Dependences
and
Loop Transformations

Organization of a Modern Compiler

Source
Program Front-end syntax analysis + type-checking + symbol table
High-level
Intermediate
Representation
(loops,array references) i .
are preserved) - Middlel | loop-level transformations
Low-level
Intermediate
Representation conventional optimizations
(array references converted mto Middle2
low level operations, loops
converted to control flow)
Low-level
mntermediate o
Representation Back-end — Assembly
Code

register allocation
mstruction selection

&ey concepts: \

Perfectly-nested loop: Loop nest in which all assignment

statements occur in body of innermost loop.

for J =1, N
for I =1, N
Y(I) = Y(I) + A(I,D)*X(J)

Imperfectly-nested loop: Loop nest in which some assignment statements
occur within some but not all loops of loop nest

for k =1, N
a(k,k) = sqrt (a(k,k))
for i = k+1, N
a(i,k) = a(i,k) / a(k,k)
for i = k+1, N
for j = k+1, 1
a(i,j) -= a(i,k) * a(j,k)

\ Our focus: perfectly-nested loops /

Overview of lecture

* We have seen two loop transformations for locality
enhancement

* Permutation
e Tiling

 Many other transformations
* Skewing, reveral, scaling...

* Code generation: given a loop nest and a transformation,

* Determine if the transformation is legal (does not violate
dependences).

* If so, generate the transformed loop nest.

* More difficult problem: synthesis of transformation

* Given a loop nest and a performance objective such as locality
enhancement, synthesize a good transformation.

e D

Iteration Space of a Perfectly-nested Loop

Each iteration of a loop nest with n loops can be viewed as an

integer point in an n-dimensional space.

Iteration space of loop: all points in n-dimensional space
corresponding to loop iterations

FOR T=1.N
FOR J =1M .
S | !

o o o
o e o
A g

Execution order = lexicographic order on iteration space:

(1,1) < (1,2) < oo < (1, M) < (2,1) < (2,2)... < (N, M)

N /

4 ™

Issue 1: (example) : loop permutation may be illegal in some loop nests

!

FOR [=2,N
FOR J =1.M
A|LT] = A[I-1J+1] + 1

Assume that array has 1’s stored everywhere before loop begins.
After loop permutation:

FOR J=1.M
FOR I=2N
A[LT] = A[I-1,J+1] + 1

Transformed loop will produce different values (A[3,1] for example)
=> permutation is illegal for this loop.

Question: How do we determine when loop permutation is legal?

/

Subtle issue 2: generating code for transformed loop nest may be

non-trivial!
Example: triangular loop bounds (triangular solve/Cholesky)

FOR I =1, N
FOR J =1, I-1
S

Here, inner loop bounds are functions of outer loop indices!

Just exchanging the two loops will not generate correct bounds.

N

~

History

* Dependence and code generation problems used to
be solved using heuristics (1965-1990)
* GCD test, Banerjee test, etc.
» Pattern matching to generate code

* Today we use powerful integer linear programming
(ILP) techniques (1990-)

* Complemented by heuristics to quickly handle simple
problems

* Use full-blown power of ILP calculator very sparingly

Integer Linear
Programming

Two problems:

Given a system of linear inequalites AX = b

where A is a m X n matrix of integers,
b is an m vector of integers,
X is an n vector of unknowns,

(i) Are there integer solutions?
(i) Enumerate all integer solutions.

Most problems regarding correctness of transformations
and code generation can be reduced to these problems.

