
CS 377P Fall 2023: Mid-term exam (1.5 hours)

October 19th, 2023

Name:

EID:

Problem Score

1 /25

2 /20

3 /30

4 /25

Total /100

1

1. Architecture (25 points)

Modern processors exploit instruction-level parallelism (ILP) through out-of-order execution
and in-order commit.

(a) (3 points) Explain briefly the term instruction-level parallelism.

(b) (5 points) What limits instruction-level parallelism in programs?

(c) (4 points) Explain briefly the terms out-of-order execution and in-order commit.

(d) (3 points) Why is in-order commit important?

(e) (3 points) Explain the role of the reorder-buffer in exploiting ILP.

(f) (2 points) What specific purpose does register renaming play in exploiting ILP?

(g) (3 points) What is a basic block? What is the average size of a basic block for a RISC
instruction set?

(h) (2 points) Based on your answer to the previous question, explain why we need branch
predictors to exploit ILP effectively.

2

This page intensionally left blank.

3

2. Short questions (20 points) Answer the following questions using 3-4 sentences for each one.

(a) (4 points) Explain the terms shared-memory parallel programming and distributed-memory
parallel programming, focusing on the distinctions between these two styles of program-
ming.

(b) (3 points) Explain the difference between true-sharing and false-sharing in the context
of shared-memory parallel programming. Which of these patterns of sharing is bad for
scalability of parallel programs?

(c) (4 points) Explain what is meant by an atomic instruction. Give two examples of atomic
instructions (these do not have to be instructions in an actual ISA). Explain briefly how
we use atomic instructions explicitly or implicitly in writing shared-memory programs.

(d) (2 points) What is the difference between a direct-mapped cache and a set-associative
cache?

(e) (4 points) Explain the terms write-invalidate and write-broadcast in the context of cache-
coherent architectures.

(f) (3 points) What considerations determine the choice of step size in using finite-difference
methods to solve differential equations approximately?

4

This page intensionally left blank.

5

3. Numerical methods (30 points)

The 2D Poisson equation is δ2u
δx2 + δ2u

δy2 = f(x, y). Consider the following problem:

� The domain is the unit square [0,1]x[0,1], as shown in Figure 1

� f(x, y) = 2xy

� The value of u at the boundary is fixed at 40.

Figure 1: Grid for solving Poisson’s equation using centered differences

We want to use the centered-difference method to solve this differential equation approximately.

(a) (5 points) Write down the 1D centered-difference formula for the first and second deriva-
tives of a function w(x). Assume the step size is h and show the formula for a point
x = nh.

(b) (5 points) Using the 2D centered-difference formula, discretize Poisson’s equation at a
point (mh, nh), where h is the step size.

(c) (15 points) Use your answer in the previous part to write down a linear system for the four
unknowns u11, u12, u21, u22 shown in the figure. You do not have to solve this system.

(d) (5 points) Based on your physical intuition, which of u11, u12, u21, u22 do you think will
have the largest value? Which one will have the smallest value?

6

This page intensionally left blank.

7

This page intensionally left blank.

8

4. Atomic operations (25 points)

In this problem, you must implement a construct called a counting semaphore using a function
called test-and-set.

The type of test-and-set is: int test-and-set (Lock lockVar);, and it atomically sets lockVar to
1 and returns its previous value.

(a) (5 points) Explain how test-and-set can be implemented using the swap instruction dis-
cussed in class.

(b) (20 points) A counting semaphore contains an integer value. You must write two func-
tions, each of which must execute atomically:

� sem-post: increment the value

� sem-wait: wait for the value to be positive, then decrement the value

Add C-like pseudocode to the stub below, and explain briefly how your code works. Ignore
initialization.

typedef struct {

int value;

Lock lockVar;

} sem-t;

sem-post (sem-t *s)

{//your code below

...........

}

sem-wait (sem-t *s)

{//your code below

............

}

9

This page intensionally left blank

10

