

INTEL® VTUNE[™] AMPLIFIER FOR CACHE PERFORMANCE ANALYSIS Jackson Marusarz – Intel Corporation

Intel[®] VTune[™] Amplifier

Quick Introduction

Get the Data You Need

- Hotspot (Statistical call tree), Call counts (Statistical)
- Thread Profiling Concurrency and Lock & Waits Analysis
- Cache miss, Bandwidth analysis...¹
- GPU Offload and OpenCL[™] Kernel Tracing

Find Answers Fast

- View Results on the Source / Assembly
- OpenMP Scalability Analysis, Graphical Frame Analysis
- Filter Out Extraneous Data Organize Data with Viewpoints
- Visualize Thread & Task Activity on the Timeline

Easy to Use

- No Special Compiles C, C++, C#, Fortran, Java, ASM
- Visual Studio* Integration or Stand Alone
- Graphical Interface & Command Line
- Local & Remote Data Collection
- Analyze Windows* & Linux* data on OS X*2

¹ Events vary by processor. ² No data collection on OS X*

Full lecture April 19th

Quickly Find Tuning Opportunities

	CPU Time 🕶 😽 🗷								
Function / Call Stack	Effective 1	Spin	Overhead						
	🔲 Idle 📕 Poor	📙 Ok 📕 Ideal 📒	Over	Time	Time				
✤ FireObject::checkCollision	4.507s			0s	0s				
	3.444s			0s	0s				
	0s			3.406s	0s				
std::basic_ifstream <char,struct std::char_traits<="" td=""><td>3.359s</td><td></td><td></td><td>0s</td><td>0s</td><td></td></char,struct>	3.359s			0s	0s				
	3.359s			0s	0s				
CBaseDevice::Present	2.335s			0.671s	0s				
Selected 1 row(s):			1.151s	0.728s	0s				

See Results On The Source Code

Source	Assembly 🗐 📰 🖗 🖗 🐼 😰 🗨	Assembly grouping: Address
Source Line	Source	CPU Time: Total by Utilization Difference Description
81	<pre>for (int i = 0; i < mem_array_i_max; i++)</pre>	0.300s
82	{	
83	<pre>for (int j = 0; j < mem_array_j_max; j++)</pre>	4.936s
84	{	
85	<pre>mem_array [j*mem_array_j_max+i] = *fill_val</pre>	7.207s

Tune OpenMP Scalability

Visualize & Filter Data

	Q¢Q+Q−Q +	700ms 42750ms 42800ms 42850ms 42900ms 42950ms 43000ms 43050ms		🔽 🎮 Frame
	Frame Rate			Frame Rate Hold Frame Rate
	wWinMainCRTStartup			
5				Inreau 🗸
Lhrea	_endthreadex (TID: 91			🗹 🔲 Running
F	_endthreadex (TID: 91			🔽 🥅 Waits
	CBatchFilterl::LHBatc		1	🗹 🎎 CPU Time
	CPU Usage	And a second state of the		🔽 🚧 Spin and Overhead
	2			CPU Sample
	Thread Concurrency			🗹 🞮 Tasks
		< >>	>	Transitions

Performance Monitoring Unit (PMU)

- Hardware registers on any modern Intel processor
- 100s of events in current CPU generations
- Performance counters can be programmed to count Events through specific MSRs
- Events can be divided into the following categories, depending on how they are collected and interpreted:

- Fixed events

CPU_CLK_UNHALTED.THREAD - Cycles running at the rate of the core reflecting frequency changes (Turbo etc...) INST_RETIRED.ANY - Instructions retired CPU_CLK_UNHALTED.REF - Cycles at a non-changing reference rate

- Programmable events
- Precise events

Performance Monitoring Unit

Performance counters

Core performance monitoring of CPU of modern CPUs

- Each core has 8 counters; 4 per thread with SMT
- Measure 7 performance events at a time (4 Programmable, 3 Fixed)

Measure "Uncore" events in addition to "Core" events

- Distributed design with separate blocks of counters in different architectural units (MC, LLC, GT, etc.)
- Not thread-specific. Thread-specific counting can only be done in the core

The event names change for each processor generation, but the performance analysis concepts stay the same!