234
1-13

X
Y
y

Linear inequalities

I

is equivalent to

2x+3y+4z<4
X—y+3z<1

/ Intuition about systems of linear inequalities: \

N

Equality: line (2D), plane (3D), hyperplane (> 3D)
Inequality: half-plane (2D), half-space(>2D)

\3 x+dy = 12

7 N
// ~

7 NG

3x + 4y <= 12

Region described by inequality 1s convex
(if two points are in region, all points in between them are in region) j

17

/ Intuition about systems of linear inequalities: \

N

Conjunction of inequalties = intersection of half-spaces
=> some convex region

y<=4 7
-
&("’4}7 =12
X >= -5
\\\
N
N
>
/4/ - \\ \\\ X
’//,, \\\\
P . e \\\\
A 3x-3y<=9 L

Region described by mequalities 1s a convex polyhedron
(if two points are in region, all points in between them are in region) /

Geometric intuition for ILP problems

* Given a convex polyhedron, solve two
problems.

 Enumerate all the integer points in
polyhedron
* Fourier-Motzkin elimination
* Used to generate code for transformed
loop nest

e Decision ﬁroblem: is there an integer
point within the polyhedron?
* Cutting plane method (Gomory 1958)
* Used to determine if transformation is
legal

* In compilers, we deal with
underdetermined systems

* No solution or many solutions

X >= -

3xtHdy <= 12

Fourier-Motzkin Elimination

-

Running example:

3r +4y > 16
dxr + Ty < 56
dr — Ty < 20
20 — 3y > —9

Upper bounds for z: (2) and (3)
Lower bounds for z: (1) and (4)

N

Upper bounds for y: (2) and (4)
Lower bounds for y: (1) and (3)

N

MATLARB graphs:

T 4x+Ty=56
- T4x-Ty=20

10

/

Code for enumerating integer points in polyhedron: (see graph)
Outer loop: Y, Inner loop: X

DO Y=[4/37],|74/13]
DO X=[max(16/3 —4y/3,—9/2+ 3y/2)], |min(5+ Ty/4,14 — Ty/4)|

Outer loop: X, Inner loop: Y

DO X=1, 9
DO Y=[max(4 — 3y/4, (4x — 20)/7)], [(min(8 — 4z /5, (2x + 9)/3) |

ooooo

How do we can determine loop bounds?

.

\

@ourier—Motfzkin elimination: variable elimination technique for \

inequalities

3z + 4y > 16 (5)
4o + Ty < 56 (6)
dor — Ty <20 (7)
20 — 3y > —9 (8)
Let us project out x.
First, express all inequalities as upper or lower bounds on x.
r > 16/3—4y/3 (9)
r < 14-—Ty/4 (10)
r < H4Ty/4 (11)
> =9/2+3y/2

—_~
—
kw\
~—

\ X

e

on x.

bounds.

5+ Ty/4
54 Ty/4
14 — Ty /4
14 — Ty/4

For any y, if there is an x that satisfies all inequalities, then every
lower bound on z must be less than or equal to every upper bound

Generate a new system of inequalities from each pair (upper,lower)

AV AV AV AV

~

16/3 — 4y /3(Inequalities3, 1)
—9/2 + 3y /2(Inequalities3, 4)
16/3 — 4y/3(Inequalities2, 1)
—9/2 + 3y /2(Inequalities2, 4)

s

implify:

(Y
Y
Y
Y

max(4/37, —38)
=>

IN N IV IV

<

4/37
—38
104/5
74/13

y < min(104/5,74/13)

4/37 <y < 74/13

KThis means there are rational solutions to original system of inequaliti

CS‘/

4 N

We can now express solutions in closed form as follows:

4/37 y < 74/13
max(16/3 —4y/3,—-9/2 4+ 3y/2) < x < min(b+ Ty/4,14 — Ty/4)

VAN

Gourier—l\/[otzkin elimination: iterative algorithm \
[terative step:

e obtain reduced system by projecting out a variable

e if reduced system has a rational solution, so does the original

Termination: no variables left

Projection along variable x: Divide inequalities into three categories
a1 *Y 4+ a2 x 2+ ... < ci(no x)
brxx < ca2+baxy+ bs*z+ ...(upper bound)
di*xx > c3+dexy+ds*z+ ...(lower bound)

New system of inequalities:

e All inequalities that do not involve x
e Fach pair (lower,upper) bounds gives rise to one inequality:

