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Three keywords of cache (L1)

•• SizeSize
•• Pretty small (8kB Pretty small (8kB –– 64kB)64kB)

•• BandwidthBandwidth
•• How much it can move data per cycleHow much it can move data per cycle
•• Very wideVery wide

•• LatencyLatency
•• Response time to get dataResponse time to get data
•• Relatively lowRelatively low
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Cache size is very small!



Bandwidth
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Why do we pack data?

•• Actual memory location is not contiguousActual memory location is not contiguous
•• Virtual memory mappingVirtual memory mapping
•• Row or column major, leading dimensionRow or column major, leading dimension
•• Cache line size / associativeCache line size / associative

•• Packing will solve above problemPacking will solve above problem
•• Copy (packing) overheadCopy (packing) overhead is a headacheis a headache
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Packing will

•• Reduce TLB missesReduce TLB misses
•• Increase effective cache sizeIncrease effective cache size
•• Reduce required bandwidthReduce required bandwidth
•• Help hardware/software Help hardware/software prefetchprefetch to work to work 

effectivelyeffectively

•• Need extra buffer spaceNeed extra buffer space
•• Copy overheadCopy overhead



Packing Algorithm
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Blocking on L1 cache

B’A’ ＝Ｘ C’Bm Bm

Bn BnBk

Bk

What’s the problem?

•Kernel may perform 100%

•Blocking size is Bm = Bk = 64 ~ 80

•If blocking size is too small, copy overhead is heavy

•Copy overhead is 20% of total computation time. Total 
performance will be 80% of peak at most.



Increasing Blocking Size

B’A’ ＝Ｘ C’Bm Bm

Bn BnBk

Bk

Solutions

• Bm, Bk >= 256

•Copy overhead is less than 1% of total computation

•Streaming data from A (on L2) is a key



DGEMM kernel (1) 
-- START --
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DGEMM kernel (2) 
-- Copying for B --
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DGEMM kernel (3) 
-- Copying for A --
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DGEMM kernel 
– two streams operation -
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Problem and Solution

•• Operation is against cache policy (LRU)Operation is against cache policy (LRU)
BB’’ is on L1 cache, Ais on L1 cache, A’’ is always replacedis always replaced
Use Use prefetchprefetch instruction to give a hintinstruction to give a hint

•• Bandwidth from L2 is relatively narrowBandwidth from L2 is relatively narrow
Control it by changing unrolling typeControl it by changing unrolling type

•• Latency from L2 is pretty longLatency from L2 is pretty long
Use software Use software prefetchprefetch



Intel Core2(2.66GHz) performance
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Core2 x 8(2.66GHz) Performance
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AMD Opteron(2.2GHz) Performance

0

520

1040

1560

2080

2600

3120

3640

4160

4680

5200

0 500 1000 1500 2000

Matrix Order (m = n = k)

M
Fl

op
s

GOTO-1.23 ACML-4.0.1



Opteron x 8 (2.2GHz) Performance
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AMD Barcelona(2GHz) Performance
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Barcelona x 16 (2GHz) Performance
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