Event Based Performance Analysis

Processor events can be monitored using **sampling** and **counting** technologies

Sampling Mode:

- Sample a HW interruption happens when a *N* of Events counted
- N is programmable
- In a sample we automatically collect:
 - $\circ~$ Thread and process ID's
 - Instruction Pointer (IP)
- Instruction pointer is then used to derive the function name and source line number from the debug information created at compile time
- This creates a statistical representation of where the events are occurring

Counting Mode:

- Running counters for events without any interrupts or program information collected
- This is probably what you have done with PAPI

Sampling Mode vs. Counting Mode

Sampling Mode

- Identifies WHERE events occur
- Used for profiling and tuning
- Statistical representation
- Higher overhead still low
- Can generate large amounts of data

Counting Mode

- Reports how many events occur, not location.
- Mostly for profiling
- True event count
- Very low overhead
- Small data files

Both are available in VTune Amplifier – we will focus on Sampling

EBS for Memory Performance - Motivation

- Large memories are slow
- Small memories are fast, but expensive and consume high power
- Goal: give the processor a feeling that it has a memory which is fast, large, consumes low power and cheap
- Solution: a Hierarchy of memories

Memory Subsystem PMU Events

Examples:

MEM_INST_RETIRED.LOADS MEM_LOAD_RETIRED.L1D_HIT MEM_LOAD_RETIRED.L2_HIT MEM_LOAD_RETIRED.LLC_UNSHARED_HIT MEM_LOAD_RETIRED.LLC_MISS

What if I told you that you have 1,200,000 L2 Cache Hits?

Metrics

Create useful, quantitative data from raw event counts. Examples:

- CPI = Total Cycles/Instructions
- L3 miss penalty = (L3 miss count * 200)/Total Cycles
- L2 Hit Ratio = L2 Hits/L2 Accesses

With expert knowledge – thresholds and advice can be assigned to each metric

g

Two Ways to Measure Memory Impacts

Cycle Accounting

- Original technique based on estimated penalties for various events
- Example: L3 miss penalty = (L3 miss count * 200)/Total Cycles
- Main Issue Superscalar, Out-of-Order architectures can hide memory latency issues by executing other instructions

Stall Accounting

- Based on new PMU events determining when the CPU is actually stalled
- Example: CYCLE_ACTIVITY.STALLS_L3_MISS

Metrics used will be based on available events

Memory Analysis in VTune Amplifier

Microarchitecture Analysis

General Exploration

Memory Access

TSX Exploration

TSX Hotspots

SGX Hotspots

System Bandwidth

This section provides various system bandwidth-related properties detected by the product. These values are used to define default High, Medium and Low bandwidth utilization thresholds for the Bandwidth Utilization Histogram and to scale overtime bandwidth graphs in the Bottom-up view.

Max DRAM System Bandwidth⁽²⁾: 80 GB Max DRAM Single-Package Bandwidth⁽²⁾: 40 GB

Built-in benchmark to determine system specs

11

Memory Analysis in VTune Amplifier

ûk ☆ 😥 🕨 🗿 🕼 🗳 ⑦ Welcome	Memory Access Memory Usage view Collection Log Analysis Target Analysis		2 Platform	INTEL VTUNE AMPLIFIER 2018
Choose Analysis Type Analysis Target Analysis Type	 ✓ Elapsed Time ⁽²⁾: 6.68 			
Advanced Hotspots Concurrency Locks and Waits Memory Consumption Compute-Intensi Analysis	Recent generations of ha	chines are older generations, bu	Bridge+) have many more It your lab results will differ.	
HPC Performance Characterication Microarchitecture Analysis General Exploration Memory Access TSX Exploration TSX Hotspots SGX Hotspots		holds for the Bandwidth Utilizat	Access Latency es detected by the product. These values are used to d ion Histogram and to scale overtime bandwidth graphs Built-in benchmark to determine system specs	<u> </u>