K biles +da*xy+ds*z+..] <difca+ba*y+bg*2z+..] /

- I

Enumeration: Given a system Ax < b, we can use Fourier-Motzkin
elimination to generate a loop nest to enumerate all integer points

that satisfy system as follows:

e pick an order to eliminate variables (this will be the order of

variables from innermost loop to outermost loop)

e climinate variables in that order to generate upper and lower
bounds for loops as shown in theorem in previous slide

Remark: if polyhedron has no integer points, then the lower bound
of some loop in the loop nest will be bigger than the upper bound
of that loop

N /

KN hat can we conclude about integer solutions? \

Corollary: If reduced system has no integer solutions, neither does
the original system.

Not true: Reduced system has integer solutions => original system
does too.

- no integers in original polyhedron
- projected system contains integers

@
3

+
4
o

+ 4+]+

+ + +e+ +
@

+ + +B+ +
®
&

e

e X

projected system

Key problem: Multiplying one inequality by b1 and other by d; is

not guaranteed to preserve "integrality” (cf. equalities)

Exact projection: If all upper bound coefficients b; or all lower
bound coefficients d; happen to be 1, then integer solution to
Qduced system implies integer solution to original system. /

Solving decision problem

* |LP calculators: variations of cutting
plane method (Gomory 1958)

* In practice, we use simple tests like

. Yy
GCD test to handle easy cases i

* (e.g.) equation 2x + 4y = 5 does not
have integer solutions because |hs - 3xtdy <= 12
must be an even number for any X >=-p N
integer values of x and y but rhs is an
odd number

N
NG
N

* Generalization: if GCD of |hs
coefficients does not divide rhs,
equation has no solutions

* Given a system of equalities and
inequalities, use GCD test to quickly
determine if some equality has no
solution; otherwise use ILP calculator

* Dependence tests (1965-1990)

* Cottage industry in inventing more
general tests than GCD

3X 3y<=9

Treatment of equalities

* In principle, we need to consider only
inequalities
e Convert equality (A = B) to conjunction of two
inequalities (A <B)and (B<A)

* Better approach for decision problem

* Solve equalities first using integer Gaussian
elimination to find parametric solution
(remember: underdetermined systems)

e Substitute parametric solution into inequalities
and then solve system of inequalities using cutting
plane method

* Integer Gaussian elimination

* Rich theory for solving Diophantine equations
going back more than 2000 years (Greeks, Hindus)

Using ILP for
Dependence Analysis

Loop level Analysis: granularity 1s a loop 1teration

FOR I=1,100
FOR J=1,100 | — —— J oo
S cach (I]) valueof | * = * * * *
loop indices corresponds | * * ¢ ¢ * *

to one point in picture

Dynamic instance of a statement:
Execution of a statement for given loop index values

Dependence between iterations:

Iteration (11,J1) 1s said to be dependent on iteration (12,J2) if
a dynamic mstance (11,J1) of a statement n loop body

1s dependent on a dynamic instance (12,J2) of a statement

in the loop body.

How do we compute dependences between iterations of a loop nest?

/

Dependence Example

¢ N

'onsider single loop case first:

FOR I =1, 100
X(2I+1) =X(I)...

Flow dependences between iterations:
Iteration 1 writes to X(3) which is read by iteration 3.

Iteration 2 writes to X(5) which is read by iteration 5.

Iteration 49 writes to X(99) which is read by iteration 99.

If we ignore the array locations and just think about dependence

between iterations, we can draw this geometrically as follows:

Dependence arrows always go forward in iteration space. (eg. there

cannot be a dependence from iteration 5 to iteration 2) /

o

4 N

Intuitively, dependence arrows tell us constraints on

transformations.

L o= I
0 1 2 3 4 5 6 7 8 9 10

Suppose a transformed program does iteration 2 before iteration 1.

OK!

