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Cache Organization

Generally cache improves performance



Three keywords of cache (L1)

= Size
= Pretty small (8kB — 64kB)
= Bandwidth
= How much It can move data per cycle
= \/ery wide
= |_atency
= Response time to get data
= Relatively low
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Cache size is very small!



Bandwidth

Very wide

One way, alternate

L1 Bandwidth is much wider than memory bandwidth
(over 20 times?)



Latency

Really close

Near

Far and Far away



Why do we pack data?

» Actual memory location Is not contiguous
* Virtual memory mapping
» Row or column major, leading dimension
» Cache line size / associative

 Packing will solve above problem

» Copy (packing) overhead Is a headache
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Packing will

Reduce TLB misses
Increase effective cache size
Reduce required bandwidth

Help hardware/software prefetch to work
effectively

Need extra buffer space
Copy overhead



Packing Algorithm
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small matrix



Blocking on L1 cache

Bk Bn Bn

What's the problem?

*Kernel may perform 100%
*Blocking size is Bm = Bk = 64 ~ 80
oIf blocking size is too small, copy overhead is heavy

*Copy overhead is 20% of total computation time. Total
performance will be 80% of peak at most.



Increasing Blocking Size

Bk Bn Bn

Solutions

 Bm, Bk >= 256
*Copy overhead is less than 1% of total computation

«Streaming data from A (on L2) is a key



DGEMM kernel (1)
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DGEMM kernel (2)
-- Copying for B --
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DGEMM kernel (3)
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DGEMM kernel

— two streams operation -
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Problem and Solution

» Operation Is against cache policy (LRU)

» B’ison L1 cache, A’ is always replaced
» Use prefetch instruction to give a hint

» Bandwidth from L2 is relatively narrow
» Control It by changing unrolling type

» Latency from L2 Is pretty long
» Use software prefetch



Intel Core2(2.66GHz) performance
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Core2 x 8(2.66GHz) Performance
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AMD Opteron(2.2GHz) Performance
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Opteron x 8 (2.2GHz) Performance
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AMD Barcelona(2GHz) Performance

—GOTO — ACML

400 600 800 1000 1200 1400 1600 1800 2000
Matrix Order




Barcelona x 16 (2GHz) Performance
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