General Exploration Analysis

- Intel[®] VTune[™] Amplifier has hierarchical expanding metrics.
- You can expand your way down, following the hotspot, to identify the root cause of the inefficiency.
 - Sub-metrics highlight pink on their own merits, just like top level metrics.
- Hovering over a metric produces a helpful, detailed tooltip (not shown).
- There are tooltips on Summary tabs too: hover over any ② icon.

General Exploration General Exploration viewpoint (change)											
Collection Log	\varTheta Analysis T	arget	A A	Analysi	is Type	🛍 Su	mmary	🖌 😪 Bot	ttom-up	Ever	
Grouping: Function / Call Stack											
			N		Ba	ck-End	Boun	d			
Function / Call Stack	Memory Bound										
		L1	Boun	d		<u>«</u>	L2	>	DRAM»	Stor	
	DTLB Over	Lo	Lo	Spl	4K A	FB	LZ	L3	DITAIVI	3101.	
grid_intersect	13.5%	0	0	0	2.3%	0.0	4	4.8%	3.6%	0.0	

Categorizing Inefficiencies in the Memory Subsystem

	Back-End Bound												
	Memory Bound Core Bound «												
>			L3 Bound		~	DRAM E	Bound «		Store Bo	*		>	
L1 Bound	L2 Bound	Contested Acc	Data Sharing	12 Latency		Memory Band	Memory Lat«	Store Latency	Ealco Shari	Split Sto	DTL P Store	Divider	Port Utilization
		Contested Acc	Data Shanny	L3 Latency	SQTUI	Niemory Banu	LLC Miss	Store Latency	Faise Shan	Spiit Sto	DILD SIDIE		
3.2%		0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	3.3%	0.0%	0.0%	0.2%	0.0%	26.6%
11.3%	4.8%	0.0%	0.0%	100.0%	0.0%	9.5%	0.0%	1.1%	0.0%	0.2%	0.2%	4.8%	17.2%

- Back End bound is the most common bottleneck type for most applications.
- It can be split into Core Bound and Memory Bound
 - **Core Bound** includes issues like not using execution units effectively and performing too many divides.
 - Memory Bound involves cache misses, inefficient memory accesses, etc.
 - Store Bound is when load-store dependencies are slowing things down.
 - The other sub-categories involve caching issues and the like. Memory Access Analysis may provide additional information for resolving this performance bottleneck.