Transformed program does iteration 3 before iteration 1. Illegal!

o /

/Dependences in loops

FOR 10 I

10

N

X(£(I))

1, N

X (g(D) ..

e Conditions for flow dependence from iteration I, to I,:

o 1 < I, <I.<N (write before read)
o f(I,)=g(I,) (same array location)

e Conditions for anti-dependence from iteration I, to I,:

e 1 <1, <1, <N (read before write)
o f(I,)=g9(l;) (same array location)

e Conditions for output dependence from iteration I,,; to fyn»:

o 1 < Iy < Ilyo <N (write in program order)
o f(Iu1)= f(Lly2) (same array location)

Gependences in nested loops

FOR 10 I = 1, 100
FOR 10 J = 1, 200
X(£(1,7),g(1,3)) = ...

10 = ... X(I,D),k(1,D)..

Conditions for flow dependence from iteration (I, Jy) to (I, J.):
Recall: < is the lexicographic order on iterations of nested loops.

IA

I, <100
Jow < 200
I, < 100
Jr < 200
(I.J,)

h(I,]:)

k(L],) /

—_ = =
IAIA A

Iw,Jw)
f.d,)

_ o(Tn])

| A

Connection to ILP

 Dependence problem becomes an ILP problem if
* Array subscripts are affine functions of loop variables
* Loop bounds are affine functions of outer loop variables

* Examples: “regular programs”

* Most dense linear algebra algorithms like BLAS routines,
Cholesky factorization, LU without pivoting

e Stencil codes: finite differences

* Counter-examples: “irregular programs”
* Dense linear algebra with pivoting
e Spare matrix codes, graph algorithms

/ ILP Formulation

FOR I =1, 100
X(2I) = X(2I+1)...

Is there a flow dependence between different iterations?
1 < Tw<Ir <100
2w = 2Ir+1

which can be written as

Y
IA

Tw
Ir—1
100
2Ir +1
21w

Tw

Ir
21w
2Ir +1

IA A

IA

IA

6116 system

1

Tw

Ir
2w
2Ir +1

(-1 0)
1 -1
0 1

| 2

N

|

IA AN IA A A

Tw
Ir

Tw
Ir—1
100
2Ir + 1
21w

can be expressed in the form Ax < b as follows

|<

/ ILP Formulation for Nested Loops \

FOR I =1, 100
FOR J = 1, 100
X(I,J) = ..X(I-1,J+1)...

Is there a flow dependence between different iterations?

1 < Tw<100
1 < Ir <100
1 < Jw <100
1 < Jr<100
({w,Jw) < (Ir,Jr)(lexicographic order)
Ir—1 = Iw
Jr+1 = Jw

Qonvert lexicographic order < into integer equalities/inequalities. /

(Tw, Jw) < (Ir,Jr) is equivalent to
Iw < Ir OR (Iw=1Ir) AND (Jw < Jr))

We end up with two systems of inequalities:

1 < Tw <100
1 < Tw <100

1 < Ir <100
1 <Ir <100

1 < Jw <100
1 < Jw <100

1< Jr <100
1< Jr <100 OR

Tw=1Ir
Tw < Ir

Jw < Jr
Ir—1= 1w

Ir—1=1Tw
Jr+1=Jw

Jr+1=Jw

Dependence exists if either system has a solution.

N

/

FOR I =1, 100
FOR J =1, I

et ek e

(Tw, Jw)
Ir—1
Jr+1

A IA IA A IA

What about affine loop bounds?

X(I,J) = ..X(I-1,J+1)...

Tw <100

Ir <100

Jw < Tw

Jr < Ir

(Ir, Jr)(lexicographicorder)
Tw

Jw

Summary

* Problem of determining whether a dependence
exists between two iterations of a loop nest can be
framed as an ILP problem

* Assumptions: affine loop bounds and array subscripts

 Solve decision problem using ILP calculator
augmented with simpler tests like GCD to filter out
easy cases

Dependence Relation
and
Dependence Abstractions

Overview

* Dependence relation

* Closed form expression that gives all dependences for a
given loop nest, not just a yes/no answer for existence
of dependence

* Can be computed using ILP calculator
* Too expensive to compute for most programs

* Dependence abstractions
* Distance vectors
* Direction vectors
* Dependence matrix

Formal view of dependence
4 N

Formal view of a dependence: relation between points in the

iteration space.

