challenge 4: Recursive matrix multiplication

• The following three slides explain how to use a recursive 

algorithm to multiply a pair of matrices

• Source code implementing this algorithm is provided in the 

file matmul_recur.c

• Parallelize this program using OpenMP tasks



Challenge 4: Recursive matrix multiplication

• Quarter each input matrix and output matrix

• Treat each submatrix as a single element and multiply

• 8 submatrix multiplications, 4 additions

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2
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Challenge 4: Recursive matrix multiplication

How to multiply submatrices?

• Use the same routine that is computing the full matrix 

multiplication

– Quarter each input submatrix and output submatrix

– Treat each sub-submatrix as a single element and multiply

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C111,1 = A111,1·B111,1 + A111,2·B112,1 + 

A121,1·B211,1 + A121,2·B212,1

C1,1 = A1,1·B1,1 + A1,2·B2,1
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A1,1

A111,1 A111,2

A112,1 A112,2

B1,1

B111,1 B111,2

B112,1 B112,2

C1,1

C111,1 C111,2

C112,1 C112,2



C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2

Challenge 4: Recursive matrix multiplication

Recursively multiply submatrices

• Also need stopping criteria for recursion
176

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl, 

double **A, double **B, double **C)

{// Dimensions: A[mf..ml][pf..pl]  B[pf..pl][nf..nl] C[mf..ml][nf..nl]

// C11 += A11*B11

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A,B,C);  

// C11 += A12*B21

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A,B,C);  

. . . 

}

 Need range of indices to define each submatrix to be used
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Appendices
• Challenge Problems

• Challenge Problems: solutions

– Monte Carlo PI and random number generators

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP
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Computers and random numbers

• We use “dice” to make random numbers: 
– Given previous values, you cannot predict the next value.

– There are no patterns in the series … and it goes on forever.

• Computers are deterministic machines … set an initial state, 
run a sequence of predefined instructions, and you get a 
deterministic answer
– By design, computers are not random and cannot produce random 

numbers.

• However, with some very clever programming, we can make 
“pseudo random” numbers that are as random as you need 
them to be … but only if you are very careful.

• Why do I care?  Random numbers drive statistical methods 
used in countless applications:
– Sample a large space of alternatives to find statistically good answers 

(Monte Carlo methods).
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Monte Carlo Calculations 
Using Random numbers to solve tough problems

• Sample a problem domain to estimate areas, compute probabilities, 
find optimal values, etc.

• Example: Computing π with a digital dart board:

 Throw darts at the circle/square.

 Chance of falling in circle is 
proportional to ratio of areas:

Ac = r2 * π

As = (2*r) * (2*r)  = 4 * r2

P = Ac/As =  π /4

 Compute π by randomly 
choosing points, count the 
fraction that falls in the circle, 
compute pi.  

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000    π = 3.148
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Parallel Programmers love Monte Carlo 

algorithms

#include “omp.h”
static long num_trials = 10000;
int main ()
{

long i;      long Ncirc = 0;       double pi, x, y;
double r = 1.0;   // radius of circle. Side of squrare is 2*r 
seed(0,-r, r);  // The circle and square are centered at the origin
#pragma omp parallel for private (x, y) reduction (+:Ncirc)
for(i=0;i<num_trials; i++)
{

x = random();         y = random();
if ( x*x + y*y) <= r*r)   Ncirc++;

}

pi = 4.0 * ((double)Ncirc/(double)num_trials);
printf("\n %d trials, pi is %f \n",num_trials, pi);

}

Embarrassingly parallel: the 
parallelism is so easy its 
embarrassing.

Add two lines and you have a 
parallel program.
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Linear Congruential Generator (LCG)

• LCG: Easy to write, cheap to compute, portable, OK quality

 If you pick the multiplier and addend correctly, LCG has a period of 
PMOD.

