
Message Passing

- Sender and receiver rendezvous to exchange data

 Overlapping of computation and communication is critical for performance

x : =

........

.......

.......

SrcP DestP

SEND(x, DestP)
RECEIVE(y,SrcP)

P

F M F

P

M

Blocking SEND/RECEIVE : couple data transfer and synchronization

- SrcP field in RECEIVE command permits DestP to select
 which processor it wants to receive data from

- Implementation:
 - SrcP sends token saying ‘ready to send’
 - DestP returns token saying ‘me too’
 - Data transfer takes place directly between application programs
 w/o buffering in O/S

one possibility: new command TEST(SrcP,flag): is there a message from SrcP?
 - receiver cannot do other work if data is not available yet
 - sender cannot push data out and move on
- Problem:
- Motivation: Hardware ‘channels’ between processors in early multicomputers

History: Caltech Cosmic Cube

P

F M F

P

M

P

F M F

P

M

Non-blocking SEND/RECEIVE : decouple synchronization from data transfer

x : =

........

.......

.......

SrcP DestP

SEND(x, DestP,tag)

Network

RECEIVE(y,SrcP,tag,flag)

- SrcP can push data out and move on
- Many variation: return to application program when

 - data is out on network?
 - data has been copied into an O/S buffer?

- Tag field on messages permits receiver to receive messages
 in an order different from order that they were sent by SrcP

- RECEIVE does not block
- flag is set to true by O/S if data was transfered/false otherwise

- Applications program can test flag and take the right action

- What if DestP has not done a RECEIVE when data arrives from SrcP?

- Data is buffered in O/S buffers at DestP till application program does a RECEIVE

Can we eliminate waiting at SrcP ?

Can we eliminate buffering of data at DestP ?

P

F M F

P

M

P

F M F

P

M
x : =

........

.......

.......

SrcP DestP

Network

Asynchronous SEND/RECEIVE

ISEND(x, DestP,tag,flag1)
IRECEIVE(y,SrcP,tag,flag2)

- RECEIVE is non-blocking:
 - returns before data arrives
 - tells O/S to place data in ‘y’ and set ‘flag’ after data is received
 - ‘posting’ of information to O/S

 before message arrives at DestP

- SEND returns as soon as O/S knows about what needs to be sent

- ‘Flag2’ is written by O/S and read by application program on DestP

- ‘Flag1’ set by O/S when data in x has been shipped out

- Application program continues, but must test ‘flag1’ before overwriting x

- Eliminates buffering of data in DestP O/S area if IRECEIVE is posted

So far, we have looked at point-to-point communication

Collective communication:

- patterns of group communication that can be implemented more efficiently
 than through long sequences of send’s and receive’s

- important ones:

- all-to-one reduction

- all-to-all broadcast

- one-to-all personalized communication

- all-to-all personalized communication

every processor sends a piece of data to every other processor

(eg. adding a set of numbers distributed across all processors)

 (eg. A*x implemented by rowwise distribution: all processors need x)

each processor does a one-to-all communication

one processor sends a different piece of data to all other processors

- one-to-all broadcast

1

2

3
4

6

7

5

0
1

3

3

3

2

2

3

Example: One-to-all broadcast

Assuming message size is small, time to send a message = Ts + h*Th
where Ts = overhead at sender/receiver
 Th = time per hop

Total time for broadcast = Ts + Th*P/2

+ Ts + Th*P/4
+

= Ts * logP + Th*(P-1)

Reality check: Actually, a k-ary tree makes sense because processor 0 can send
 many messages by the time processor 4 is ready to participate
 in broadcast

(intuition: think ‘tree’)

Messages in each phase
do not compete for links

1
2 2 2 2

2-D Mesh

Step 1: Broadcast within row of originating processor

Step 2: Broadcast within each column in parallel

Time = Ts logP + 2Th*(sqrt(P) -1)

Other topologies: use the same idea

Messages in each phase
do not compete for links

Example: All-to-one reduction

1

2

3
4

6

7

5

0
1

2

2

1

1

1

1

Purpose: apply a commutative and associative operator

contained in each node
(reduction operator) like +,*,AND,OR etc to values

Can be viewed as inverse of one-to-all broadcast
Same time as one-to-all broadcast

Important use: determine when all processors are finished working
 (implementation of ‘barrier’)

Example: All-to-all broadcast

1

2

3
4

6

7

5

0

0

1

2

34

5

6

7

1

2

3
4

6

7

5

0
0

1

23

4

5

6 7

- Intuition: cyclic shift register
- Each processor receives a value from one neighbor ,
 stores it away, and sends it to next neighbor in the next phase.
- Total of (P-1) phases to complete all-to-all broadcast

Time = (Ts + Th) *(P-1) assuming message size is small

- Same idea can be applied to meshes as well:
 - first phase, all-to-all broadcast within each row
 - second phase, all-to-all broadcast within each column

Message-passing Programming

Goal: Portable Parallel Programming for

 Distributed Memory Computers

- Each vendor had its own communication constructs
 => porting programs required changing parallel programs
 even to go from one distributed memory platform to another!