FOR I =1, 100
X(2I+1) =X(D)...

Flow dependence = {({w,2lw + 1)|1 < [w < 49}

(Note: this is a convex set)

In the spirit of dependence, we will often write this as follows:

Flow dependence = {({w — 21w + 1)|1 < Tw < 49}

o /

~)

2D loop nest

FOR I = 1,100
" FOR J = 1,100
X(I,J) = X(I-1,J+1) + 1

Dependence: relation of the form (71, J1) — (12, J2).

<

Picture in 1teration space:

5 3 h 3

4 : (j h source target
P 9

3 rJr d12,J2)

2

1

Dependence arrows are lexicographically positive

- N

Legal and illegal dependence arrows:

I

— legal dependence arrows

---= illegal dependence arrows

If (A — B)is a dependence arrow, then A must be

lexicographically less than or equal to B.

. %

/

Dependence relation can be computed using ILP calculator

FOR I = 1,100
FOR J = 1,100
X(I,J) = X(I-1,J+1) + 1

Flow dependence constraints: (1., J,) — (I, J)
o | < Jw,Ir Jw,Jr <100
e (Luy,Juw)=< (I, Jr)
o [,=1 —1
o J,=.J.+1
Use ILP calculator to determine the following relation:

D={Iw,Jw)— ({w+1,Jw—1D|(1 < Tw <99) A (2 < Jw < 100)}

o

/

Dependence abstractions

* |n practice, working with the full dependence relation
for a loop nest is expensive and difficult

e Usually, we use an abstraction of dependence relation

 Summary information about dependence

 Summary is an over-approximation of actual dependence
relation

* Two abstractions are popular
* Distance vectors

* Direction vectors
* Dependence matrix: collection of distance/direction vectors

-~

Distance/direction: Summarize dependence relation

Look at dependence relation from earlier slides:

1(1,2) = (2,1),(1,3) = (2,2),..(2,2) = (3,1)...}

Difference between dependent iterations = (1, —1). That is,

(L, Jw) — (I, J,) € dependence relation, implies
I?‘ — [m =1
J?‘ - J-m = —1

We will say that the distance vectoris (1,—1).

In this case, distance vector is an exact summary of relation.

o

Note: From distance vector, we can easily recover the full relation.

~

/('omputing distance vectors for a dependence

DO I =1, 100
X(2I+1) =X(I)...

Flow dependence:

1 < Jw<Ir <100

2lw+1 = Ir
Flow dependence = {({w,2/w + 1)|1 < [w < 49}
Computing distance vectors without computing dependence set:
Introduce a new variable A = Ir — Iw and project onto A
1 < Jw<Ir <100
2lw+1 = Ir
A = Ir—1Jw

\Solutionz A ={d|2 <d <50}

-

Example:2D loop nest

DO 10 I = 1,100
DO 10 J = 1,100
10 X(I,J) = X(I-1,J+1) + 1

Flow dependence constraints: (I, Ju) — (I, J;)
Distance vector: (A1, Aqs) = (I, — Ly, Jr — Ju)
o | < Jw,Ir, Jw,Jr <100

] (Iu;, Jm) ~< (I'r"; !L_I)
® I“_, = I; — 1
o J,=J,+1

o« (A1,80) = (I = Lo Jr — Ju)

Solution: (A, Az) = (1,—1)

o

/Direction vectors Example: \

DO 10 I = 1,100
10 X(2I+1) = X(I) + 1

Flow dependence equation: 27, +1 = 1I,.
Dependence relation: {(1 — 3),(2 —5),(3 —=17),...} (1).

No fixed distance between dependent iterations!