 Picking good LCG parameters is complicated, so look it up 
(Numerical Recipes is a good source).  I used the following:

 MULTIPLIER = 1366

 ADDEND = 150889

 PMOD = 714025

random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD;

random_last = random_next;



182

LCG code

static long MULTIPLIER  = 1366;
static long ADDEND      = 150889;
static long PMOD        = 714025;
long random_last = 0;
double random ()
{

long random_next;

random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD;
random_last = random_next;

return ((double)random_next/(double)PMOD);
}

Seed the pseudo random 

sequence by setting 

random_last
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Running the PI_MC program with LCG generator

0.00001

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6

LCG - one thread

LCG, 4 threads,

trail 1

LCG 4 threads,

trial 2

LCG, 4 threads,

trial 3
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0
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Log10 number of samples

Run the same 

program the 

same way and 

get different 

answers!  

That is not 

acceptable!

Issue: my LCG 

generator is not 

threadsafe

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core laptop (Intel 

T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP.
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LCG code: threadsafe version

static long MULTIPLIER  = 1366;
static long ADDEND      = 150889;
static long PMOD        = 714025;
long random_last = 0;
#pragma omp threadprivate(random_last)
double random ()
{

long random_next;

random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD;
random_last = random_next;

return ((double)random_next/(double)PMOD);
}

random_last carries state 

between random number 

computations,

To make the generator 

threadsafe, make 

random_last threadprivate 

so each thread has its 

own copy.
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Thread safe random number generators

L
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Log10 number of samples
Thread safe 

version gives the 

same answer each 

time you run the 

program.

But for large 

number of 

samples, its 

quality is lower 

than the one 

thread result!

Why?

0.00001

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6 LCG - one

thread

LCG 4 threads,

trial 1

LCT 4 threads,

trial 2

LCG 4 threads,

trial 3

LCG 4 threads,

thread safe
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Pseudo Random Sequences
• Random number Generators (RNGs) define a sequence of pseudo-random 

numbers of length equal to the period of the RNG

 In a typical problem, you grab a subsequence of the RNG range

Seed determines starting point

 Grab arbitrary seeds and you may generate overlapping sequences  

 E.g. three sequences … last one wraps at the end of the RNG period.

 Overlapping sequences = over-sampling and bad statistics … lower quality or 
even wrong answers!

Thread 1

Thread 2

Thread 3
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Parallel random number generators

• Multiple threads cooperate to generate and use random 
numbers.

• Solutions:
– Replicate and Pray
– Give each thread a separate, independent generator
– Have one thread generate all the numbers.
– Leapfrog … deal out sequence values “round robin” 

as if dealing a deck of cards.
– Block method … pick your seed so each threads gets 

a distinct contiguous block.
• Other than “replicate and pray”, these are difficult to 

implement.  Be smart … buy a math library that does it 
right.

If done right, can 

generate the 

same sequence 

regardless of the 

number of 

threads …

Nice for 

debugging, but 

not really needed 

scientifically.

Intel’s Math kernel Library supports all of these 

methods.
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MKL Random number generators (RNG)

#define BLOCK 100

double  buff[BLOCK]; 

VSLStreamStatePtr stream;

vslNewStream(&ran_stream, VSL_BRNG_WH, (int)seed_val); 

vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream, 

BLOCK, buff, low, hi)

vslDeleteStream( &stream );

 MKL includes several families of RNGs in its vector statistics library.

 Specialized to efficiently generate vectors of random numbers

Initialize a 

stream or 

pseudo 

random 

numbers

Select type of RNG 

and set seed

Fill buff with BLOCK pseudo rand.  

nums, uniformly distributed with values 

between lo and hi.

Delete the stream when you are done
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Wichmann-Hill generators (WH)

• WH is a family of 273 parameter sets each defining a non-

overlapping and independent RNG.

• Easy to use, just make each stream threadprivate and initiate RNG 

stream so each thread gets a unique WG RNG. 

