Message Passing

Blocking SEND/RECEIVE : couple data transfer and synchronization

- Sender and receiver rendezvous to exchange data

SrcP DestP

B

History: Caltech Cosmic Cube

- SrcP field in RECEIVE command permits DestP to select
which processor it wants to receive data from

- Implementation:

- SrcP sends token saying ‘ready to send’

- DestP returns token saying ‘me too’

- Data transfer takes place directly between application programs
w/o buffering in O/S

- Motivation: Hardware ‘channels’ between processors in early multicomputers
- Problem:
- sender cannot push data out and move on
- receiver cannot do other work if data is not available yet
one possibility: new command TEST(SrcP,flag): is there a message from SrcP?

[Overlapping of computation and communication is critical for performance j

Non-blocking SEND/RECEIVE :decouple synchronization from data transfer

SrcP DestP P P

XI= ___ -z RECEIVE(y,SrcP,tag,flag)
SEND(x, DestP,tag) =<1~ ~ M F M F

| Network |

- SrcP can push data out and move on

- Many variation: return to application program when
- data is out on network?
- data has been copied into an O/S buffer?

- Tag field on messages permits receiver to receive messages
in an order different from order that they were sent by SrcP

- RECEIVE does not block
- flag is set to true by O/S if data was transfered/false otherwise

- Applications program can test flag and take the right action
- What if DestP has not done a RECEIVE when data arrives from SrcP?
- Data is buffered in O/S buffers at DestP till application program does a RECEIVE

Can we eliminate waiting at SrcP ?
Can we eliminate buffering of data at DestP ?

Asynchronous SEND/RECEIVE

SrcP

DestP P

Xi= — —-t-~"""7] IRECEIVE(y,SrcP,tag,flag2)

ISEND(x, DestP,tag,flagl) M F M

| Network

- SEND returns as soon as O/S knows about what needs to be sent
- ‘Flagl’ set by O/S when data in x has been shipped out

- Application program continues, but must test ‘flagl’ before overwriting x
- RECEIVE is non-blocking:

- returns before data arrives

- tells O/S to place data in 'y’ and set ‘flag’ after data is received
- ‘posting’ of information to O/S

- ‘Flag2’ is written by O/S and read by application program on DestP

- Eliminates buffering of data in DestP O/S area if IRECEIVE is posted
before message arrives at DestP

So far, we have looked at point-to-point communication

Collective communication:

- patterns of group communication that can be implemented more efficiently
than through long sequences of send’s and receive’s

- important ones:

- one-to-all broadcast
(eg. A*x implemented by rowwise distribution: all processors need x)

- all-to-one reduction
(eg. adding a set of numbers distributed across all processors)

- all-to-all broadcast
every processor sends a piece of data to every other processor

- one-to-all personalized communication
one processor sends a different piece of data to all other processors

- all-to-all personalized communication
each processor does a one-to-all communication

Example: One-to-all broadcast (intuition: think ‘tree’)

Messages in each phase
)3 do not compete for links

()

Assuming message size is small, time to send a message = Ts + h*Th
where Ts = overhead at sender/receiver
Th = time per hop

Total time for broadcast = Ts + Th*P/2
+ Ts + Th*P/4

=Ts *logP + Th*(P-1)

Reality check: Actually, a k-ary tree makes sense because processor 0 can send
many messages by the time processor 4 is ready to participate
in broadcast

Other topologies: use the same idea

Y AR y

2-D Mesh

Step 1: Broadcast within row of originating processor

Step 2: Broadcast within each column in parallel

Time = Ts logP + 2Th*(sqrt(P) -1)

Example: All-to-one reduction

é\l\
f/ Messages in each phase
)1 do not compete for links
2
v

Purpose: apply a commutative and associative operator

(reduction operator) like +,*,AND,OR etc to values
contained in each node

Can be viewed as inverse of one-to-all broadcast
Same time as one-to-all broadcast

Important use: determine when all processors are finished working
(implementation of ‘barrier’)

Example: All-to-all broadcast

ST .
o K
5K¥</3/2 ka/ l

- Intuition: cyclic shift register
- Each processor receives a value from one neighbor ,

stores it away, and sends it to next neighbor in the next phase.
- Total of (P-1) phases to complete all-to-all broadcast

Time = (Ts + Th) *(P-1) assuming message size is small

- Same idea can be applied to meshes as well:
- first phase, all-to-all broadcast within each row
- second phase, all-to-all broadcast within each column

Message-passing Programming

MPI. Message-Passing Interface

Goal: Portable Parallel Programming for
Distributed Memory Computers

- Lots of vendors of Distributed Memory Computers:
IBM,NCube, Intel, CM-5,

- Each vendor had its own communication constructs
=> porting programs required changing parallel programs
even to go from one distributed memory platform to another!