But all distances are +ve, so use direction vector instead.
Here, direction = (+).

Intuition: (+4) direction = some distances in range [1, o)
In general, direction = (+) or (0) or (-).

Also written by some authors as (<), (=), or (>).
Direction vectors are not exact.

(eg):if we try to recover dependence relation from direction (+), we

get bigger relation than (1):

\{(1—>2)(1—>3),...,(1—>100),(2%3),(2%4),...} /

/Directions for Nested Loops
Assume loop nest is (I,J).
If (I1,J1) — (12, J2) € dependence relation, then
Distance = (Io — Iy, Jo — J1)
Direction = (sign(ly — Iy), sign(Js — J1))

Legal direction vectors:
(++) (0.5
(+-) (0,0)
(00 (+,0)

/ ,(0+
“’[0,-) (1)

- I (' ')

\Vedid dependence vectors are lexicographically positive.

The following direction vectors cannot exist:

/

/How to compute Directions: Use [P engine

DO 10 I = 1, 100
X(£(I)) = ...
10 = ...X(g(I))..

Focus on flow dependences:
.f(f-m) — Q(I?‘)
1 <1, <100
1 <1, <100
First, use inequalities shown above to test if dependence exists in
any direction (called (*) direction).
If IP engine says there are no solutions, no dependence.

Otherwise, determine the direction(s) of dependence.

Test for direction (+): add inequality I, < I,
Test for direction (0): add inequality I, = I,
\ In a single loop, direction (—) cannot occur.

/Computing Directions: Nested Loops

Same idea as single loop: hierarchical testing

(*, %)
~_
(+,%) (0, *) (-, %) ' illegal
/\\ \, directions
/ |
] |

(+.+) (+.0) (+.-) 0,4+ (0,0) \((}\-} /}

—

Figure 1: Hierarchical Testing for Nested Loop

Key ideas:

(1) Refine direction vectors top down.
(eg),no dependence in (x,) direction

= 1o need to do more tests.

\(2) Do not test for impossible directions like (—, x).

Example

DO I = 1,N
DO J = 1,N
X(I,J) = ...X(I,D)...
U I +

\| —= anti-dependence
Tt T ' * — flow dependence

R S [0y [0 [0,

+ £+ 4)\ A\

/ N
/ anti flow
+ £ o+ +

ﬁill(‘.&l‘ system for anti-dependence:
I, =1,
J, =1,
1< 1y I, Jy, Jr <N
(I, J) =X (L, Jw)
Al = (I, —1,)
A2 = (J,—J)
Projecting onto Al and A2, we get
Al =0
0<A2< (N -—-1)
So directions for anti-dependence are

0 and O

\O +

Dependence matrix

Dependence matrix for a loop nest

Matrix containing all dependence distance/direction vectors for all

dependences of loop nest.

In our example, the dependence matrix is

(2 °)

(Conclusions

Traditional position: exact dependence testing (using IP engine) is

too expensive
Recent experience:

(i) exact dependence testing is OK provided we first check for easy

cases (ZIV strong SIV, weak SIV)
(i) IP engine is called for 3-4% of tests for direction vectors

(iii) Cost of exact dependence testing: 3-5% of compile time

Unimodular transformations
and
Transformation synthesis

Overview

* Unimodular transformations
* Permutation, skewing, reversal

* These are linear transformations on iteration spaces and can
be represented using integer matrices

» Special property: unimodular matrix
* Integer matrix with determinant of 1 or -1
* Integer equivalent of orthogonal matrix in numerical linear algebra

 Compositions of these transformations can be represented as
unimodular matrices as well

e Synthesizing unimodular transformations for locality
enhancement

* Making a loop nest fully permutable to enable tiling

Permutation is linear transformation

/Loop permutation = linear transformation on iteration space \

.......
.......

DO 1=1,N M .