MPI: Message-Passing Interface

- Mid 1994: MPI-1 standard out and several implementations available (SP-2)

- MPI goal: standardize message passing constructs syntax and semantics

- Lots of vendors of Distributed Memory Computers:
 IBM,NCube, Intel, CM-5,

Key MPI Routines we will use:

MPI_INIT : Initialize the MPI System
MPI_COMM_SIZE: Find out how many processes there are
MPI_COMM_RANK: Who am I?
MPI_SEND: Send a message
MPI_RECV: Receive a message
MPI_FINALIZE: Terminate MPI

MPI_BCAST: Broadcast

 Data Distributions

- distribute arrays across local memories of parallel machine

 so that data elements can be accessed in parallel

- block

- cyclic

- block cyclic(b)

- Standard distributions for dense arrays: (HPF, Scalapack)

Goal:

- Block cyclic distribution subsumes other two

Block:

A:
0 9

P0 P3P2P1

DISTRIBUTE A(BLOCK)

P0 P1 P2 P3
A:

DISTRIBUTE A(BLOCK(4))

P0 P1 P2 P3
A:

if distribution is BLOCK(b)A(i) is mapped to processor i/b

A(i) is mapped to processor i/b mod P

if distribution is CYCLIC(b)

Cyclic/Block Cyclic:

DISTRIBUTE A(CYCLIC)

DISTRIBUTE A(CYCLIC(2))

P1 P2 P3P0 P0

A:
0 9

P0 P3P2P1

A:

A:

 with all the work after a while

- BLOCK distribution: small number of processors end up

- BLOCK-CYCLIC: lower communication costs than CYCLIC

- CYCLIC distribution: better load balance

Common use of cyclic distribution:

Matrix factorization codes

P0 P3P2P1

DISTRIBUTE A (*, BLOCK) DISTRIBUTE A (CYCLIC,*)

A (4,8)

 - * : dimension not distributed
 - cyclic
 - block

Distributions for 2-D Arrays:

Each dimension can be distributed by

DISTRIBUTE A (BLOCK, BLOCK) DISTRIBUTE A(BLOCK,CYCLIC) DISTRIBUTE A (CYCLIC,CYCLIC)

A (4,8)

Distributing both dimensions:

- # of array distribution dimensions
= # of dimensions of processor grid

- 2-D processor grid

Performance Analysis

Two MVM Programs

 of

- one master, several slaves
- master co-ordinates activities of slaves

- Master initially owns all rows of A and vector b

- Style of programming: Master-Slave

- Slaves are

- slave performs product, returns result and asks for more work
- master sends a row of matrix to slave
- each slave comes to master for work

- Master broadcasts vector b to all slaves

self-scheduled

- Why is this program not useful in practice?

In the last lecture, we discussed the following MVM program :

bA

Parallelization Example: MVM
Iterative methods for solving linear systems Ax = b

Jacobi method: M *X
k+1

= (M - A)* X
k + b (M is DIAGONAL(A))

while (not converged) do

SAXPY operations

do i = 1..

 X[i] = (b[i] -Y[i])/A[i,i] + X[i]

check convergence

Matrix-vector product
do j = 1..
 do i = 1
 Y[i] = Y

P0- Matrix A is usually sparse, not dense
- Caveat: what hap
- If each proce

 provided eac
which is true

 =>
 =>

- Computation of

- While loop => M

=> not efficie
N

N
..N
[i] + A[i,j]*X[j]
P1
P2
P3

pens to load balancing?
ssor gets roughly same number of rows, load is balanced
h rows has roughly same number of non-zeros
 for dense matrices and most sparse matrices in practice

why?