- MPI goal: standardize message passing constructs syntax and semantics

- Mid 1994: MPI-1 standard out and several implementations available (SP-2)

Key MPI Routines we will use:

MPI_INIT : Initialize the MPI System

MPI_COMM _SIZE: Find out how many processes there are
MPI_COMM_RANK: Who am 1?

MPI_SEND: Send a message

MPI_RECV: Receive a message

MPI_FINALIZE: Terminate MPI

MPI_BCAST: Broadcast

Data Distributions

Goal:

- distribute arrays across local memories of parallel machine
so that data elements can be accessed in parallel

- Standard distributions for dense arrays: (HPF, Scalapack)

- block
- cyclic
- block cyclic(b)

- Block cyclic distribution subsumes other two

Block:

PO P1 P2 P3

[] o o o
A) [I A NN BN Y
0
DISTRIBUTE A(BLOCK)
PO P1 P3
A: e o o e o o e o o °
DISTRIBUTE A(BLOCK(4))
PO P1 P2 P3

{ A(l) Is mapped to processor Li/bj If distribution is BLOCK(b) }

Cyclic/Block Cyclic:

PO P1 P2 P3
e o o o

A |00 0 o o O o

0 9

DISTRIBUTE A(CYCLIC)

A: ° ° ° ° ° ° ° ° °

DISTRIBUTE A(CYCLIC(2))

PO PL P2 P3 PO

A |e|e o0 K o0 K

A(l) Is mapped to processor Li/bj mod P
If distribution is CYCLIC(b)

Common use of cyclic distribution:

Matrix factorization codes

- BLOCK distribution: small number of processors end up
with all the work after a while

- CYCLIC distribution: better load balance

- BLOCK-CYCLIC: lower communication costs than CYCLIC

Distributions for 2-D Arrays:

Each dimension can be distributed by

- block
- cyclic
- * : dimension not distributed

PO P1 P2
o o o
A (4,8)

DISTRIBUTE A (*, BLOCK) DISTRIBUTE A (CYCLIC,*)
e o &6 o o o e 6 o6 o o o o o
e o &6 o o o e 6 o6 o o o o o
e o &6 o o o e 6 o6 o o o o o
e o &6 o o o

Distributing both dimensions:

- # of array distribution dimensions
= # of dimensions of processor grid

- 2-D processor grid

) ®

®

A (4,8)
® © o o o6 o o o oo (0|0 00|00
® © o o o6 o o o oo (0|0 00|00
e o o o o 2 0 o
e o o o o 2 0 o
DISTRIBUTE A (BLOCK, BLOCK) DISTRIBUTE A(BLOCK,CYCLIC)

(o] o o]
o[[0 0]

®
®

(o|[e] o]0

o/ [e] @ 0]
"o/ [o [@ 0]

DISTRIBUTE A (CYCLIC,CYCLIC)

Performance Analysis |
of

Two MVM Programs

In the last lecture, we discussed the following MVM program :

- Style of programming: Master-Slave

- one master, several slaves
- master co-ordinates activities of slaves

- Master initially owns all rows of A and vector b

- Master broadcasts vector b to all slaves

- Slaves are self-scheduled
- each slave comes to master for work
- master sends a row of matrix to slave
- slave performs product, returns result and asks for more work

- Why isthis program not useful in practice?

Parallelization Example: MVM

Iterative methods for solving linear systems Ax = b

Jacobi method: M *X wp =(M-AFX +b (M isDIAGONAL(A))

k

while (not converged) do
e o o o

doj=1..N

doi=1..N |% Matrix-vector product

Y[= Y[i] + Ali,jJ*X[]

doi=1..N
X[i] = (bl ~YEIVALL] + X[

check convergence

- Matrix A isusually sparse, not dense PO
- Whileloop => MVM is performed many times with same A, many X’s Eﬁ
=>Why ship A from master to slavesin each iteration? P3

=> Replace salf-scheduling with static assignment of rows to processors

- Caveat: what happens to load balancing?
- If each processor gets roughly same number of rows, load is balanced

provided each rows has roughly same number of non-zeros
which is true for dense matrices and most sparse matrices in practice