VTune Amplifier Workflow Example- Summary View

Max DRAM Single-Package Bandwidth ⁽²⁾: 40 GB

15

VTune Amplifier Workflow Example- Bottom-Up View

VTune Amplifier Workflow Example- Bottom-Up View

VTune Amplifier Workflow Example- Bottom-Up View

Memory Access Memory Usage viewpoint (change))			INTEL VTUNE AMPLIFIER 2018	
🔄 🖽 Collection Log Əhalysis Target 🛱 Analysis Type 🗈 Summary	🗞 Bottom-up 📧 Platform 🚯 n	Þ			
○: + — 🖝 🛎 Os 1s	2s Analyze Bandwidth over	Time Is 5s	6s	✓ DRAM Bandwidth, GB/sec	
y > package_0 40.000 + + + + + + + + +				✓ m Total, GB/sec ✓ ~ Read, GB/sec	
0 ▶ package_1 40.000				✓ ~ Write, GB/sec	DRAM and UPI Bandwidth
andwic				UPI Bandwidth, GB/sec Total, GB/sec	are low.
8.728 d				Incoming Data, GB/sec	are tow.
og package_1 0.720	- Anno -			🗹 🗠 Incoming Non-Data, G	
b package_0 8.728				 ✓ ~ Outgoing Data, GB/sec ✓ ~ Outgoing Non-Data, G 	
dwidt				✓ CPU Time	
1 Bar				💼 CPU Time	
e package_1 5600.0%					
package_0 5600.0%					
0					
Grouping: Function / Call Stack				~ 🛠 Q 🖽	Memory Bound function.
Function / Call Stack CPU Time 🔻	Memory Bound	Loads	Stores	LLC Miss Count 🔌 Average Latency	44% of pipeline slots are
multiply1omp_fn.0 24.920s	44.2%	17,555,926,662	8,765,362,953	45,902,754	stalled.
▶ func@0x18c60 0.045s	40.0%	1,800,054	0	0	Statteu.
▶ clear_page_c_e 0.026s	0.0%	0	0	0	
▶ copy_page_rep 0.016s	89.0%	0	0	0	
▶ ktime_get 0.006s	85.0%	900,027	1,800,054	0	
▶ pci_conf1_read 0.006s	0.0%	0	900,027	450,027	Double-click a function
▶ apic_timer_interrupt 0.006s		0		0	
▶ init_arr 0.006s	0.0%			0	for source view.
▶ init arr 0.006s	0.0%	0	0	0	

VTune Amplifier Workflow Example- Source View

📟 N	lemory Access Memory Usage viewpoint (change) 🤨									
⊲ ∎	🗉 🖭 Collection Log \ominus Analysis Target Å Analysis Type 🗓 Summary 🔗 Bottom-up 📧 Platform 🗅 multiply.c 🛛 🗅 multiply.c 🏁									
Sou	Source Assembly 📰 🗑 🛞 🧐 🗐 🗐 🔍 Assembly grouping: Address									
		×	Me	emory	Bound	\ll				
S. Li.▲	Source	CPU Time	L1	L2	L3	D.	Loa	Sto		
			Bou. 8	Bou.	Bound	Bo.				
170	}									at a source line
171	}								granula	arity
172	}									
179	#pragma omp parallel for									
180	for(i=0; i <msize; i++)="" td="" {<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></msize;>									
181	for(j=0; j <msize; j++)="" td="" {<=""><td>0.004s</td><td>0.0%</td><td></td><td>81.8%</td><td></td><td>4,5.</td><td>0</td><td></td><td></td></msize;>	0.004s	0.0%		81.8%		4,5.	0		
182	for(k=0; k <msize; k++)="" td="" {<=""><td>15.027s</td><td>0.0%</td><td></td><td>27.1%</td><td></td><td>90.</td><td>90</td><td></td><td></td></msize;>	15.027s	0.0%		27.1%		90.	90		
183	c[i][j] = c[i][j] + a[i][k] * b[k][j];	9.889s	2.9%	0.0%	35.9%	0.0%	17,.	8,7	Ineffici	ent array access
184	}									in nested loop

VTune Amplifier Workflow Example- Source View

		Sour	Source Assembly 📰 🗑 🐵 🥸 🕸 🗣 Assembly grouping: Address														~
	Collection L	S. Li.▲	Source					CPU 1	lime	*	Memory Bound		. Sto		Ave Lat (cy	So File	
S. Li. ▲		208 209 210	<pre>for(i=0; i<msize; #pragma="" for(k="0;" i++)="" ivdep<="" k++)="" k<msize;="" pre="" {=""></msize;></pre>		Loo	p in	terc	hang	ge								1
170		211	for(j=0; j <msize; j++)="" td="" {<=""><td></td><td></td><td></td><td>0.02</td><td>4s</td><td></td><td></td><td>0.03</td><td>6 24,.</td><td>. 0</td><td>0</td><td>17</td><td>mu</td><td></td></msize;>				0.02	4s			0.03	6 24,.	. 0	0	17	mu	
171	}	212	c[i][j] = c[i][j] + a[i][k] * b[k][j];			5.83	8s 📃			6.13	6 22, .	. 9,1	0	16	mu	
172	}	213	}														
179	#pr	agma om	parallel for														
180	for	(i=0; i	<msize; i++)="" td="" {<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></msize;>														
181		for(j=	0; j <msize; j++)="" td="" {<=""><td>0.004s</td><td>0.0%</td><td>ξ</td><td>31.8%</td><td></td><td>4,5</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></msize;>	0.004s	0.0%	ξ	31.8%		4,5	0							
182		fo	r(k=0; k <msize; k++)="" td="" {<=""><td>15.027s</td><td>0.0%</td><td>2</td><td>27.1%</td><td></td><td>90</td><td>90</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></msize;>	15.027s	0.0%	2	27.1%		90	90							
183			c[i][j] = c[i][j] + a[i][k] * b[k][j];	9.889s	2.9%	0.0%	5.9%	0.0%	17, 8	,7							
184		}															