VSLStreamStatePtr stream;

#pragma omp threadprivate(stream)

…

vslNewStream(&ran_stream, VSL_BRNG_WH+Thrd_ID, (int)seed);
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Independent Generator for each thread
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Log10 number of samples

Notice that once 

you get beyond 

the high error, 

small sample 

count range, 

adding threads 

doesn’t 

decrease quality 

of random 

sampling.
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#pragma omp single

{   nthreads = omp_get_num_threads();

iseed = PMOD/MULTIPLIER;     // just pick a seed

pseed[0] = iseed;

mult_n = MULTIPLIER;

for (i = 1; i < nthreads; ++i)

{

iseed = (unsigned long long)((MULTIPLIER * iseed) % PMOD);

pseed[i] = iseed;

mult_n = (mult_n * MULTIPLIER) % PMOD;

}

}

random_last = (unsigned long long) pseed[id];

Leap Frog method
• Interleave samples in the sequence of pseudo random numbers:

– Thread i starts at the ith number in the sequence

– Stride through sequence, stride length = number of threads.

• Result … the same sequence of values regardless of the number of 

threads.

One thread 

computes offsets 

and strided 

multiplier

LCG with Addend = 0 just 

to keep things simple

Each thread stores offset starting 

point into its threadprivate “last 

random” value



192

Same sequence with many threads.

• We can use the leapfrog method to generate the same 

answer for any number of threads

Steps One thread 2 threads 4 threads

1000 3.156 3.156 3.156

10000 3.1168 3.1168 3.1168

100000 3.13964 3.13964 3.13964

1000000 3.140348 3.140348 3.140348

10000000 3.141658 3.141658 3.141658

Used the MKL library with two generator streams per computation: one for the x values (WH) and one for the 

y values (WH+1).  Also used the leapfrog method to deal out iterations among threads.
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• Challenge Problems: solutions

– Monte Carlo PI and random number generators

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP



Molecular dynamics:  Solution 

#pragma omp parallel for default (none) \

shared(x,f,npart,rcoff,side) \

reduction(+:epot,vir) \

schedule (static,32)

for (int i=0; i<npart*3; i+=3) {

……… Loop is not well load 

balanced: best 

schedule has to be 

found by experiment.

Compiler will warn you 

if you have missed 

some variables
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........

#pragma omp atomic

f[j]    -= forcex;

#pragma omp atomic

f[j+1]  -= forcey;

#pragma omp atomic

f[j+2]  -= forcez;

}

}

#pragma omp atomic

f[i]     += fxi;

#pragma omp atomic

f[i+1]   += fyi;

#pragma omp atomic

f[i+2]   += fzi;

}

}

All updates to f must be 

atomic

Molecular dynamics : Solution (cont.)

195



Molecular dynamics : With orphaning 

#pragma omp single

{  

vir = 0.0;

epot = 0.0;

}

#pragma omp for reduction(+:epot,vir)  schedule (static,32)

for (int i=0; i<npart*3; i+=3) {

………
All variables which used to 

be shared here are now 

implicitly determined

Implicit barrier needed to avoid race 

condition with update of reduction variables 

at end of the for construct
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Molecular dynamics : With array reduction

ftemp[myid][j]    -= forcex;

ftemp[myid][j+1]  -= forcey;

ftemp[myid][j+2]  -= forcez;

}

}

ftemp[myid][i]         += fxi;

ftemp[myid][i+1]       += fyi;

ftemp[myid][i+2]       += fzi;

} 

Replace atomics with 

accumulation into array 

with extra dimension
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Molecular dynamics : With array reduction

….

#pragma omp for 

for(int i=0;i<(npart*3);i++){

for(int id=0;id<nthreads;id++){

f[i] += ftemp[id][i]; 

ftemp[id][i] = 0.0;

}

}

Reduction can be done 

in parallel

Zero ftemp for next time 

round

198
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Challenge: Matrix Multiplication

• Parallelize the matrix multiplication program in the file 

matmul.c

• Can you optimize the program by playing with how the loops 

are scheduled?