- Computation of Y isdistributed => computation of X can be distributed

k+

=> not efficient to assume that X is broadcast from master every iteration

" Matrix-vector Multiply: 1-D Alignment

y A X
PO -] F-] doj=1.N
PL -] -] doi=1.N |
P2 |- - Y[il = Y[i] + AL, iI*XIi]
P3 |- -]

- Each processor gets roughly the same number of contiguous rows of A
before MVM starts

- If aprocessor ownsrows (r,r+1,r+2,.....) of A, it gets elements (r,r+1,r+2....) of x

~

(Step 1: All-to-all broadcast in which each processor broadcasts
its portion of x to all other processors
Step 2: Each processor computes the inner product of its rows with x
to generate elements (r,r+1,r+2....) of y

. J

- If thiswas part of Jacobi iteration, each processor would use its portion of y
to compute its portion of x for the next iteration
(note: next x is mapped as required by Step 1 of MV M)

- Assignment of contiguous rows/columns of a matrix to processorsiscalled
‘block distribution’.

- Assignment of rows/columnsin round-robin fashion: ‘cyclic distribution’

Why did we choose block and not cyclic distribution for our MVM ?

" Block vs cyclic Distribution for 1-D MVM:
y A X

Block Distribution Cyclic Distribution

N

I H S
| R [

3

- Each processor allocates space for entire x vector.
- It receives messages containing portions of x from all other processors.

- Values received in a message must be placed into storage for x.

- With block distribution of x, values from each message are written
into contiguous memory locations (efficient).

- With cyclic distribution of x, valuesin each message must be written
into non-contiguous (but distinct) memory locations (scatter operation).

- Scatters are usually not as efficient as block copies.

Question: Why not allocate A with cyclic distribution and x with block distribution?

Ve

Matrix-vector Multiply: 2-D Alignment

y A X

/ N\

1-D Alignment
Intuition: Think 2-D mesh doi=1.N

- J

2-D Alignment

doj=1..N |

Y[= YII] + Al jJ*X[]

- Matrix A isdistributed in 2-D blocks to processors
- X isinitially distributed to processors on the diagonal of the mesh

[)

Step 1: In each column of mesh, diagonal processor broadcasts its portion of x
to all other processorsin its column.

Step 2: Each processor performs a mini-MVM with its block of the matrix
and the portion of x it has.

Step 3: Processors along each row perform areduction of their partial sums,
using diagonal processors as roots for the reductions.

How do we evaluate different algorithms?

What are good performance models for parallel machines?

Very difficult problem: no clear answers yet.

Speed-up

- most intuitive measure of performance
Speed-up(N,P) = T 4 (N)

T (NP)
par

Teq :time to solve problem of size N on one processor

T . time to solve problem of size N on P processors
par

T =T + T

+T
par comp comm synch

..

parallel overhead
Speed-up(N,P) = T gq(N)
Tcomp * Toverhead (N’P)

Parallel efficiency(N,P) = Speed-up(N,P)/P
(How effectively did we use P processors?)

Purists position:
Sequential time must be measured using ‘best sequential algorithm’
Usually, we just use same algorithm on 1 processor, w/o parallel constructs

Sequential machine must have equivalent amount of cache & memory as
P processors together

Usually, we do not bother (watch out for superlinear speedups!)

Bounds on speed-up: Speed-up(N,P) = T ¢q(N)

N,P)+T (NP
Tcomp(’) overh(ead)

- One extreme: Amdahl’'s Law

Assume that parallel overhead = 0
fraction of program executed in parallel = x
parallel part can be done infinitely fast

Speed-up = 1/(1-x)

=> even if 90% of program is parallel and processors are very fast,
speed-up is only 10!

Good speed-up requires parallelization of very large proportion of program.

- Other extreme: communication/computation ratio

Assume that program is completely parallelized & perfectly load balanced

Speed—up(N,P) = T seq (N) = P

Tﬁaq@ + T (N’P) 1+ P* Toverhead (N’P)

overhead

P Tseq (N)

Communication-to-computation ratio:

Speed-up(N,P) = P
1+ P* Toverhead (N’P)
T (N

seq

What happens to speed-up as N and P vary?

- If P is fixed and N (problem size) increases, speed-up usually increases.
(some people call such algorithms ‘scalable’)
Quick check: look at communication-to-computation ratio
= volume of communication(N)/amount of computation(N)

- If N is fixed and P increases, parallel efficiency usually goes down.

