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Topics covered in lecture
• Instruction level parallelism (ILP)

• Pipelined execution
• Superscalar
• Out-of-order execution
• Limit on ILP: data and control dependences between 

instructions
• Out-of-order execution implementation

• Out of order execution, in-order completion (commit)
• RAW dependences: forwarding
• WAR and WAW dependences: register renaming
• Control dependences: branch prediction and speculative 

execution
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Texbooks and References

• Try to hit the tip of the iceberg

• Explain main concepts only

• Not enough to develop your own microprocessor…

• But allow better understand behavior and performance of your program

• Hennesy, Patterson, Computer Architecture: Quantative Approach, 6th Ed.

• Blaauw, Brooks, Computer Architecture: Concepts and Evolution
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Layers of Abstraction

Application

Algorithms

Programming Languages

Operating Systems/Libraries

Instruction Set Architecture

Microarchitecture

Gates/Register-Transfer Level (RTL)

Circuits

Physics

Software

Hardware

Interface between 
HW and SW
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Basic CPU Actions

1. Fetch instruction by PC from memory

2. Decode it and read its operands from registers

3. Execute calculations

4. Read/write memory

5. Write the result into registers and update PC

F ME WD

4ns 8ns time
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Non-Pipelined Processing

• Instructions are processed sequentially, one per cycle

• How to speed-up?

• SW: decrease number of instructions

• HW: decrease the time to process one instruction

or overlap their processing. i.e. make pipeline
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Pipeline

• Processing is split into several steps called “stages”

• Each stage takes one cycle

• The clock cycle is determined by the longest stage

• Instructions are overlapped

• A new instruction occupies a stage as soon as the previous one leaves it
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Pipeline vs Non-Pipeline
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Pipeline vs Non-Pipeline
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Pipeline Limitations

• Max speed of the pipeline is one instruction per clock

• It is rare due to dependencies among instructions (data or control) and in-
order processing



Recap from basic architecture 
course: Data Dependences

• A statement/instruction S2 is said to be 
data dependent on statement/instruction 
S1 if
– S1 executes before S2 in the original program
– S1 and S2 access the same data item
– At least one of the accesses is a write.

2



Data Dependence

Flow dependence (RAW, True dependence)

Anti dependence (WAR)

Output dependence (WAW)

S1: X = A+B
S2: C= X+A

S1: A = X + B
S2: X= C + D

S1: X = A+B
S2: X= C + D

S1

S2

S1

S2

S1

S2

3



Data Dependence

• Dependences indicate an execution order that must be
honored.

• Executing statements/instructions in the order of the
dependences guarantee correct results.

• Statements/instructions not dependent on each other can
be reordered, executed in parallel, or coalesced into a
vector operation.

4
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Pipeline Limitations

• Various types of hazards:
• read after write (RAW),  true/flow dependence
• write after read (WAR), anti-dependence
• write after write (WAW), output dependence
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Superscalar: Wide Pipeline

• Pipeline exploits instruction level parallelism (ILP)

• Can we improve? Execute, instructions in parallel

• Need to double HW structures

• Max speedup is 2 instructions per cycle (IPC=2)

• The real speedup is less due to dependencies and in-order execution
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Is Superscalar Good Enough?

• Theoretically can execute multiple instructions in parallel

• Wide pipeline => more performance

• But…

• Only independent subsequent instructions can be executed in parallel

• Whereas subsequent instructions are often dependent

• So the utilization of the second pipe is often low

• Solution: out-of-order execution

• Execute instructions based on the “data flow” graph, rather than 
program order

• Still need to keep the visibility of in-order execution
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Data Flow Analysis
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Instruction “Grinder”

• Then technology allowed building wide HW, but the code representation 
remained sequential

• Decision: extract parallelism back by means of hardware

• Compatibility burden: needs to look like sequential hardware
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Why Order is Important?
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Maintaining Architectural State



Out-of-order execution: key ideas
Out-of-order execution, in-order completion (commit/retire)

• Precise exceptions, memory model of processor

(I) Dataflow execution: instructions execute when operands are available
• Reorder buffer (ROB): window of instructions
• Instructions enter ROB in program order, retire from ROB in program order
• Instructions in ROB execute when operands are available
• However, results are stored in ROB until instruction retires

(II) Register renaming
• Goal: eliminate anti- and output-dependences on registers
• Two register files

• Architected register file: registers visible to programmer and ISA
• Physical register file: 

