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Loop Transformations





Our focus: perfectly-nested loops



Overview of lecture
• We have seen two loop transformations for locality 

enhancement
• Permutation
• Tiling

• Many other transformations
• Skewing, reveral, scaling…

• Code generation: given a loop nest and a transformation,
• Determine if the transformation is legal (does not violate 

dependences).
• If so, generate the transformed loop nest.

• More difficult problem: synthesis of transformation
• Given a loop nest and a performance objective such as locality 

enhancement, synthesize a good transformation.
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Issue 1: (example)





History

• Dependence and code generation problems used to 
be solved using heuristics (1965-1990)

• GCD test, Banerjee test, etc.
• Pattern matching to generate code

• Today we use powerful integer linear programming 
(ILP) techniques (1990-)

• Complemented by heuristics to quickly handle simple 
problems

• Use full-blown power of ILP calculator very sparingly



Integer Linear 
Programming





Linear inequalities
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Geometric intuition for ILP problems

• Given a convex polyhedron, solve two 
problems.

• Enumerate all the integer points in 
polyhedron

• Fourier-Motzkin elimination
• Used to generate code for transformed 

loop nest
• Decision problem: is there an integer 

point within the polyhedron?
• Cutting plane method (Gomory 1958)
• Used to determine if transformation is 

legal
• In compilers, we deal with 

underdetermined systems
• No solution or many solutions



Fourier-Motzkin Elimination
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Solving decision problem

• ILP calculators: variations of cutting 
plane method (Gomory 1958)

• In practice, we use simple tests like 
GCD test to handle easy cases

• (e.g.) equation 2x + 4y = 5 does not 
have integer solutions because lhs
must be an even number for any 
integer values of x and y but rhs is an 
odd number

• Generalization: if GCD of lhs
coefficients does not divide rhs, 
equation has no solutions

• Given a system of equalities and 
inequalities, use GCD test to quickly 
determine if some equality has no 
solution; otherwise use ILP calculator

• Dependence tests (1965-1990)
• Cottage industry in inventing more 

general tests than GCD



Treatment of equalities 
• In principle, we need to consider only 

inequalities
• Convert equality (A = B) to conjunction of two 

inequalities (A ≤ B) and (B ≤ A) 
• Better approach for decision problem

• Solve equalities first using integer Gaussian 
elimination to find parametric solution 
(remember: underdetermined systems)

• Substitute parametric solution into inequalities 
and then solve system of inequalities using cutting 
plane method

• Integer Gaussian elimination
• Rich theory for solving Diophantine equations 

going back more than 2000 years (Greeks, Hindus)



Using ILP for 
Dependence Analysis
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Dependence Example
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Connection to ILP

• Dependence problem becomes an ILP problem if
• Array subscripts are affine functions of loop variables
• Loop bounds are affine functions of outer loop variables

• Examples: “regular programs”
• Most dense linear algebra algorithms like BLAS routines, 

Cholesky factorization, LU without pivoting
• Stencil codes: finite differences

• Counter-examples: “irregular programs”
• Dense linear algebra with pivoting
• Spare matrix codes, graph algorithms













Summary

• Problem of determining whether a dependence 
exists between two iterations of a loop nest can be 
framed as an ILP problem

• Assumptions: affine loop bounds and array subscripts

• Solve decision problem using ILP calculator 
augmented with simpler tests like GCD to filter out 
easy cases



Dependence Relation 
and 

Dependence Abstractions



Overview

• Dependence relation
• Closed form expression that gives all dependences for a 

given loop nest, not just a yes/no answer for existence 
of dependence

• Can be computed using ILP calculator
• Too expensive to compute for most programs

• Dependence abstractions
• Distance vectors
• Direction vectors
• Dependence matrix



Formal view of dependence
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Dependence arrows are lexicographically positive 
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FOR



Dependence abstractions

• In practice, working with the full dependence relation 
for a loop nest is expensive and difficult

• Usually, we use an abstraction of dependence relation
• Summary information about dependence
• Summary is an over-approximation of actual dependence 

relation

• Two abstractions are popular
• Distance vectors
• Direction vectors
• Dependence matrix: collection of distance/direction vectors

















Example





Dependence matrix





Unimodular transformations
and

Transformation synthesis



Overview

• Unimodular transformations
• Permutation, skewing, reversal
• These are linear transformations on iteration spaces and can 

be represented using integer matrices
• Special property: unimodular matrix

• Integer matrix with determinant of 1 or -1
• Integer equivalent of orthogonal matrix in numerical linear algebra

• Compositions of these transformations can be represented as 
unimodular matrices as well

• Synthesizing unimodular transformations for locality 
enhancement

• Making a loop nest fully permutable to enable tiling



Permutation is linear transformation



Using dependence matrices to 
establish correctness of permutation



Loop permutation



























Summary

• Dependence relation
• Binary relation between points in iteration space
• Can be computed using ILP calculator

• Dependence abstractions
• Summary of dependence relation

• Not as accurate but easier to compute and use
• Distance/direction vectors

• Put them together in dependence matrix

• Unimodular transformations
• Can be represented using unimodular matrix

• permutation, skewing, reversal, compositions of these
• Synthesize unimodular transformations using dependence 

matrix as driver
• Making a loop nest fully permutable
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