DO J =1M ce

S(I’J) 1 L e o o : D:
-------- -1

1 N

DO K =1,M
DO L=1,N
S'(K,L)

Using dependence matrices to
establish correctness of permutation

Correctness of general permutation
Transformation matrix: 7'

Dependence matrix: D

Matrix in which each column is a distance/direction vector
Legality: T.D > 0

Dependence matrix of transformed program: 1.D

Loop permutation

J V
oo 0o 000 °
o000 00 o0
oo 00 e oo e
oo o0 LI)
e o0 s e o0 oee
o0 [E RN NN
° N EERE XN
I U
DO I= I,N o NN U DOU=1,N
D()J:[.,N | 0/] v D()VZI,U

—~a T 5
T 11 T 12
J1 J2

I 2]
%
J1 12
12 -11 } Distance between iterations

Dependence distance {
J2 - J1
. |12 |11 T 2-11 | _|J2-J1
IJ2 - 9 J2 -1 12 -11

Check for legality: interchange positions in distance/direction vector & check for lex +ve

\ If transformation P is legal and original dependence matrix is D, new dependence matrix is T*D. /

//

[Loop Skewing: a linear loop transformation

]
I L
vV [Iy N |
J| o eoe e soe
L N B — =0 & @
& °e 1 o U o0 0o o
s 000 II | 1:| L] =LJ o= @
\\- LN \ =0
.\\I L I []
* 200
I u
. oy . .
Skewing of inner loop by outer loop: (k 1/ (k 1s some fixed mnteger)

Skewing of inner loop by an outer loop: always legal

New dependence vectors: compute T*D

In this example, D= [11 } T*D = LIJ

This skewing has changed dependence vector but 1t has not brought dependent iterations

\ closer together....

/

{

Skewing outer loop by inner loop

I
J V
I i
|.r | T‘-.I 1] _[u
|Ilt ﬂ].ll.'l J \;
Outer loop skewing: |'I (IJ]f'|
1 |

Skewing of outer loop by inner loop: not necessarily legal

In this example, D= [1} T*D = {ﬂ} incorrect
-1 -1

Dependent iterations are closer together (good) but progran

How do we fix this??

i

1 1s 1llegal (bad).

-

Loop Reversal:a linear loop transformation

5 P

0 I U 0
U= [-1][1]
DO 1= 1N DOU= N,
LX) =142 | X(-U)=-U+2 |

Transformation matrix = [-1]

Another example: 2-D loop, reverse inner loop |:U:|= |:1 “J |:I:|
\ 0 - J

Legality of loop reversal: Apply transformation matrix to all dependences & verify lex +ve

Code generation: easy

N

K\T(%nd for composite transformations

J V

*/

I U
N
f1 0 [u |G

. . IoLo -1/ vl |H

Transformation: skewing followed by reversal
o M
In final program, dependent iterations are
close together!

Composition of linear transformations G

= another linear transformation!

Composite trans formation matrix is

|“1 0\ f1 1 f1 1Y

* —
o-1) " Lo 1) = Lo

K How do we synthesize this composite transformation??

4 N

Some facts about permutation/reversal /skewing

e Transformation matrices for permutation /reversal/skewing are
unimodular.
e Any composition of these transformations can be represented
by a unimodular matrix.
e Any unimodular matrix can be decomposed into product of
permutation/reversal /skewing matrices.
e Legality of composite transformation 1" check that 7D = 0.
(Proof: T3 (To* (Ty + D)) = (T« 15« Ty) = D.)
e Code generation algorithm:
e Original bounds: A« 1 <D
e ITransformation: U =1 % [

e New bounds: compute from A= 71T U <b

N /

4 N

Synthesizing composite transformations using matrix-based

approaches

e Rather than reason about sequences of transformations, we can
reason about the single matrix that represents the composite
transformation.

e Enabling abstraction: dependence matrix

N /

-

In general, tiling is not legal.

N

Tiling 15 illegal!

Tiling is legal it loops are fully permutable (all permutations of

loops are legal).
Tiling i1s legal if all entries in dependence matrix are non-negative.
e Can we always convert a perfectly nested loop into a fully

permutable loop nest?

e When we can, how do we do 1t?

