
Matrix Multiply Implementation

Kazushige GotoKazushige Goto
<<kgoto@tacc.utexas.edukgoto@tacc.utexas.edu>>



Contents

•• Cache organizationCache organization
•• Packing dataPacking data
•• How MM (DGEMM) kernel worksHow MM (DGEMM) kernel works



Cache Organization
CPU

Memory

L1 cache

L2 cache

Generally cache improves performance



Three keywords of cache (L1)

•• SizeSize
•• Pretty small (8kB Pretty small (8kB –– 64kB)64kB)

•• BandwidthBandwidth
•• How much it can move data per cycleHow much it can move data per cycle
•• Very wideVery wide

•• LatencyLatency
•• Response time to get dataResponse time to get data
•• Relatively lowRelatively low



Size
CPU

Memory

L1 cache

L2 cache

Cache size is very small!



Bandwidth
CPU

Memory

L1 cache

L2 cache

L1 Bandwidth is much wider than memory bandwidth 
(over 20 times?)

One way, alternate

Very wide



Latency
CPU

Memory

L1 cache

L2 cache

Really close

Near

Far and Far away



Why do we pack data?

•• Actual memory location is not contiguousActual memory location is not contiguous
•• Virtual memory mappingVirtual memory mapping
•• Row or column major, leading dimensionRow or column major, leading dimension
•• Cache line size / associativeCache line size / associative

•• Packing will solve above problemPacking will solve above problem
•• Copy (packing) overheadCopy (packing) overhead is a headacheis a headache



Matrix in memory
Column Major

Le
ad

in
g 

di
m

en
si

on

On memory

Cache Line
•TLB miss

•Use only a part of 
cache line

•Cache conflict 
may occur and 
depends on leading 
dimensions



Packing will

•• Reduce TLB missesReduce TLB misses
•• Increase effective cache sizeIncrease effective cache size
•• Reduce required bandwidthReduce required bandwidth
•• Help hardware/software Help hardware/software prefetchprefetch to work to work 

effectivelyeffectively

•• Need extra buffer spaceNeed extra buffer space
•• Copy overheadCopy overhead



Packing Algorithm

X =

Bk

Bm

Bn

Bm

Bn

A B

m
k

k

n

C

m

n

Bk

A : Transposed copy

B: Non transposed copy
Would be bottleneck on 
small matrix



Blocking on L1 cache

B’A’ ＝Ｘ C’Bm Bm

Bn BnBk

Bk

What’s the problem?

•Kernel may perform 100%

•Blocking size is Bm = Bk = 64 ~ 80

•If blocking size is too small, copy overhead is heavy

•Copy overhead is 20% of total computation time. Total 
performance will be 80% of peak at most.



Increasing Blocking Size

B’A’ ＝Ｘ C’Bm Bm

Bn BnBk

Bk

Solutions

• Bm, Bk >= 256

•Copy overhead is less than 1% of total computation

•Streaming data from A (on L2) is a key



DGEMM kernel (1) 
-- START --

void

void

void

Registers

L1 cache

L2 cache

Original dataMain Memory



DGEMM kernel (2) 
-- Copying for B --

Registers

L1 cache

L2 cache

Main Memory

B’’

Copy B B

B’’

B’ B’

Resident 
data is 
useless



DGEMM kernel (3) 
-- Copying for A --

Registers

L1 cache

L2 cache

Main Memory

A’’

A

A’’

Copy A A’

Resident 
data is 
useless

Blocking 
size is half 

of L2

Copy B



DGEMM kernel 
– two streams operation -

MUL/ADDRegisters

L1 cache

L2 cache

Main Memory

B’

A

A’

B

Always 
being 

replaced!Remains 
resident

Have to bring data B into L1 cache



Problem and Solution

•• Operation is against cache policy (LRU)Operation is against cache policy (LRU)
BB’’ is on L1 cache, Ais on L1 cache, A’’ is always replacedis always replaced
Use Use prefetchprefetch instruction to give a hintinstruction to give a hint

•• Bandwidth from L2 is relatively narrowBandwidth from L2 is relatively narrow
Control it by changing unrolling typeControl it by changing unrolling type

•• Latency from L2 is pretty longLatency from L2 is pretty long
Use software Use software prefetchprefetch



Intel Core2(2.66GHz) performance

0

1064

2128

3192

4256

5320

6384

7448

8512

9576

10640

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Matrix Order

M
Fl

op
s

GOTO-1.23 MKL-10.0



Core2 x 8(2.66GHz) Performance

0

8512

17024

25536

34048

42560

51072

59584

68096

76608

85120

0 500 1000 1500 2000 2500 3000 3500 4000

Matrix Order

M
F
lo

p
s

GOTO MKL



AMD Opteron(2.2GHz) Performance

0

520

1040

1560

2080

2600

3120

3640

4160

4680

5200

0 500 1000 1500 2000

Matrix Order (m = n = k)

M
Fl

op
s

GOTO-1.23 ACML-4.0.1



Opteron x 8 (2.2GHz) Performance

0

3840

7680

11520

15360

19200

23040

26880

30720

34560

38400

0 200 400 600 800 1000 1200 1400 1600 1800 2000
m = n = k

M
Fl

op
s

GOTO ACML 3.5.0



AMD Barcelona(2GHz) Performance

0

800

1600

2400

3200

4000

4800

5600

6400

7200

8000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Matrix Order

M
Fl

op
s

GOTO ACML



Barcelona x 16 (2GHz) Performance

0
12.8
25.6
38.4
51.2

64
76.8
89.6

102.4
115.2

128

0 1000 2000 3000 4000
Matrix Order

G
Fl

op
s

GOTO- 1.23 ACML- 4.0.1


	Matrix Multiply Implementation
	Contents
	Cache Organization
	Three keywords of cache (L1)
	Size
	Bandwidth
	Latency
	Why do we pack data?
	Matrix in memory
	Packing will
	Packing Algorithm
	Blocking on L1 cache
	Increasing Blocking Size
	DGEMM kernel (1) �-- START --
	DGEMM kernel (2) �-- Copying for B --
	DGEMM kernel (3) �-- Copying for A --
	DGEMM kernel �– two streams operation -
	Problem and Solution
	Intel Core2(2.66GHz) performance
	Core2 x 8(2.66GHz) Performance
	AMD Opteron(2.2GHz) Performance
	Opteron x 8 (2.2GHz) Performance
	AMD Barcelona(2GHz) Performance
	Barcelona x 16 (2GHz) Performance