20

Compare the Results

Memory Access Memory Usage v	riewpoint (<u>change</u>) 🤨
🔹 🖸 Collection Log 😨 Analysis Target 🔺 An	alysis Type 🔋 Summary 🐼 Bottom-up 📧 Platform
\odot Elapsed Time $^{\odot}$: 6.	689s
CPU Time [®] :	25.121s
	44.4% K of Pipeline Slots
L1 Bound [®] :	0.7% of Clockticks
L2 Bound ⁽²⁾ :	0.0% of Clockticks
L3 Bound [®] :	30.5% Nof Clockticks
ORAM Bound [®] :	8.0% of Clockticks
Loads:	17,604,528,120
Stores:	8,789,663,682
② LLC Miss Count [®] :	46,352,781
Average Latency (cycles)	57
Total Thread Count:	4
Paused Time [®] :	0s

System Bandwidth

 \odot

This section provides various system bandwidth-related properties detected by the and Low bandwidth utilization thresholds for the Bandwidth Utilization Histogram and

Max DRAM System Bandwidth⁽²⁾: 80 GB Max DRAM Single-Package Bandwidth⁽²⁾: 40 GB

Memory Access Memory Usage view	ewpoint (<u>change</u>)	0		
🖣 🗉 Collection Log ⊕ Analysis Target 🔺 Analy	ysis Type 🗂 Summary	😪 Bottom-up	🔁 Platform	💪 multiply.c
\odot Elapsed Time $^{\odot}$: 1.6	40s			
CPU Time ⁽²⁾ :	5.988s			
⊘ Memory Bound [®] :	7.1%	of Pipeline	Slots	
L1 Bound ⁽²⁾ :	0.3%	of Clocktick	S	
L2 Bound ^② :	N/A*	of Clocktick	S	
L3 Bound [®] :	0.4%	of Clocktick	S	
DRAM Bound [®] :	N/A*	of Clocktic	ks	
Loads:	22,926,387,771			
Stores:	9,153,274,590			
Description: De	0			
Average Latency (cycles) $^{\textcircled{0}}$:	16			
Total Thread Count:	4			
Paused Time [®] :	0s			

*N/A is applied to metrics with undefined value. There is no data to calculate the metric.

System Bandwidth

This section provides various system bandwidth-related properties detected by the prodefault High, Medium and Low bandwidth utilization thresholds for the Bandwidth Utilizati bandwidth graphs in the Bottom-up view.

Max DRAM System Bandwidth [©] :	80 GB
Max DRAM Single-Package Bandwidth ⁽²⁾ :	40 GB

Optimization Notice

Understanding the Memory Hierarchy

Data can be in any level of any core's cache, or in the shared L3, DRAM, or on disk.

Accessing data from another core adds another layer of complexity

Cache coherence protocols – beyond the scope of today's lecture. But we will cover some issues caused by this.