• Larger set of registers that hold values for inflight instructions
• Not visible to programmer or ISA, managed by hardware

• OOO processors implement both dataflow execution and register renaming but useful to study separately

(III) Branch prediction
• How to get a big window of instructions to work on



OOO execution without renaming

• Invariants (ROB):
1. At most one instruction in flight writes to a given register
2. Instruction executes when all operands available but result stored in result slot of ROB entry
3. Destination register is updated only when instruction is retired

• Invariant (Registers):
4. Rx.v → No instruction in flight writes to register Rx
5. ! Rx.v→ An inflight instruction will write to Rx and ROB entries for younger instructions that 

need that value are in Rx.consumers

v(alid) value consumers

R0

R1

…..

Registers



Actions: (R3  R1 + 9 in ROB# n)

• Enter: 
if (! R3.v) //inflight instruction will modify R3          

wait until R3.v = true; (Invariant 1)
R3.v = false; (Invariant 1)
Enter instruction into ROB# n;
if (R1.v) then 

{ROB[n].slot1 = R1.value; (Invariant 4)
Mark instruction as ready;}

else Add #n to R1.consumers; (Invariant 5)

v value consumers

R0

R1

…..

• Retire: 
R3.value = ROB[n].result; 
R3.v = true; (Invariant 3)
Notify all ROB entries in R3.consumers;  (Invariant 5)

• Execute: 
Dispatch to free functional unit;
Write result back to ROB[n].result



Dependences and precise exceptions

• Flow dependences
• Invariants (4) and (5,3)

• Anti- and output dependences
• Invariant (1)

• Precise exceptions
• Invariants (2) and (3)

v value consumers

R0

R1

…..

• Invariants (ROB):
1. At most one instruction in flight writes to a given register

2. Instruction executes when all operands available but result stored in result slot 
of ROB entry

3. Destination register is updated only when instruction is retired

• Invariant (Registers):
4. Rx.v = true ➔ No instruction in flight writes to register rx

5. if (! Rx.v) ROB entries for all inflight instructions that read rx are in 
Rx.Consumers



Limitations of scheme:

• Consider instruction (R3  R1 + 9) 

• Register R3 value not forwarded to consumers in ROB until instruction 
retires

• Why not forward value to consumers in ROB as soon as it is 
computed?
• More parallelism

• One implementation of idea: register renaming



OOO execution with renaming

• Two sets of registers
• Architected registers: registers visible to the ISA and programmer
• Physical registers: 

• Different and larger set of registers that hold values temporarily while instructions are in flight

• Not visible to ISA or programmer, managed entirely by hardware

• Register renaming
• Eliminate anti- and output-dependences within instruction window by using physical registers

• There can be several instructions in flight that write to same architected register, but they will write to different physical registers

v(alid) value PR#

R0

R1

…..

Architected Registers

v(alid) value consumers

PR0

PR1

…..

Physical Registers



OOO execution with renaming

• Invariants (ROB):
1. At most one instruction in flight writes to a given physical register
2. Instruction executes when all operands available but result stored in physical register
3. Architected register is updated when instruction is retired

• Invariant (Registers):
4. Rx.v → No instruction in flight writes to register Rx
5. (! Rx.v) → Youngest instruction that writes to Rx will store result in Rx[PR#]
6. (!Rx.v and Rx.PR#.v) → Youngest instruction that writes to Rx has completed and value is in Rx.PR#.value
7. (!Rx.v and ! Rx.PR#.v) → Youngest instruction that writes to Rx has not completed and ROB entries for all 

inflight instructions that read its value are in Rx[PR#].consumers

v(alid) value PR#

R0

R1

…..

Architected Registers

v(alid) value consumers

PR0

PR1

…..

Physical Registers



OOO execution with renaming: (R3  R1 + 9 in ROB# n)

v(alid) value PR#

R0

R1
…..

Architected Registers

v(alid) value consumers

PR0

PR1
…..