N

4 N

Theorem: If all dependence vectors are distance vectors. we can

convert entire loop nest into a fully permutable loop nest.

Example: wavelront

Dependence matrix is { ! \
)

Dependence matrix of transformed program must have all positive

entries.

So first row of transformation can be (1 0).

Second row of transformation (m 1) (for any m > 0).

(GGeneral idea: skew inner loops by outer loops sufficiently to make

all negative entries non-negative.

N /

- 1th negative entries into row

Transformation to make first row with negative

with 1'1(}1‘1—1‘1eg;ati1-'e entries

""" -l—‘;' row a

r ---------- -
! _______I'I______ - ___|__

-k | r first row
with negative entries

(a) for each negative entry in the first row with negative entries,

find the first positive number in the corresponding column
assume the rows for these positive entries are a.b etc as shown above

(b) skew the row with negative entnes by appropnate multiples of
rows ab....
For our example, multiple of row a = ceiling(n/p2)
multiple of row b = ceiling(max(m/p1.k/p3))

I

Transformation: ,"I
[00 ..0ceiling(np2) 00 celling(max(m/pl.k/p3))0...]

IIIII _I

-

General algorithm for making loop nest fully permutable:

If all entries in dependence matrix are non-negative, done.

Otherwise.

1. Apply algorithm on previous slide to first row with
non-negative entries.

2. Generate new dependence matrix.

3. If no negative entries. done.

4. Otherwise, go step (1).

-

Result of tiling transformed wavefront

] J . .nlle . ./.
s |[Te_allo el _* o 5 *-*7/--
4 Se[le e/ o e (1 UY 1| |e—erte e o o
3 '\\\\\ :\\" \l 1,.-'| 3 LI
2 e o » - 2 ol s s & @
1 :\\ h :\ 1 . 8 ® 8 @ @
I I
1 2 3 4 5 1 2 3 4 5
Original loop Tiled fully permutable loop

Tiling generates a 4-deep loop nest.

Not as nice as height reduction solution. but it will work fine for
locality enhancement except at tile boundaries (but boundary

points small compared to number of interior points).

N

/

What happens with direction vectors?
In general, we cannot make loop nest fully permutable.
+
Example: D =
+
Best we can do is to make some of the loops fully permutable.

We try to make outermost loops fully permutable, so we would
interchange the second and third loops. and then tile the first two

loops only.

summary

* Dependence relation
* Binary relation between points in iteration space
* Can be computed using ILP calculator

° Dependence abstractions
 Summary of dependence relation
* Not as accurate but easier to compute and use

e Distance/direction vectors
e Put them together in dependence matrix

e Unimodular transformations
* Can be represented using unimodular matrix
e permutation, skewing, reversal, compositions of these

* Synthesize unimodular transformations using dependence
matrix as driver

* Making a loop nest fully permutable

	Dependences�and�Loop Transformations
	Slide Number 2
	Slide Number 3
	Overview of lecture
	Slide Number 5
	Slide Number 6
	Slide Number 7
	History
	Integer Linear Programming
	Slide Number 10
	Linear inequalities
	Slide Number 12
	Slide Number 13
	Geometric intuition for ILP problems
	Fourier-Motzkin Elimination
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Solving decision problem
	Treatment of equalities
	Using ILP for Dependence Analysis
	Slide Number 29
	Dependence Example
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Connection to ILP
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Summary
	Dependence Relation �and �Dependence Abstractions
	Overview
	Formal view of dependence
	Slide Number 44
	Dependence arrows are lexicographically positive
	Slide Number 46
	Dependence abstractions
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Example
	Slide Number 56
	Dependence matrix
	Slide Number 58
	Unimodular transformations�and�Transformation synthesis
	Overview
	Permutation is linear transformation
	Using dependence matrices to establish correctness of permutation
	Loop permutation
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Summary