Optimization Notice

Cache Misses

Why: Cache misses raise the CPI of an application. Focus on long-latency data accesses coming from 2nd and 3rd level misses

	Back-End Bound				
	Memory Bound				
L1 Bound 🔊	L2 Bound	L3 Bound »	DRAM Bound »	Store Bound »	
20.0%	0.0%	6.7%	0.0%	0.0%	
0.0%		0.0%		0.0%	

"<memory level> Bound" = Percentage of cycles when the CPU is stalled, waiting for data to come back from <memory level>

What Now: If either metric is highlighted for your hotspot, consider reducing misses:

- Change your algorithm to reduce data storage
- Block data accesses to fit into cache
- Check for sharing issues (See Contested Accesses)
- Align data for vectorization (and tell your compiler)
- Use streaming stores
- Use software prefetch instructions

Blocked Loads Due to No Store Forwarding

Why: If it is not possible to forward the result of a store through the pipeline, dependent loads may be blocked

What Now: If the metric is highlighted for your hotspot, investigate:

View source and look at the LD_BLOCKS.STORE_FORWARD event. Usually this event tags to next instruction after the attempted load that was blocked. Locate the load, then try to find the store that cannot forward, which is usually within the prior 10-15 instructions. The most common case is that the store is to a smaller memory space than the load. Fix the store by storing to the same size or larger space as the ensuing load.

Why: Aliasing conflicts caused by associative caches result in having to re-issue loads.

What Now: If this metric is highlighted for your hotspot, investigate at the source code level.

Fix these issues by changing the alignment of the load. Try aligning data to 32 bytes, changing offsets between input and output buffers (if possible), or using 16-Byte memory accesses on memory that is not 32-Byte aligned.

28

Why: First-level DTLB Load misses (Hits in the STLB) incur a latency penalty. Second-level misses require a page walk that can affect your application's performance.

What Now: If this metric is highlighted for your hotspot, investigate at the source code level.

To fix these issues, target data locality to TLB size, use the Extended Page Tables (EPT) on virtualized systems, try large pages (database/server apps only), increase data locality by using better memory allocation or Profile-Guided Optimization

29

Multi-Socket Systems

- This is still a single address space
- Accessing other socket is expensive
- Important to be aware of memory accesses for performance

Remote Memory Accesses

Why: With a Non-Uniform Memory Access (NUMA) architecture, loading from memory can have varying latency. Remote memory loads cost more.

What Now: If this metric is highlighted for your hotspot, improve NUMA affinity:

- If thread migration is a problem, try affinitizing or pinning threads to cores
- Ensure that memory is first touched (accessed, not allocated) by the thread that will be using it
- Use affinity environment variable for OpenMP
- Use NUMA-aware options for supporting applications if available (for example, softnuma for SQL Server)
- Use a NUMA-efficient thread scheduler (such as Intel[®] Threading Building Blocks)

Example: Poor NUMA Utilization

If Memory Bound is high and local caches are not the problem

Focus on "Remote" metrics

32

Example: Poor NUMA Utilization

Look for areas of high QPI/UPI bandwidth

> QPI/UPI Bandwidth is communication between the sockets. This may indicate some sort of NUMA issue.

Causes of poor NUMA utilization

- Allocation vs. first touch memory location
- False sharing of cache lines
 - Use padding when necessary
- Arbitrary array accesses
- Poor thread affinity

Where is your memory allocated and where are your threads running?

Memory Object Identification

Identifying line of source code may not be sufficient to identify the problem

Thread Any Thread

V

Microarchitecture Analysis General Exploration Memory Access TSX Exploration TSX Hotspots View allocated object	Minimal dynamic 1024	mic memory objects memory object size to	o track, in bytes		Sort by LLC Count	Miss		
Grouping: Memory Object / Function / C	all Stack						~ %	Q L.
Memory Object / Function / Call Stack	CPU Time	Memory Bound	Loads	Stores 🔻	LLC Miss Count 🔊	Average Latency (cycles)	Module	Function
memTest.out!main (2 MB)			236,276,88	20,334,310,011	83,705,022	9		
memTest.cpp:10 (4 KB)			0	108,903,267	0	0		
memTest.cpp:20 (4 KB)			0	66,601,998	0	0		
memTest.cpp:11 (4 KB)			0	64,801,944	0	0		
memTest.cpp:21 (4 KB)			0	58,501,755	0	0		
memTest.cpp:25 (4 KB)			0	53,101,593	0	0		