Physical Registers

• Enter:
PRm = free physical register;      
R3.PR# = PRm;
R3[v] = false; 
PRm.v = false;
Enter instruction and PRm into ROB[n]; (Invariant 5)
if (R1.v) then 

{ROB[n].slot1 = R1.value; (Invariant 4)
 Mark instruction as ready;}

else  if (R1.PR#.v) then 
{ROB[n].slot1 = R1.PR#.value; (Invariants 5 and 6)
 Mark instruction as ready;}

else 
Add #n to R1.PR#.consumers; (Invariant 7)

• Retire:
R3.value = R3.PR#.value; (Invariant 3)
if (R3.PR# = ROB[n].PR#) R3.v = true; (Invariants 4&5)

• Execute:
Dispatch to free functional unit;
pr = ROB[n].PR# //physical register associated with R3
Write result to pr.value; 
pr.v = true; (Invariant 6)
Notify all ROB entries in pr.Consumers; (Invariant 7)



Out-of-order execution: key ideas
Out-of-order execution, in-order completion (commit/retire)

• Precise exceptions, memory model of processor
  (I) Dataflow execution: instructions execute when operands are available

• Reorder buffer (ROB): window of instructions
• Instructions enter ROB in program order, retire from ROB in program order
• Instructions in ROB execute when operands are available
• However, results are stored in ROB until instruction retires

 (II) Register renaming
• Goal: eliminate anti- and output-dependences on registers
• Two register files

• Architected register file: registers visible to programmer and ISA
• Physical register file: 

• Larger set of registers that hold values for inflight instructions
• Not visible to programmer or ISA, managed by hardware

• OOO processors implement both dataflow execution and register renaming but useful to study separately
 (III) Branch prediction

• How to get a big window of instructions to work on



OOO execution without renaming

• Invariants (ROB):
1. At most one instruction in flight writes to a given register
2. Instruction executes when all operands available but result stored in result slot of ROB entry
3. Destination register is updated only when instruction is retired

• Invariant (Registers):
4. Rx.v   No instruction in flight writes to register Rx
5. ! Rx.v  An inflight instruction will write to Rx and ROB entries for younger instructions that 

need that value are in Rx.consumers

v(alid) value consumers

R0

R1
…..

Registers



Actions: (R3  R1 + 9 in ROB# n)

• Enter: 
if (! R3.v) //inflight instruction will modify R3          

wait until R3.v = true; (Invariant 1)
R3.v = false; (Invariant 1)
Enter instruction into ROB# n;
if (R1.v) then 

{ROB[n].slot1 = R1.value; (Invariant 4)
 Mark instruction as ready;}

else Add #n to R1.consumers; (Invariant 5)

v value consumers

R0

R1
…..

• Retire: 
R3.value = ROB[n].result; 
R3.v = true; (Invariant 3)
Notify all ROB entries in R3.consumers;  (Invariant 5)

• Execute: 
Dispatch to free functional unit;
Write result back to ROB[n].result



Dependences and precise exceptions

• Flow dependences
• Invariants (4) and (5,3)

• Anti- and output dependences
• Invariant (1)

• Precise exceptions
• Invariants (2) and (3)

v value consumers

R0

R1
…..

• Invariants (ROB):
1. At most one instruction in flight writes to a given register
2. Instruction executes when all operands available but result stored in result slot 

of ROB entry
3. Destination register is updated only when instruction is retired

• Invariant (Registers):
4. Rx.v = true  No instruction in flight writes to register rx
5. if (! Rx.v) ROB entries for all inflight instructions that read rx are in 

Rx.Consumers



Limitations of scheme:

• Consider instruction (R3  R1 + 9) 
• Register R3 value not forwarded to consumers in ROB until instruction 

retires
• Why not forward value to consumers in ROB as soon as it is 

computed?
• More parallelism

• One implementation of idea: register renaming



OOO execution with renaming

• Two sets of registers
• Architected registers: registers visible to the ISA and programmer
• Physical registers: 

• Different and larger set of registers that hold values temporarily while instructions are in flight
• Not visible to ISA or programmer, managed entirely by hardware

• Register renaming
• Eliminate anti- and output-dependences within instruction window by using physical registers

• There can be several instructions in flight that write to same architected register, but they will write to different physical registers

v(alid) value PR#

R0

R1
…..

Architected Registers

v(alid) value consumers

PR0

PR1
…..

Physical Registers



OOO execution with renaming

• Invariants (ROB):
1. At most one instruction in flight writes to a given physical register
2. Instruction executes when all operands available but result stored in physical register
3. Architected register is updated when instruction is retired

• Invariant (Registers):
4. Rx.v   No instruction in flight writes to register Rx
5. (! Rx.v)  Youngest instruction that writes to Rx will store result in Rx[PR#]
6. (!Rx.v and Rx.PR#.v)  Youngest instruction that writes to Rx has completed and value is in Rx.PR#.value
7. (!Rx.v and ! Rx.PR#.v)  Youngest instruction that writes to Rx has not completed and ROB entries for all 

inflight instructions that read its value are in Rx[PR#].consumers

v(alid) value PR#

R0

R1
…..