 Replace self-scheduling with static assignment of rows to processors
Why ship A from master to slaves in each iteration?

k+1
Y is distributed => computation of X can be distributed

VM is performed many times with same A, many X’s

nt to assume that X is broadcast from master every iteration

y A x
do j = 1..N
 do i = 1..N
 Y[i] = Y[i] + A[i,j]*X[j]

Matrix-vector Multiply: 1-D Alignment

- Each processor gets roughly the same number of contiguous rows of A
 before MVM starts
- If a processor owns rows (r,r+1,r+2,.....) of A, it gets elements (r,r+1,r+2....) of x

 Step 1: All-to-all broadcast in which each processor broadcasts
 its portion of x to all other processors

 to generate elements (r,r+1,r+2....) of y
 Step 2: Each processor computes the inner product of its rows with x

- If this was part of Jacobi iteration, each processor would use its portion of y
to compute its portion of x for the next iteration

- Assignment of contiguous rows/columns of a matrix to processors is called
‘block distribution’.

- Assignment of rows/columns in round-robin fashion: ‘cyclic distribution’

Why did we choose block and not cyclic distribution for our MVM ?

(note: next x is mapped as required by Step 1 of MVM)

P1

P0

P2

P3

y A x

P1

P0

P2

P3

Block vs cyclic Distribution for 1-D MVM:
A x

Block Distribution Cyclic Distribution

- Scatters are usually not as efficient as block copies.

 into non-contiguous (but distinct) memory locations (scatter operation).
- With cyclic distribution of x, values in each message must be written

- With block distribution of x, values from each message are written

- Values received in a message must be placed into storage for x.

- It receives messages containing portions of x from all other processors.
- Each processor allocates space for entire x vector.

Question: Why not allocate A with cyclic distribution and x with block distribution?

 into contiguous memory locations (efficient).

y

do j = 1..N
 do i = 1..N
 Y[i] = Y[i] + A[i,j]*X[j]

Matrix-vector Multiply: 2-D Alignment

A xy

Intuition: Think 2-D mesh

y A x

2-D Alignment

1-D Alignment

Step 1: In each column of mesh, diagonal processor broadcasts its portion of x
 to all other processors in its column.
Step 2: Each processor performs a mini-MVM with its block of the matrix
 and the portion of x it has.
Step 3: Processors along each row perform a reduction of their partial sums,
 using diagonal processors as roots for the reductions.

- Matrix A is distributed in 2-D blocks to processors
- x is initially distributed to processors on the diagonal of the mesh

How do we evaluate different algorithms?

What are good performance models for parallel machines?

Very difficult problem: no clear answers yet.

seq

T
par

(N,P)

(N)Speed-up(N,P) = T

: time to solve problem of size N on one processorT

T

seq

par
: time to solve problem of size N on P processors

par = T + T
synchcomp comm+ T

parallel overhead

T

Tcomp + T
overhead

(N,P)

Speed-up(N,P) = T seq (N)

Speed-up

- most intuitive measure of performance

Parallel efficiency(N,P) = Speed-up(N,P)/P

(How effectively did we use P processors?)

 Usually, we just use same algorithm on 1 processor, w/o parallel constructs

Usually, we do not bother (watch out for superlinear speedups!)

Purists position:
 Sequential time must be measured using ‘best sequential algorithm’

Sequential machine must have equivalent amount of cache & memory as
 P processors together

T

Speed-up(N,P) = T seq (N)

comp (N,P) + T
overhead

(N,P)

- Other extreme: communication/computation ratio

Assume that program is completely parallelized & perfectly load balanced

=> even if 90% of program is parallel and processors are very fast,
 speed-up is only 10!

Speed-up = 1/ (1 -x)

 fraction of program executed in parallel = x
parallel part can be done infinitely fast

- One extreme: Amdahl’s Law

Assume that parallel overhead = 0

Good speed-up requires parallelization of very large proportion of program.

Bounds on speed-up:

Speed-up(N,P) = T seq (N)

(N)

P
+ T

overhead
T

seq

= P

1 + P * Toverhead
(N,P)

T
seq

(N)

(N,P)

=

1 + P * Toverhead
(N,P)

T
seq

(N)

Speed-up(N,P) P

What happens to speed-up as N and P vary?

- If P is fixed and N (problem size) increases, speed-up usually increases.

(some people call such algorithms ‘scalable’)

= volume of communication(N)/amount of computation(N)

Examples:

 - MVM : 1-D : Vector of size N is broadcast to P processors

 Computation = O(N)

2-D: Communication volume = O(N* sqrt(P))

2
 => communication volume = O(N*P)

=> Communication to computation ratio varies as P/N

 => Communication to computation ratio varies as sqrt(P)/N

- If N is fixed and P increases, parallel efficiency usually goes down.