0

V

53,101,593

Module Any Module

0

V

Show inline functions

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

2

Any Process

memTest.cpp:18 (4 KB)

0.0%

FILTER

V

35

0

V

Functions only

Memory Object Identification

🔛 M	emory Access Memory Usage viewpoint (change) 🕫
⊲ 🗉	Collection Log 🕘 Analysis Target Å Analysis Type 🗈 Summary 🗞 Bottom-up 📧 Platform 🗅 memTest 🗈 memTes 🕷
Sour	Assembly 📰 📰 🐡 🐡 🙅 📽 🕰 Assembly grouping: Address
S. 🔺	Source
1	#define SZ 1024
2	
3	#include <iostream></iostream>
4	#include "omp.h"
5	
б	using namespace std;
7	
8	int main() {
9	<pre>omp_set_num_threads(16);</pre>
10	int * a0= new int[SZ];
	<pre>> int * al= new int[SZ];</pre>
12	<pre>int * a2= new int[SZ];</pre>
13	<pre>int * a3= new int[SZ];</pre>
14	<pre>int * a4= new int[SZ];</pre>
15	<pre>int * a5= new int[SZ];</pre>
16	<pre>int * a6= new int[SZ];</pre>
17	int * a7= new int[SZ];

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

36

Go further with Storage Device Analysis (HDD, SATA or NVMe SSD)

Are You I/O Bound or CPU Bound?

- Explore imbalance between I/O operations (async & sync) and compute
- Storage accesses mapped to the source code
- See when CPU is waiting for I/O
- Measure bus bandwidth to storage

Latency analysis

- Tune storage accesses with latency histogram
- Distribution of I/O over multiple devices

Bonus Topic – Instruction Fetch Issues

- Processor fetches instructions from the application binary in order
- Jumps and branches can cause the fetch to take longer
- % of cycles spent on ICache Misses (newer processors):
 - ICACHE_16B.IFDATA_STALL / CPU_CLK_UNHALTED.THREAD
- Instruction Starvation
 - UOPS_ISSUED.CORE_STALL_CYCLES-RESOURCE_STALLS.ANY/CPU_CLK_UNHALTED.THREAD
- Interpreted code (Python, Java etc...) and branchy code may have these issues
- Look for Profile Guided Optimizations from the compiler

Bonus Topic – Branch Misprediction

- Mispredicted branches cause instructions to execute, but never retire
- Result in wasted work
 - BR_MISP_RETIRED.ALL_BRANCHES_PS (newer processors)
- Cycle accounting on lab machines
 - 15 * BR_MISP_EXEC.ANY / CPU_CLK_UNHALTED.THREAD
- Use compiler options or profile-guided optimization (PGO) to improve code generation
- Apply hand-tuning by doing things like hoisting the most popular targets in branch statements

Bonus Topic – Floating Point Arithmetic

Why: Floating point arithmetic can be expensive if done inefficiently.

What Now: If FP x87 or FP Scalar metrics are significant, look to increase vectorization.

- Intel Compiler /QxCORE-AVX2 (Windows*) or -xCORE-AVX2 (Linux*) switches
- GCC: -march=core-avx2
- Optimize to AVX See the Intel[®] 64 and IA-32 Architectures Optimization Reference Manual, chapter 11

General Retirement 🛛 🚿				
FP Arithmetic 🛛 🚿			Others	
FP x87	FP Scalar	FP Vector	Other	
0.000	0.140	0.000	0.860	
0.000	0.192	0.000	0.808	
0.000	0.000	0.000	1.000	

Summary

- Memory continues to be the most common bottleneck for performance
- It's not enough to just profile and characterize
- Performance engineers need to pinpoint the problem
- Tools like VTune Amplifier are essential

Software