Cache Models
and
Program Transformations

-~

Goal of this lecture

e We have looked at computational science applications, and
isolated key kernels (MVM, MMM linear system solvers,...).

e We have studied caches and virtual memory, and we

understand what causes cache misses (cold, capacity, conflict).

e Let us look at how to make some of the kernels run well on

machines with caches.

.

\ Matrix-vector Product /

‘_IV

X
i
|
y A
Code:
for i = 1,N
for j = 1,N

y(i) = y(i) + A(4i,j)*x(j)
Total number of references = 4N~
We want to study two questions.

e Can we predict the miss ratio of different variations of this program

for different cache models?
e What transformations can we do to improve performance?

/ That is, how do we improve the miss ratio? K

3

4 A

Reuse Distance: If r; and ro are two references to the same cache
line in some memory stream, reuseDistance(ry,ry) is the number

of distinct cache lines reterenced between r; and 7rs.
Cache model:

e fully associative cache (so no conflict misses)

e LRU replacement strategy

e We will look at two extremes

e large cache model: no capacity misses
e small cache model: miss if reuse distance is some function of

problem size (size of arrays)

N _/

\ Scenario |

< [LIITT]

Cache model:

e fully associative cache (no conflict misses)
e LRU replacement strategy
e cache line size = 1 floating-point number

Small cache: assume cache can hold fewer than (2N42) numbers

Misses:

e matrix A: N? cold misses
e vector x: N cold misses + N(N — 1) capacity misses

e vector y: N cold misses
/. Miss ratio = (2N? + N)/4N? — 0.5

-~

Large cache model: cache can hold (2N+2) numbers or more

Misses:

e matrix A: N? cold misses

e vector x: N cold misses

e vector y: N cold misses

e Miss ratio = (N? +2N)/4N? — 0.25

1.00 llllll‘w ““““““““
0.75

miss ratio
0.50

0.25

c/2 N

Scenario 11

[ITETTTIX

y A

Same cache model as Scenario I but different code

Code: walk matrix A by columns

for j = 1,N
for i = 1,N //SAXPY
y(i) = y(@i) + A®i,j)*x(3)

It is easy to show that miss ratios are identical to Scenario I.

.

\ Scenario 111

Hm 11

Cache model:;

e fully associative cache (no conflict misses)
e LRU replacement strategy
e cache line size = b floating-point numbers

(can exploit spatial locality)

Code: (original) i-j loop order
for i = 1,N
for j = 1,N

y(i) = y(@) + A@i,j)*x(j)

ﬁmﬁ us assume A is stored in row-major order.

8

RE@: cache: /

Misses:

e matrix A: N?/b cold misses
e vector z: N/b cold misses + N (N — 1)/b capacity misses

e vector y: N/b cold misses
e Miss ratio = (1/2 + 1/4N)*(1/b) — 1/2b

Large cache:
Misses:
e matrix A: N?/b cold misses

e vector x: IN/b cold misses
e vector y: N/b cold misses

e Miss ratio = (1/4 + 1/2N)*(1/b) — 1/4b

/ﬁ,msmwﬂos from small cache to large cache when ¢ >= 2N + 2b. K

9

romzu\v this is when N < ¢/2.

miss ratio m
1.00 ““““““““
c=sizeof cachein#of fp's
b = number of fp’sin one cache line
1/2b
1/4b
large c¢/2 small N
cache cache

Miss ratios for Scenario 111

Let us plug in some numbers for SGI Octane:

e Line size = 32 bytes = b =4
e Cache size = 32 Kb = ¢ = 4K
e Large cache miss ratio = 1/16 = 0.06

e Small cache miss ratio = 0.12
/o Small /large transition size = 2000

10

\ Scenario IV

[TETTTIX

]

Cache model:;

e fully associative cache (no conflict misses)
e LRU replacement strategy
e cache line size = b floating-point numbers

(can exploit spatial locality)

Code: j-i loop order
for j = 1,N
for i = 1,N
y(i) = y(i) + A(i,j)*x(j)

éoﬁ@ we are not walking over A in memory layout order

11

RE@: cache:

Misses:

e matrix A: N?/ cold misses

e vector z: N/b cold misses

e vector y: N/b cold misses + N(IN — 1)/b capacity misses
e Miss ratio = 0.25%(1+ 1/b) + 1/4Nb — 0.25*%(1+1/b)

Large cache:

Misses:

e matrix A: N?/b cold misses

vector z: N/b cold misses

e vector y: N/b cold misses
e Miss ratio = (1/4 + 1/2N)*(1/b) — 1/4b

/ﬁ,msmwﬂos from small cache to large cache when ¢ > bN-+N+b

12

romzuﬁ this is when ¢ >= (b+1)N.

miss ratio m
1.00 [~
c=sizeof cachein#of fp's
b = number of fp’sin one cache line
0.25(1 + 1/b)
0.25/b

large c/(b+1) smal N
cache cache

Miss ratios for Scenario IV

Let us plug some numbers in for SGI Octane:

e Line size = 32 bytes = b =4
e Cache size = 32 Kb = ¢ = 4K
e Large cache miss ratio = 1/16 = 0.06

e Small cache miss ratio = 0.31
/o Small /large transition size = 800

13

Scenario V: Blocked Code

Code:

for bi = 1,N,B
for bj = 1,N,B
for i = bi, min(bi+B-1,N)
for j = bj, min(bj+B-1,N)
y(i) = y(i) + A(i,j)*x(j)

.

