
Dependences
and

Loop Transformations

Our focus: perfectly-nested loops

Overview of lecture
• We have seen two loop transformations for locality

enhancement
• Permutation
• Tiling

• Many other transformations
• Skewing, reveral, scaling…

• Code generation: given a loop nest and a transformation,
• Determine if the transformation is legal (does not violate

dependences).
• If so, generate the transformed loop nest.

• More difficult problem: synthesis of transformation
• Given a loop nest and a performance objective such as locality

enhancement, synthesize a good transformation.

FOR
FOR

FOR

FOR

FOR

FOR

Issue 1: (example)

History

• Dependence and code generation problems used to
be solved using heuristics (1965-1990)

• GCD test, Banerjee test, etc.
• Pattern matching to generate code

• Today we use powerful integer linear programming
(ILP) techniques (1990-)

• Complemented by heuristics to quickly handle simple
problems

• Use full-blown power of ILP calculator very sparingly

Integer Linear
Programming

Linear inequalities

2 3 4
1 -1 3

is equivalent to

2x + 3y + 4z ≤ 4
x – y + 3z ≤ 1

X
Y
Z

4
1≤

Geometric intuition for ILP problems

• Given a convex polyhedron, solve two
problems.

• Enumerate all the integer points in
polyhedron

• Fourier-Motzkin elimination
• Used to generate code for transformed

loop nest
• Decision problem: is there an integer

point within the polyhedron?
• Cutting plane method (Gomory 1958)
• Used to determine if transformation is

legal
• In compilers, we deal with

underdetermined systems
• No solution or many solutions

Fourier-Motzkin Elimination

74/13

Solving decision problem

• ILP calculators: variations of cutting
plane method (Gomory 1958)

• In practice, we use simple tests like
GCD test to handle easy cases

• (e.g.) equation 2x + 4y = 5 does not
have integer solutions because lhs
must be an even number for any
integer values of x and y but rhs is an
odd number

• Generalization: if GCD of lhs
coefficients does not divide rhs,
equation has no solutions

• Given a system of equalities and
inequalities, use GCD test to quickly
determine if some equality has no
solution; otherwise use ILP calculator

• Dependence tests (1965-1990)
• Cottage industry in inventing more

general tests than GCD

Treatment of equalities
• In principle, we need to consider only

inequalities
• Convert equality (A = B) to conjunction of two

inequalities (A ≤ B) and (B ≤ A)
• Better approach for decision problem

• Solve equalities first using integer Gaussian
elimination to find parametric solution
(remember: underdetermined systems)

• Substitute parametric solution into inequalities
and then solve system of inequalities using cutting
plane method

• Integer Gaussian elimination
• Rich theory for solving Diophantine equations

going back more than 2000 years (Greeks, Hindus)

Using ILP for
Dependence Analysis

FOR
FOR

Dependence Example

FOR

Connection to ILP

• Dependence problem becomes an ILP problem if
• Array subscripts are affine functions of loop variables
• Loop bounds are affine functions of outer loop variables

• Examples: “regular programs”
• Most dense linear algebra algorithms like BLAS routines,

Cholesky factorization, LU without pivoting
• Stencil codes: finite differences

• Counter-examples: “irregular programs”
• Dense linear algebra with pivoting
• Spare matrix codes, graph algorithms

Summary

• Problem of determining whether a dependence
exists between two iterations of a loop nest can be
framed as an ILP problem

• Assumptions: affine loop bounds and array subscripts

• Solve decision problem using ILP calculator
augmented with simpler tests like GCD to filter out
easy cases

Dependence Relation
and

Dependence Abstractions

Overview

• Dependence relation
• Closed form expression that gives all dependences for a

given loop nest, not just a yes/no answer for existence
of dependence

• Can be computed using ILP calculator
• Too expensive to compute for most programs

• Dependence abstractions
• Distance vectors
• Direction vectors
• Dependence matrix

Formal view of dependence

FOR

FOR
FOR

Dependence arrows are lexicographically positive

FOR
FOR

Dependence abstractions

• In practice, working with the full dependence relation
for a loop nest is expensive and difficult

• Usually, we use an abstraction of dependence relation
• Summary information about dependence
• Summary is an over-approximation of actual dependence

relation

• Two abstractions are popular
• Distance vectors
• Direction vectors
• Dependence matrix: collection of distance/direction vectors

Example

Dependence matrix

Unimodular transformations
and

Transformation synthesis

Overview

• Unimodular transformations
• Permutation, skewing, reversal
• These are linear transformations on iteration spaces and can

be represented using integer matrices
• Special property: unimodular matrix

• Integer matrix with determinant of 1 or -1
• Integer equivalent of orthogonal matrix in numerical linear algebra

• Compositions of these transformations can be represented as
unimodular matrices as well

• Synthesizing unimodular transformations for locality
enhancement

• Making a loop nest fully permutable to enable tiling

Permutation is linear transformation

Using dependence matrices to
establish correctness of permutation

Loop permutation

Summary

• Dependence relation
• Binary relation between points in iteration space
• Can be computed using ILP calculator

• Dependence abstractions
• Summary of dependence relation

• Not as accurate but easier to compute and use
• Distance/direction vectors

• Put them together in dependence matrix

• Unimodular transformations
• Can be represented using unimodular matrix

• permutation, skewing, reversal, compositions of these
• Synthesize unimodular transformations using dependence

matrix as driver
• Making a loop nest fully permutable

	Dependences�and�Loop Transformations
	Slide Number 2
	Slide Number 3
	Overview of lecture
	Slide Number 5
	Slide Number 6
	Slide Number 7
	History
	Integer Linear Programming
	Slide Number 10
	Linear inequalities
	Slide Number 12
	Slide Number 13
	Geometric intuition for ILP problems
	Fourier-Motzkin Elimination
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Solving decision problem
	Treatment of equalities
	Using ILP for Dependence Analysis
	Slide Number 29
	Dependence Example
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Connection to ILP
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Summary
	Dependence Relation �and �Dependence Abstractions
	Overview
	Formal view of dependence
	Slide Number 44
	Dependence arrows are lexicographically positive
	Slide Number 46
	Dependence abstractions
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Example
	Slide Number 56
	Dependence matrix
	Slide Number 58
	Unimodular transformations�and�Transformation synthesis
	Overview
	Permutation is linear transformation
	Using dependence matrices to establish correctness of permutation
	Loop permutation
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Summary

