WVirginiaTech = scan

Invent the Future

Parallel Prefix Sum - Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Outline

e Prefix computation problem

— Given an array of values, compute the running sums
e |n general, addition is replaced by any associative operation

— Easy to solve sequentially, not clear how to parallelize
e Parallel prefix computation

— Divide and conquer algorithm that exposes parallelism
that is not obvious from get-go

e Applications of parallel prefix computation

— Many seemingly sequential problems can be parallelized
in this way

The prefix-sum problem

val prefix_sum : int array -> int array

input

output

The simple sequential algorithm: accumulate the sum from left to right

— Sequential algorithm: Work: O(n), Span: O(n)
— Goal: a parallel algorithm with Work: O(n), Span: O(log n)

M VirginiaTech

Invent the Future

Scan

(Inclusive) Prefix-Sum (Scan) Definition

Definition: The all-prefix-sums operation takes a binary
associative operator ®, and an array of n elements

(X0, X1, oo X1l
and returns the array
[xo (xg®xq), ..., (xg@xy9...@2x_)]

Example: If @ is addition, then the all-prefix-sums operation
onthearray [31 7 0 4 1 6 3],
would return [3 4 11 11 15 16 22 25].

3
Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Scan

M VirginiaTech

Invent the Future

Inclusive Scan Application Example

> Assume we have a 100-inch sandwich to feed 10

» We know how many inches each person wants
>[35 2 7 28 4 30 8 1]

» How do we cut the sandwich quickly?
» How much will be left?

» Method 1: cut the sections sequentially: 3 inches first, 5
inches second, 2 inches third, etc.

» Method 2: calculate Prefix scan and cut in parallel
> [3, 8,10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)

4

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

@ VlrglnlaTECh Scan

Invent the Future

Typical Applications of Scan

» Scan is a simple and useful parallel building block
» Convert recurrences from sequential :
for (J=1;j<n; Jj++)
out[J] = out[j-1] + £(3);
» into parallel:
forall (j) { temp[j] = £(3) };
scan (out, temp)

» Useful for many parallel algorithms:

*Radix sort *Polynomial evaluation
*Quicksort *Solving recurrences
*String comparison *Tree operations
Lexical analysis *Histograms

«Stream compaction *Etc.

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

M VirginiaTech

Invent the Future

Other Applications

Scan

» Assigning space in farmers market
» Allocating memory to parallel threads

» Allocating memory buffer for
communication channels

> ...

6

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

M VirginiaTech

Invent the Future

Scan

A Inclusive Sequential Prefix-Sum

Given a sequence [x,, X4, X5, ...]
Calculate output Vo V15 Vs -]

Such that Yo = X
Y1 =X ¥ X,
Y2 = Xp T X1+ X5

Using a recursive definition

Yi=VYi-1TX;

7

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Scan

M VirginiaTech

Invent the Future

A Work Efficient C Implementation

y[0] = x[0];
for (i=1l; i1 < Max i; i++)
y[i] = y[1-1] + x[1];

Computationally efficient:

N additions needed for N elements - O(N)

8

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Scan

M VirginiaTech

Invent the Future

A Naive Inclusive Parallel Scan

» Assign one thread to calculate each y
element

» Have every thread add up all x elements
needed for the y element

Yo = Xp
Y1 = X T X,
Y2 = Xp T X3F X5

Parallel programming is easy as long as you
don’ t care about performance.

9

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

How to parallelize?

Step 1 Thread 1 Thread 2

nnm@m
fromlef’[wv

Thread 1 ; Thread 2

2 | 6 | 12| 20 | 21 | 2 | 35 43

* Assume two threads

- Step 1: threads compute prefix sum for left and right halves of array
in parallel using some algorithm (say sequential algorithm)

« Step 2: add final element from first half (called from-left) to each
element of second half in parallel

« Check: both steps are parallel, no ping-ponging of cache lines
because of block distribution in second step

Step 2

main.py

1 import math

Recursive Python program

2 a-=1[3,1,7,04,1,6,3,3,1,7,0,4,1,6]
3 #performs scan of array segment a[low, hi)
4 - def scan(a,low,hi):

5~ if {hi == low+1}): #nothing to do if fewer than 2 elements
6 return

7- else:

8~ if (hi == low+2): #two element array; update neighbaor
9 a[low+1] = a[low+1]+a[low]

10~ else:

1 #bisect array

12 cut = low + math.floor((hi - low)/2)

13 #scan left half of array

14 scan(a,low, cut)

15 #scan right half of array

16 scan(a, cut, hi)

17 #update right half of array

18 - for i in range(cut,hi):

19 a[i] = a[i] + a[cut-1]

20 scan(a,0,len(a))

21 print(a)
27

Shell

(3, 4, 11, 11, 15, 16, 22, 25, 28, 29, 36, 36, 40, 41, 47]

>

Generalize to t (=4) threads

| 1 | |
1 | | 1
Scan Block 0 : Scan Block 1 : Scan Block 2 I ScanBlock3 |
| } } |
1 1 1 1

...................... " Up-sweep

Store Block Sum to Auxiliary Array

Scan Block Sums

Add Scanned Block Sum i to All Down-sweep

Values of Scanned Block i + 1

40

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

In the limit

e Assume large array, unbounded # of processors
e Up-sweep:
— Divide input array into segments of length 2

— Collect from-left values from each segment into
another array like in previous slide

— This array will be large too so perform previous two
steps recursively on this array as well

— Recursion stops when from-left array is size 1
e Down-sweep:
— Update from-left arrays successively

Parallel prefix

The trick: Use two passes
— Each pass has O(n) work and O(1og n) span
— So in total there is O(n) work and O(1og n) span

First pass builds a tree of sums bottom-up

— the “up” pass

Second pass traverses the tree top-down to compute prefixes
— the “down” pass

Historical note:

— Original algorithm due to R. Ladner and M. Fischer at the
University of Washington in 1977

Example

input

output

range 0,8
sum 76
fromleft
range 0,4 range 4,8
sum 36 sum 40
fromleft fromleft
range 0,2 range 2,4 range 4,6 range 6,8
sum 10 sum 26 sum 30 sum 10
fromleft fromleft fromleft fromleft
r 0,1 r 1,2 r 2,3 r 3,4 r 4,5 r 5,6 r 6,7 r 7,8
S 6 S 4 S 16 S 10 S 16 S 14 s 2 S 8
f f f f f f f f
6 4 16 10 16 14 2 8

Example

input

output

range 0,8
sum 76
fromleft 0
range 0,4 range 4,8
sum 36 sum 40
fromleft O fromleft 36
range 0,2 range 2,4 range 4,6 range 6,8
sum 10 sum 26 sum 30 sum 10
fromleft O fromleft 10 fromleft 36 fromleft 66
r 0,1 r 1,2 r 2,3 r 3,4 r 4,5 r 5,6 r 6,7 r 7,8
S 6 4 S 16 S 10 S 16 S 14 S 2 S 8
f O 6 f 10 f 26 f 36 ||f 52 f 66 f 68
6 4 16 10 16 14 2 8
6 10 26 36 52 66 68 76

[The algorithm, pass 1

1. Up: Build a binary tree where
— Root has sum of the range [x,y)

— Ifanode has sum of [Lo,hi)and hi>1lo,
 Left child has sum of [1lo,middle)
 Right child has sum of [middle, hi)

* Aleafhassumof[i,i+l), i.e,, input[i]

This is an easy parallel divide-and-conquer algorithm: “combine”
results by actually building a binary tree with all the range-sums

— Tree built bottom-up in parallel

Analysis: O(n) work, O(1og n) span

[The algorithm, pass 2

2. Down: Pass down a value fromLeft
— Root given a fromLeft of 0
— Node takes its fromLeft value and

 Passes its left child the same fromLeft
 Passes its right child its fromLeft plus its left child’s sum
— asstoredinpartl

— At the leaf for array position i,
e output[i]=fromLeft+input[i]

This is an easy parallel divide-and-conquer algorithm: traverse the
tree built in step 1 and produce no result

— Leaves assigh to output
— Invariant: £fromLeft is sum of elements left of the node’s range

Analysis: O(n) work, O(1og n) span

Sequential cut-off

For performance, we need a sequential cut-off:

* Up:
just a sum, have leaf node hold the sum of a range

* Down:
output. (lo) = fromLeft + input. (lo) ;
for i=lo+1l up to hi-1 do
output. (1) = output. (i-1) + input. (i)

[Parallel prefix, generalized

Just as map and reduce are the simplest examples of a common
pattern, prefix-sum illustrates a pattern that arises in many, many
problems

* Minimum, maximum of all elements to the left of i

* Isthere an element to the left of i satisfying some property?