Examples:

- MVM : 1-D: Vector of size N is broadcast to P processors
=> communication volume = O(N*P)

Computation = O(N 2)

=> Communication to computation ratio varies as P/N
2-D: Communication volume = O(N* sqrt(P))

=> Communication to computation ratio varies as sqrt(P)/N

[Conclusion: 2-D scales better than 1-D]

|so-efficiency Curves:

Efficiency(N,P) = 1
1+ P* Toverhead (N’P)

To keep parallel efficiency the same, how does problem size have to increase
as the number of processors increases?

N
eff= 0.8
eff=0.5 : Algorithm 1
eff= 08 Algorithm 2
eff=0.5

P

|so-efficiency Curves for Two Algorithms

We can also answer questions like: If problem size is fixed, what is the
maximum number of processors we can use and still have efficiency > e ?

More detailed analysis:

[Model communication time}

Transmission

Simple protocol: use REQ/ACK wires
DATA
SENDER REQ RECEIVER
|1 ACK L
REQ _
ACK

SENDER: sends if REQ = ACK & makes REQ = not(ACK)
RECEIVER: receives if REQ is not(ACK)

Other protocols: encode REQ with DATA

Delay on wire: Depends on RC time constant
Time constant affected by length of wire

Switches

Small cross-bars

——= Input 1@
o ¢
——= Input 1@
o L Output
[Control] Output
N J

2Xx2 Cross-bar

As long as two or more inputs do not contend for same output,
all inputs can be routes to their desired outputs.

Switch latency in modern parallel computers: < 100 nanosecs

Packetization

P\@ —P

Pi@ — 5

Message: unit of data transfer visible to programmer

Circuit switching:
- establish end-to-end connection
- send message
- break connection down
Problems: - short messages
- long messages block out other traffic

Packet switching:
- break message into packets
- each packet travels independently through network
- message is reassembled at destination
- no end-to-end connection is made before data transmission

p—As)—{(s)—(s)—1p

Store & Forward Networks

- Message is buffered at each switch
- Problem: excessive latency

[Latency =L/W *T *n }
hop

where L = size of packet
W = width of channel
n = number of hops from source to destination

Thop = time per hop for W bits

Wormhole Routing

- Divide a packet into ‘flits’: unit of transfer between stages
- All flits in packet follows the same route, but flit transmission is pipelined
- Combines features of circuit and packet switching

[Latency =(LW +n)*T hop

= (T, 4+t T,))

These are ‘transmission latencies’ (not counting s/w overhead at two ends).

Reducing Communication Latencies

Good because
- program spend less time waiting for data
- compiler needs to worry less about reducing communication

Reducing/alleviating latency:

- Applications program: should try to overlap communication
with computation: send data out as soon as possible,
use asynchronous receives to reduce buffering overheads,....

- 0O/S: reduce the software overhead at sender/receiver

- Hardware: design network to minimize time-of-flight

Let us look at reducing time-of-flight

- If all wires and switches are identical,

Expected time of flight =T * Expected number of hops

W+S
where T, = delay through 1 wire + 1 switch

=> Goal of network topology selection is to minimize
expected number of hops.

Or is it?

An intuitive picture:

Clock cycle = 2 ticks Clock cycle = 1 tick
Time to go from input to output Time to go from input to output
=2 *4 =8 ticks =1*5=>5ticks

‘Conclusion: Pipeline latency is a function not just of the
number of stages but also of clock speed.

Clock speed is determined by slowest stage.

%

Conclusions:

- It isimportant to take wire lengths into account
In latency estimates.

- Higher dimensional wires are longer than lower dimensional
wires when embedded into 2/3 dimensions.

- If the length of the longest wire affects latency,
higher dimensional networks are not necessarily better.

- Onefix: permit severa bits at atimeto be ‘in-flight’
on awire => treat wire itself as apipeline.

Detailed Scalability Analysis of MVM:

2-D Alignment on mesh:

- Column broadcast of x
Time= (T_+n_ *T +sqrt(P)*Th)

sqit(P) 2
+ (Tt *T + sqrt(P) * Ty) log(sqgrt(P)) phases
sqrt(P) 4

- tho *T *
(T, cart(P) w) log(sart(P)) + sart(P) * T,)

- Computation time: n 2/P

- Row summation : same time complexity as column broadcast

2
Speed-up(n,P) = n

2
n

% +n *T *
5 +2%(T sart(P) w) log(sart(P)) + sqrt(P) * T,)

Some numbers for SP-1: T, =15,000 T, =350