• Try the following and see how they interact with the 

constructs in OpenMP

– Cache blocking

– Loop unrolling

– Vectorization

• Goal: Can you approach the peak performance of the 

computer?
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Matrix multiplication

#pragma omp parallel for private(tmp, i, j, k)
for (i=0; i<Ndim; i++){

for (j=0; j<Mdim; j++){
tmp = 0.0;
for(k=0;k<Pdim;k++){

/* C(i,j) = sum(over k) A(i,k) * B(k,j) */
tmp += *(A+(i*Ndim+k)) *  *(B+(k*Pdim+j));

}
*(C+(i*Ndim+j)) = tmp;

}
}

•On a dual core laptop

•13.2 seconds  153 Mflops  one thread

•7.5 seconds 270 Mflops two threads

Results on an Intel dual core 1.83 GHz CPU,   Intel IA-32  compiler 10.1 build 2

There is much more that can be 

done.   This is really just the first 

and most simple step
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Exercise: traversing linked lists  

• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at 

each node.

• Parallelize this program two different ways

1. Use OpenMP tasks

2. Use anything you choose in OpenMP other than tasks.

• The second approach (no tasks) can be difficult and may 

take considerable creativity in how you approach the 

problem (hence why its such a pedagogically valuable 

problem).
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Linked lists with tasks  
• See the file Linked_omp3_tasks.c

#pragma omp parallel 

{

#pragma omp single

{

p=head;

while (p) {

#pragma omp task firstprivate(p) 

processwork(p);

p = p->next;

}

}

}

Creates a task with its own 

copy of “p” initialized to the 

value of “p” when the task is 

defined
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Exercise: traversing linked lists  

• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at 

each node.

• Parallelize this program two different ways

1. Use OpenMP tasks

2. Use anything you choose in OpenMP other than tasks.

• The second approach (no tasks) can be difficult and may 

take considerable creativity in how you approach the 

problem (hence why its such a pedagogically valuable 

problem).
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Linked lists without tasks
• See the file Linked_omp25.c

while (p != NULL) {

p = p->next;

count++;

}

p = head;

for(i=0; i<count; i++) {

parr[i] = p;

p = p->next;

}

#pragma omp parallel 

{

#pragma omp for schedule(static,1)

for(i=0; i<count; i++)

processwork(parr[i]);

}

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Default schedule Static,1

One Thread 48 seconds 45 seconds

Two Threads 39 seconds 28 seconds

Results on an Intel dual core 1.83 GHz CPU,   Intel IA-32  compiler 10.1 build 2
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Linked lists without tasks: C++ STL
• See the file Linked_cpp.cpp

std::vector<node *> nodelist;

for (p = head; p != NULL; p = p->next)

nodelist.push_back(p);

int j = (int)nodelist.size();

#pragma omp parallel for schedule(static,1)

for (int i = 0; i < j; ++i)

processwork(nodelist[i]);

C++, default sched. C++, (static,1) C, (static,1)

One Thread 37 seconds 49 seconds 45 seconds

Two Threads 47 seconds 32 seconds 28 seconds

Copy pointer to each node into an array

Count number of items in the linked list

Process nodes in parallel with a for loop

Results on an Intel dual core 1.83 GHz CPU,   Intel IA-32  compiler 10.1 build 2
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#define THRESHOLD 32768   // product size below which simple matmult code is called

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl, 
double **A, double **B, double **C)

// Dimensions: A[mf..ml][pf..pl]    B[pf..pl][nf..nl]   C[mf..ml][nf..nl]

{  
if ((ml-mf)*(nl-nf)*(pl-pf) < THRESHOLD)   

matmult (mf, ml, nf, nl, pf, pl, A, B, C);   
else  
{ 

#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{  

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C);  // C11 += A11*B11
matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C);  // C11 += A12*B21

}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{

matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C);  // C12 += A11*B12
matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C);  // C12 += A12*B22

}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{

matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C);  // C21 += A21*B11
matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C);  // C21 += A22*B21

}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{

matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C);  // C22 += A21*B12
matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C);  // C22 += A22*B22

}
#pragma omp taskwait

}   
}   

Recursive matrix multiplication
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• Could be executed in parallel as 4 tasks

– Each task executes the two calls for the same output submatrix of C

• However, the same number of multiplication operations needed
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Fortran and OpenMP

• We were careful to design the OpenMP constructs so they 

cleanly map onto C, C++ and Fortran.

• There are a few syntactic differences that once understood, 

will allow you to move back and forth between languages.