* Count of elements to the left of i satisfying some property
— This last one is perfect for an efficient parallel filter ...
— Perfect for building on top of the “parallel prefix trick”

Parallel Scan

scan (o) <x1, ..., xn>

<x1, x1ox2, ..., x1o0...0xn>

like a fold, except return
the folded prefix at each step

pre_scan (o) base <x1, ..., xn>

<base, base o x1, ..., baseoxlo...oxn-1>

\/

sequence with o applied to all items
to the left of index in input

[Filter

Given an array input, produce an array output containing only
elements such that (£ elt) is true

Example: letfx=x>10

filter f <17, 4, o6, 8, 11, 5, 13, 19, 0, 24>
== <17, 11, 13, 19, 24>

Parallelizable?

— Finding elements for the output is easy
— But getting them in the right place seems hard

Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements
input <17, 4, 6, 8, 11, 5, 13, 19, 0, 24>
bits <1, 0, 0, 0, 1, 0, 1, 1, 0, 1>

2. Parallel-prefix sum on the bit-vector
bitsum <1, 1, 1, 1, 2, 2, 3, 4, 4, 5>

3. Parallel map to produce the output
output <17, 11, 13, 19, 24>

Quicksort review

Recall quicksort was sequential, in-place, expected time O(n 1og n)

Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort Aand C 2T(n/2)

How should we parallelize this?

Quicksort

Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort Aand C 2T(n/2)

Easy: Do the two recursive calls in parallel
* Work: unchanged. Total: O(n 1og n)
* Span:now T(n) =0(n) + 1T(n/2) = O(n)

Doing better

We get a O(1og n) speed-up with an infinite number of
processors. That is a bit underwhelming
— Sort 10° elements 30 times faster

(Some) Google searches suggest quicksort cannot do better
because the partition cannot be parallelized

— The Internet has been known to be wrong ©
— But we need auxiliary storage (no longer in place)
— In practice, constant factors may make it not worth it

Already have everything we need to parallelize the partition...

[Parallel partition (not in place)

Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

This is just two filters!
— We know a parallel filter is O(n) work, O(1og n) span
— Parallel filter elements less than pivot into left side of aux array
— Parallel filter elements greater than pivot into right size of aux array
— Put pivot between them and recursively sort

— With a little more cleverness, can do both filters at once but no effect
on asymptotic complexity

With O(1og n) span for partition, the total best-case and expected-
case span for quicksort is

T(n) =0(log n)+1T(n/2) = O(log? n)

Example

Step 1: pick pivot as median of three

Steps 2a and 2c (combinable): filter less than, then filter
greater than into a second array

Step 3: Two recursive sorts in parallel
— Can copy back into original array (like in mergesort)

More Algorithms

To add multi precision numbers.

To evaluate polynomials

To solve recurrences.

To implement radix sort

To delete marked elements from an array
To dynamically allocate processors

To perform lexical analysis. For example, to parse a program
into tokens.

To search for regular expressions. For example, to implement
the UNIX grep program.

To implement some tree operations. For example, to find the
depth of every vertex in a tree

To label components in two dimensional images.
See Guy Blelloch “Prefix Sums and Their Applications”

Summary

* Parallel prefix sums and scans have many applications
— A good algorithm to have in your toolkit!

 Keyidea: An algorithm in 2 passes:
— Pass 1: build a sum (or “reduce”) tree from the bottom up

— Pass 2: compute the prefix top-down, looking at the left-
subchild to help you compute the prefix for the right subchild

END

	lecture
	lecture
	parallelPrefix
	Outline
	Slide Number 3
	How to parallelize?

	uiuc

	parallelPrefix
	�Parallel-prefix computation
	Outline
	Slide Number 3
	How to parallelize?
	Recursive Python program
	In the limit

