Matrix Multiply Implementation

Kazushige Goto
<kgoto@tacc.utexas.edu>



Contents

» Cache organization
» Packing data
« How MM (DGEMM) kernel works



Cache Organization

Generally cache improves performance



Three keywords of cache (L1)

= Size
= Pretty small (8kB — 64kB)
= Bandwidth
= How much It can move data per cycle
= \/ery wide
= |_atency
= Response time to get data
= Relatively low



Size
Cfu
Llclche

LZCIche

Cache size is very small!



Bandwidth

Very wide

One way, alternate

L1 Bandwidth is much wider than memory bandwidth
(over 20 times?)



Latency

Really close

Near

Far and Far away



Why do we pack data?

» Actual memory location Is not contiguous
* Virtual memory mapping
» Row or column major, leading dimension
» Cache line size / associative

 Packing will solve above problem

» Copy (packing) overhead Is a headache




| eading dimension

Matrix In memory

~__Column Major

eTLB miss

~——— Cache Line
*Use only a part of

cache line

*Cache conflict
may occur and
depends on leading
dimensions

i

On memory



Packing will

Reduce TLB misses
Increase effective cache size
Reduce required bandwidth

Help hardware/software prefetch to work
effectively

Need extra buffer space
Copy overhead



Packing Algorithm
B

JA C
) k X ) n X ) n X
BmI >\ X k BkI = m BmI .

Bk \ ! Bn ! Bn

N/

A : Transposed copy

B: Non transposed copy

Would be bottleneck on
small matrix



Blocking on L1 cache

Bk Bn Bn

What's the problem?

*Kernel may perform 100%
*Blocking size is Bm = Bk = 64 ~ 80
oIf blocking size is too small, copy overhead is heavy

*Copy overhead is 20% of total computation time. Total
performance will be 80% of peak at most.



Increasing Blocking Size

Bk Bn Bn

Solutions

 Bm, Bk >= 256
*Copy overhead is less than 1% of total computation

«Streaming data from A (on L2) is a key



DGEMM kernel (1)
-- START --

Registers

Main Memory Original data



DGEMM kernel (2)
-- Copying for B --

Registers I

L1 cache B’ .-




DGEMM kernel (3)

-- Copying for A --
Registers ]
L1 cache
)

L2 cache ‘ Copy A A’

Main Memory Copy B A -




DGEMM kernel

— two streams operation -

Registers

L2 cache

Main Memory

L1 cacr, =3 JAN

A

-

Have to bring data B into L1 cache

B I




Problem and Solution

» Operation Is against cache policy (LRU)

» B’ison L1 cache, A’ is always replaced
» Use prefetch instruction to give a hint

» Bandwidth from L2 is relatively narrow
» Control It by changing unrolling type

» Latency from L2 Is pretty long
» Use software prefetch



Intel Core2(2.66GHz) performance

—GOTO-1.23 =—— MKL-10.0

= p—

800 1000 1200 1400 1600 1800 2000

Matrix Order




Core2 x 8(2.66GHz) Performance

—GOTO ——MKL

1000 1500 2000 2500 3000 3500 4000
Matrix Order




AMD Opteron(2.2GHz) Performance

—GOTO-1.23 ——ACML-4.0.1

Matrix Order (m =n =k)




Opteron x 8 (2.2GHz) Performance

— GOTO ™ ACML 350

0 200 400 600 800 1000 1200 1400 1600 1800 2000
m=n=k




AMD Barcelona(2GHz) Performance

—GOTO — ACML

400 600 800 1000 1200 1400 1600 1800 2000
Matrix Order




Barcelona x 16 (2GHz) Performance

— GOTO-1.23 —ACML-4.01

1000 2000 3000
Matrix Order




	Matrix Multiply Implementation
	Contents
	Cache Organization
	Three keywords of cache (L1)
	Size
	Bandwidth
	Latency
	Why do we pack data?
	Matrix in memory
	Packing will
	Packing Algorithm
	Blocking on L1 cache
	Increasing Blocking Size
	DGEMM kernel (1) �-- START --
	DGEMM kernel (2) �-- Copying for B --
	DGEMM kernel (3) �-- Copying for A --
	DGEMM kernel �– two streams operation -
	Problem and Solution
	Intel Core2(2.66GHz) performance
	Core2 x 8(2.66GHz) Performance
	AMD Opteron(2.2GHz) Performance
	Opteron x 8 (2.2GHz) Performance
	AMD Barcelona(2GHz) Performance
	Barcelona x 16 (2GHz) Performance