• In the specification, language specific notes are included 

when each construct is defined. 
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OpenMP:
Some syntax details for Fortran programmers

• Most of the constructs in OpenMP are compiler directives.
– For Fortran, the directives take one of the forms:

C$OMP construct [clause [clause]…]

!$OMP construct [clause [clause]…]

*$OMP construct [clause [clause]…]

• The OpenMP include file and lib module
use omp_lib

Include omp_lib.h
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OpenMP:
Structured blocks (Fortran)

C$OMP PARALLEL

10    wrk(id) = garbage(id)

res(id) = wrk(id)**2

if(conv(res(id)) goto 10

C$OMP END PARALLEL

print *,id

–Most OpenMP constructs apply to structured blocks.

–Structured block: a block of code with one point of 
entry at the top and one point of exit at the bottom.  

–The only “branches” allowed are STOP statements 
in Fortran and exit() in C/C++.

C$OMP  PARALLEL

10    wrk(id) = garbage(id)

30    res(id)=wrk(id)**2

if(conv(res(id))goto 20

go to 10

C$OMP END PARALLEL

if(not_DONE) goto 30

20    print *, id

A structured block Not A structured block 213



OpenMP:
Structured Block Boundaries

 In Fortran: a block is a single statement or a group of statements between 
directive/end-directive pairs. 

C$OMP PARALLEL

10    wrk(id) = garbage(id)

res(id) = wrk(id)**2

if(conv(res(id)) goto 10

C$OMP END PARALLEL

C$OMP PARALLEL DO

do I=1,N

res(I)=bigComp(I)

end do 

C$OMP END PARALLEL DO

 The  “construct/end construct” pairs is done anywhere a structured  block 
appears in Fortran.  Some examples:

 DO   …  END  DO

 PARALLEL  …  END PARREL

 CRICITAL  … END CRITICAL

 SECTION  … END SECTION

 SECTIONS  … END SECTIONS

 SINGLE  …  END SINGLE

 MASTER … END MASTER
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Runtime library routines

• The include file or module defines parameters

– Integer parameter omp_locl_kind

– Integer parameter omp_nest_lock_kind

– Integer parameter omp_sched_kind

– Integer parameter openmp_version

–With value that matches C’s _OPEMMP macro

• Fortran interfaces are similar to those used with C 

– Subroutine omp_set_num_threads (num_threads)

– Integer  function omp_get_num_threads()

– Integer function omp_get_thread_num()\

– Subroutine omp_init_lock(svar)

– Integer(kind=omp_lock_kind) svar

– Subroutine omp_destroy_lock(svar)

– Subroutine omp_set_lock(svar)

– Subroutine omp_unset_lock(svar)
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OpenMP compilers on Apple laptops: MacPorts

• To use OpenMP on your Apple laptop:

• Download Xcode.  Be sure to setup the command line tools.

• Download and use MacPorts to install the latest gnu compilers.

sudo port selfupdate

sudo port install gcc6

port select --list gcc

sudo port select –set gcc mp-gcc6

gcc –fopenmp hello.c
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Update to latest version of 

MacPorts

Grab version 6 gnu 

compilers (5-10 mins)

List versions of gcc on your 

system

Select the mp enabled version of 

the most recent gcc release

Test the installation with a simple 

program



OpenMP compilers on Apple laptops: Homebrew

• An alternate way to use OpenMP on your Apple laptop:

• Install Homebrew.  If Hombrew is already installed, skip to the install gcc section.

echo $SHELL  

/usr/bin/ruby -e "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/master/install)"

brew install gcc --without-multilib

which gcc-7

gcc-7 -fopenmp hello_par.c

./a.out

export OMP_NUM_THREADS=8  

./a.out
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Check that you are running 

bash shell for ruby. Use the 

ruby to install homebrew.

Install a homebrew version 

of gcc without multilib, and 

locate it

In my case, hombrew installed a 

new version of gcc called it gcc-7

Test the installation with a simple 

program

Slides and exercises at:    

http://www.nersc.gov/users/software/programming-models/openmp/sc17-openmp


