
CS 377P Assignment 3
Help Session

TA: Yi-Shan Lu

CS, UT Austin

3/2/2018

1



Outline

• Guide for subproblems

• Notes on measurement

• Implementation tricks

2



Guides for Subproblems

3



MMM w/ IKJ Loop Nests

for (i = 0; i < sz; i++) {

for (k = 0; k < sz; k++) {

for (j = 0; j < sz; j++) {

C[i][j] += A[i][k] * B[k][j];

}

}

}
A C

B

i i

k

jk

j

4



Micro-kernel: Register Tiling

• Be aware of the loop ordering.
• IKJ in this assignment.

• You can use MU and NU values from the Yotov paper.
• MU = 5 or 6, NU = 1 for JIK loop nests.

• To avoid cleanup code, matrix size N = c*LCM(MU, NU).

• Allocate registers in a portable way.
• register type var = array[index];

• NB = N for now.
• Mini-kernel = full MMM in this case.

5

A C

B

i i

k

jk

j



Vectorization

• Sufficient to replace/merge scalar registers with vector registers.

• See https://software.intel.com/sites/landingpage/IntrinsicsGuide/ for 
the available vector intrinsic functions.

• See examples of using SSE/SSE2 intrinsic functions at 
https://www.cs.fsu.edu/~engelen/courses/HPC-
adv/MMXandSSEexamples.txt

6

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://www.cs.fsu.edu/~engelen/courses/HPC-adv/MMXandSSEexamples.txt


Example of Using Vector Intrinsics

7

float A[size], B[size], C[size];

// assume that size is a multiple of 4

void vec_float_add(float* c, float* a, float* b) {

for (int i = 0; i < size; i += 4) {

__m128 vec_a = _mm_load_ps(a+i);

__m128 vec_b = _mm_load_ps(b+i);

_mm_store_ps(c+i, _mm_add_ps(vec_a, vec_b));

}

}

void some_func() {

...

vec_float_add(C, A, B);

...

}

The vector counterpart 
of a scalar register



Mini-kernel: L1 Cache Tiling

• To avoid cleanup code,
• NB = c * LCM(MU, NU).

• Matrix size N = c’ * NB.

• Micro-kernel works inside mini-kernel, which processes tiles of NB by 
NB, NB <= N.

• Add 3 loops outside of the mini-kernel to have a full MMM.
• These loops control which tiles are used for computation.

8



Buffering the Tiles

• Key questions: 
• Which matrix needs only one element;

• Which matrix needs only one row/column;

• Which matrix needs to be fully in L1 cache; and

• When to copy a tile in to/out from a buffer.

• Figure out the above from the loop ordering 
(IKJ for this assignment).

• Copy back to the original C after finishing with C’s tile.

9

A C

B

i i

k

jk

j



Notes on Measurement

10



Peak Performance

• FLOPS = FLoating-point Operations Per Second
• Need to measure absolute runtime.

• 9.6 G DP FLOPS for a single core of Intel Xeon E5530 CPUs on the 
orcrists.
• 4 double-precision (DP) floating point operations (FLOPs) per cycle.

• 2 DP multiplications.

• 2 DP additions.

• Highest frequency: 2.4 GHz.

• 4 * 2.4G = 9.6G

11



Do Remember to…

• Flush all three levels of data caches.
• Get the same initial state across different runs.

• Allocate a large enough array, and walk through it to evict everything else.

• Use serializing instructions right before and right after the measured 
code.
• To avoid compiler optimization and hardware out-of-order execution.

• Example: __cupid() in <cupid.h>, see https://en.wikipedia.org/wiki/CPUID

12

https://en.wikipedia.org/wiki/CPUID


Validating Your Measurement

• Use PAPI_FP_OPS for this purpose.

• For the same size of matrices, all five variants of your code should 
have roughly the same number of floating-point operations.
• Part (a) & (b): PAPI_FP_OPS

• Part (c), (d) & (e): vector_width * PAPI_FP_OPS
• We are counting # double/single-precision operations, but PAPI_FP_OPS reports # 

hardware operations.

• vector_width: 2 for double-precision FP, 4 for single-precision FP
• No AVX on the orcrists

13



Implementation Tricks

14



Navigating a Large Configuration Space

• Parameterize your program so it is easier to try different 
configurations through command-line arguments.
• Matrix size
• Tiling mode: five subproblems
• Measurement mode: runtime, PAPI events, etc.

• Build your code for different versions
• Makefile for compilation with make
• #ifdef, #if, etc. in your source to have conditional compilation 

(via C preprocessor, CPP)

• Use a (bash) script to iterate over configurations.

• Write or redirect your program output to files for post-processing.

15



Useful Command-line Utilities

• Simplification of the I/O processing for your program
• Input redirection: <

• Output redirection: >, &>, etc.

• Comparison & correctness verification: diff / vimdiff

• Show file contents: head, tail, cat, etc.

• String/file manipulation: sed/awk, join, fgrep, sort, etc.

16