14

4 A

e Pick block size B so that you effectively have large cache model
while executing code within block (2B = c¢).
Note: using data size of block computation (B? + 2B) to
determine block size ((B2 + 2B) < c) gives B = 1/(c) which is
a significant under-estimate of the right value for block size.

e Misses within a block:

e matrix A: B2/b cold misses
e vector z: B/b
e vector y: B/b

e Total number of block computations = (N/B)?
Miss ratio = (0.25 + 1/2B)*1/b — 0.25/b
e For Octane, we have miss ratio is roughly 0.06 independent of

problem size.

N _/

15

-~

Putting it all together for SGI Octane

Missratio

0.30 j-1 order
0.25

0.20

0.15

I-] order
0.10
0.05 Blocked code
800 2000 Z

Miss ratio predictions for MVM point and blocked codes

~

/

16

4 A

We have assumed a fully associative cache.

Conflict misses will have the effect of reducing effective cache size,
so transition from large to small cache model should happen sooner
than predicted.

N _/

17

.

miss rate

0.12

0.08 A

0.06 -

0.04 -

0.02 -

MVM L1-cache Miss Rates

0.1

N ——original code

—— blocked, B=50

Experimental Results on SGI Octane

Predictions agree reasonably well with experiments.

/

18

.

Key transformations

Loop permutation

for j =1, N
for 1 =1, N
y(i) = y(i) + A(i,j)*x(j

Strip-mining

)

for i =1, N =>

S

for i =
=> for j =
y(i) =

for bi

for 1

Loop tiling = stripmine + interchange

for i =1, N
for j =1, N
y(i) = y(A)+A(,) *x(§)

for bi =
> for bj

for 1

for j
y (i)

~

1, N

1
y

1

1

, N
(1) + A(L,j)*x(j)

, N, B
bi, min(bi+B-1,N)

, N, B

1, N, B

bi, min(bi+B-1,N)
bj, min(bj+B-1,N)

y(i) + >Q?.CG

19

g

4 A

e Tiling/blocking can be viewed as stripmining followed by
interchange. It is sometimes called stripmine-and-interchange.

e Stripmining does not change the order in which loop body
instances are executed; permutation (and therefore tiling) do.

e Warning: therefore loop permutation and tiling may be illegal

in some codes.

N _/

20

Matrix-matrix Product

Code:

for i = 1,N

for j = 1,N
for k = 1,N

C(i,j) = C(i,j) + A(i,k)*B(k,])

Cache model: assume cache line size is b fp’s

.

21

s B ™

Small cache:
Misses for each cache line of C:

e matrix A: bx* (N/b)

e matrix B: bx N

e matrix C: 1

e Total number of misses per cache line of C = N(b+ 1)+ 1
Total number of misses = N2/bx (N(b+1)+1) — N?(b+1)/b

Total number of references = 4N

/ZEmm ratio — 0.25(b+ 1) /b K

22

-~

Large cache:

Cold misses = 3 x N?/b

problem increases!

goes full blast.

.

Miss ratio = 3 * N?/4bN3 = 0.75/bN

For large cache model, miss ratio decreases as the size of the

Intuition: lot of data reuse, so once matrices all fit into cache, code

/

23

Ra@bmwﬂos out of large cache model: How large can N get before /
there are capacity misses?

Answer depends on the loop order; let us look at ijk

Reuse distance is largest for elements of B.
Between successive accesses to same cache line of B, we touch

1. all of B: N2 floats
2. a whole row of C: N floats
3. a whole row of A: N floats

/mozijszlomo \

24

-~

Roughly, this gives N < \/(c — b+ 1) — 1 =~ sqrt(c)
For Octane, ¢ = 4K, so transition size = 64

Had we used full data set, we obtain 3N? < ¢ which gives
N < \/c/3.

For the Octane, this gives transition size = 36, which is quite a
ways off.

.

25

-~

You can figure out the performance for all 6 versions of MMM

similarly.

For large values of N, there are three asymptotic miss ratios
(depending on which index is in the innermost loop).

For some of the versions, there is a medium cache model - see the
figure.

.

26

\\M&Oonm.ooam“ 1///

Code:

for bi = 1,N,B
for bj = 1,N,B
for bk 1,N,B
for i = bi, min(bi+B-1,N)
for j = bj, min(bj+B-1,N)
for k = bk, min(bk+B-1,N)
y(i) = y(@i) + A(i,j)*x(3)

Choose B so we have large cache model when executing block code.

/@:mmﬁosn what should the order of the outer loops be? K

27

4 A

Miss ratio of blocked code = 0.75/bB.
Since B = 64, miss ratio is roughly 0.003.

As before, we have ignored conflict misses, so actual miss ratio we

can obtain from blocking alone will be more.

N _/

28

.

~

Summary

We have looked at two kernels: MVM and MMM.

As usually written, these kernels have poor cache performance.
Blocking can improve cache performance dramatically.
Distinguishing characteristic of MVM and MMM:
perfectly-nested loop nests.

A perfectly-nested loop nest is a loop nest in which all
assignment statements are contained in the innermost loop.
Key compiler transformations for perfectly-nested loops:
permutation and tiling.

Neither transformation is necessarily legal or beneficial.

e How can a compiler determine legality of a transformation?

/

e How does a compiler which transformation to apply?

29