Architected Registers

v(alid) value consumers

PR0

PR1
…..

Physical Registers



OOO execution with renaming: (R3  R1 + 9 in ROB# n)

v(alid) value PR#

R0

R1
…..

Architected Registers

v(alid) value consumers

PR0

PR1
…..

Physical Registers

• Enter:
PRm = free physical register;      
R3.PR# = PRm;
R3[v] = false; 
PRm.v = false;
Enter instruction and PRm into ROB[n]; (Invariant 5)
if (R1.v) then 

{ROB[n].slot1 = R1.value; (Invariant 4)
 Mark instruction as ready;}

else  if (R1.PR#.v) then 
{ROB[n].slot1 = R1.PR#.value; (Invariants 5 and 6)
 Mark instruction as ready;}

else 
Add #n to R1.PR#.consumers; (Invariant 7)

• Retire:
R3.value = ROB[n].PR#.value; (Invariant 3)
if (R3.pR# = ROB[n].PR#) R3.v = true; (Invariants 4&5)

• Execute:
Dispatch to free functional unit;
pr = ROB[n].PR# //physical register associated with R3
Write result to pr.value; 
pr.v = true; (Invariant 6)
Notify all ROB entries in pr.Consumers; (Invariant 7)



How large should ROB be?
• In principle, larger the better

• Find more independent instructions
• Hide longer memory latencies

• Example
• Many CPUs have ROB of size ~200

• Main limitation: branches
• On average, 1 in every 5 instructions is branch
• How to fetch instructions into ROB when branch has not been resolved?
• One solution: guess randomly which way branch will go

• Probability of getting one branch right: 50%
• Probability that 100th instruction in window will be executed is (0.5)^20 = 0.0001%





More elaborate branch predictors exist: (e.g.) Perceptron-based branch predictor (Calvin Lin)
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Using History Patterns
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Local Predictor
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Global Predictor



Topics covered in lecture
• Instruction level parallelism (ILP)

• Pipelined execution
• Superscalar
• Out-of-order execution
• Limit on ILP: data and control dependences between 

instructions
• Out-of-order execution implementation

• Out of order execution, in-order completion (commit)
• RAW dependences: forwarding
• WAR and WAW dependences: register renaming
• Control dependences: branch prediction and speculative 

execution
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Intel Processor Roadmap
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Haswell Floorplan
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Block Diagram
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FrontEnd

• Instruction Fetch and Decode

• 32 KB 8-way Icache

• 4 decoders, up to 4 inst/cycle

• CISC to RISC transformation

• Decode Pipeline supports 16 
bytes per cycle
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FrontEnd: Instruction Decode

• Four decoding units decode instructions 
into uops
• The first can decode all instructions 

up to four uops in size
• Uops emitted by the decoders are 

directed to the Decode Queue and to 
the Decoded Uop Cache

• Instructions with >4 uoops generate 
their uops from the MSROM
• The MSROM bandwith is 4 uops per 

cycle
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FrontEnd: Decode UOP Cache
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FrontEnd: Loop Stream Detector

• LSD detects small loops that fit in the 
Decode Queue
• The loop streams from the uop queue, 

with no more fetching, decoding, or 
reading uops from any of the caches 

• Works until a branch misprediction
• The loops with the following attributes 

qualify for LSD replay
• Up to 56 uops
• All uops are also resident in the UC
• No more than eight taken branches
• No CALL or RET
• No mismatched stack operations (e.g. 

more PUSH than POP)
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FrontEnd: Macro-Fusion

• Merge two instructions into a single uop
• Increased decode, rename and retire 

bandwidth
• Power savings from representing 

more work in fewer bits
• The first instruction of a macro-fused pair 

modifies flags
• CMP, TEST, ADD, SUB, AND, INC, DEC

• The 2nd inst of a macro-fusible pair is a 
conditional branch

• For each first instruction, some 
branches can fuse with it

• These pairs are common in many apps
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OOO Structures
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OOO: Renamer
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OOO: Dependency Breaking Idiom
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EXE
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Core Cache Size/Latency/BW
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