Conclusion: 2-D scales better than 1-D

Quick check: look at communication-to-computation ratio

Communication-to-computation ratio:

=

1 + P * Toverhead
(N,P)

T
seq

(N)

Iso-efficiency Curves:

Efficiency(N,P) 1

eff = 0.5

eff = 0.8

eff = 0.5

eff = 0.8

: Algorithm 1

Algorithm 2

P

N

To keep parallel efficiency the same, how does problem size have to increase
as the number of processors increases?

We can also answer questions like: If problem size is fixed, what is the
maximum number of processors we can use and still have efficiency > e ?

Iso-efficiency Curves for Two Algorithms

More detailed analysis:

Model communication time

Transmission

VALID VALID

REQ

ACK

DATA

ACK

REQSENDER RECEIVER

SENDER: sends if REQ = ACK & makes REQ = not(ACK)
RECEIVER: receives if REQ is not(ACK)

Other protocols: encode REQ with DATA

DATA

Simple protocol: use REQ/ACK wires

Delay on wire: Depends on RC time constant
 Time constant affected by length of wire

Switches

Input

Input

Output

Output Control

Switch latency in modern parallel computers: < 100 nanosecs

As long as two or more inputs do not contend for same output,
all inputs can be routes to their desired outputs.

Small cross-bars

2x2 Cross-bar

Packetization

P

PP

P S

S

S

S

 - establish end-to-end connection
 - send message
 - break connection down

 - long messages block out other traffic
Problems: - short messages

 - break message into packets
 - each packet travels independently through network
 - message is reassembled at destination

Packet switching:

Circuit switching:

Message: unit of data transfer visible to programmer

 - no end-to-end connection is made before data transmission

P PS S S

where L = size of packet
 W = width of channel
 n = number of hops from source to destination

= time per hop for W bits Thop

Wormhole Routing

Latency = (L/W + n) * T

Latency = L/W * T * n
hop

hop

- Message is buffered at each switch
- Problem: excessive latency

- Divide a packet into ‘flits’: unit of transfer between stages
- All flits in packet follows the same route, but flit transmission is pipelined
- Combines features of circuit and packet switching

Store & Forward Networks

These are ‘transmission latencies’ (not counting s/w overhead at two ends).

= (L* T
w

+ n* T
hop

)

Reducing Communication Latencies

Good because
- program spend less time waiting for data
- compiler needs to worry less about reducing communication

Reducing/alleviating latency:

 with computation: send data out as soon as possible,
should try to overlap communication

 use asynchronous receives to reduce buffering overheads,....

- Applications program:

- Hardware:

- O/S:

design network to minimize time-of-flight

reduce the software overhead at sender/receiver

Let us look at reducing time-of-flight

- if all wires and switches are identical,

 Expected time of flight = T
w+s

* Expected number of hops

where Tw+s = delay through 1 wire + 1 switch

=> Goal of network topology selection is to minimize
 expected number of hops.

Or is it?

Clock cycle = 2 ticks

Time to go from input to output
 = 2 * 4 = 8 ticks

Clock cycle = 1 tick

Time to go from input to output

= 1 * 5 = 5 ticks

Clock speed is determined by slowest stage.

 number of stages but also of clock speed.
Conclusion: Pipeline latency is a function not just of the

An intuitive picture:

Conclusions:

 on a wire => treat wire itself as a pipeline.

- One fix: permit several bits at a time to be ‘in-flight’

 higher dimensional networks are not necessarily better.

- If the length of the longest wire affects latency,

 wires when embedded into 2/3 dimensions.

- Higher dimensional wires are longer than lower dimensional

 in latency estimates.
- It is important to take wire lengths into account

Detailed Scalability Analysis of MVM:

2-D Alignment on mesh:

Speed-up(n,P) = n
2

n 2

P
+ 2*

- Column broadcast of x

Time = (T + n
sqrt(P)

* T + sqrt(P) * T)
2

+ (T + n
sqrt(P)

* T + sqrt(P) * T
4

)

=

h
ws

s w
h

- Row summation : same time complexity as column broadcast

- Computation time: n 2
/P

log(sqrt(P)) phases

sqrt(P) * T) log(sqrt(P)) + * T+ n(T s w h
)

sqrt(P)

sqrt(P) * T) log(sqrt(P)) + * T+ n(T s w h
)

sqrt(P)

Some numbers for SP-1: Ts = 15,000 T h = 350

