Lecture Notes: SIMD Processing (02/26/09)

SIMD

The term SIMD (Single Instruction Multiple Data) was coined by Mike Flynn of Stanford in
1960's.

It generally refers to a class of processor architectures, in which multiple execution units
proceed in lockstep executing the same instruction sequence, while processing distinct data
items at the same time.

High Level Taxonomy of Processor Architectures

If we classify processor architectures based on the instructions executed and data elements
processed in single step, we get following classification

Data
Instructions |Single Multiple
SISD SIMD

Simple Processors, which execute

Multiple execution units, proceed in

Single : ; ; : lock step, executing the same
one instruction at a time, while ; L4 ; ; s
processing single data item Idnasttarl'iltcélr%g while processing distinct
Multiple No one has come up with practical Generic multiprocessors - e.g. SMP/

processors which use this paradigm

yet! NUMA systems

For a generic processor, non trivial branches is the main hurdle for achieving performance.
It causes cache misses and pipeline stalls. On the other hand, if the program control is
predictable and the application is massively data parallel, SIMD is a good option to exploit
the parallelism.

Examples of SIMD Processors

Vector Processors: Cray

Array Processors: CM

GPU's: Nvidia, Cell BE Engine
Processor Extensions: MMX, Altvec

Principle of Execution

SIMD processors (slaves) are attached to main CPU (master). The master handles complex
control in the program and offloads data processing work to slaves. The slaves process
distinct data elements in parallel, effectively achieving a much higher IPC compared to a
simple SISD processor.

Instruction Set Considerations for SIMD

1. Consider following scalar operation:

a<--b+c

The equivalent SISD instruction is

ADD a, b, c.

where a, b, c are processor registers.

Now consider a vector instruction for addition just like one above



VADD A, B, C

Here although A, B and C are still processor registers, they do not hold a single value. For
example consider a 4-way SIMD processor register file as one below:

Reg-A, - - -
Loc-0 Loc-1 Loc-2 Loc-3
Reg-B, - - -
Loc-0 Loc-1 Loc-2 Loc-3
Reg-C, - - -
Loc-0 Loc-1 Loc-2 Loc-3

All the operation in SIMD like VADD are vector operations, which manipulate multiple values
at a time. The VADD instruction, on a 4-way SIMD will add 4 values at a time, producing 4
results.

2. Operations exclusive to SIMD

Few instructions are only possible on SIMD architectures, due to their array processing
capabilities.

e.g. consider the dot production operation: s = suma_i *b_i ------ (0 <=i<N)

This operation is a special instruction exclusive to SIMD processors. It produces a scalar
result by multiplying corresponding elements of two vectors and adding them together.
Clearly, the multiplication of individual vector elements can be done in parallel, and so in
constant time. But what about final addition?

Parallel add can be done in O(log n) time, using divide and conquer algorithm. However, for
any SIMD architecture, N is an architectural constant (e.g. in 4-Way SIMD, N=4) and so dot
product as instruction, can always be achieved in fixed nhumber of cycles.

Generally, reductions such as min, max, etc. which can take advantage of associativity of
operation can be implemented as instruction on SIMD.

Other interesting instructions possible on SIMD include scatter, gather, rotate, etc.

Other considerations in SIMD design

Why not branches?

Consider following C code:

z[i] = x[i] ?y[i] : y[i] + 1

How can the code execute in SIMD model? It obviously cannot, because depending on
individual values of x[i], each SIMD unit will decide its execution path, and so they cannot

proceed in lock step. Whenever there are data dependent branches in the code, the SIMD
paradigm cannot be used. The way around this problem is to structure the code in a way to



avoid them.

Where does the data come from?

Load/Store instructions in SIMD need to be designed with a consideration to vector
operations.

Consider a 4-way SIMD system. To keep the CPU busy, the V-LOAD V-STORE instructions
should process 4 elements at a time. There are different ways of designing memory
instructions.

1. Specify all memory addresses to be used for load/store: This is a bad choice
because it makes the instruction size larger, is more expensive to execute and may
result in cache misses.

2. Specify a start address: This technique overcomes all the above disadvantages, but
it is inflexible.

Generally, all SIMD architectures follow 2nd alternative. Due to this, SIMD programs are
constrained.

SIMD Programming Constraints:

1. Data alignment: Data needs to be aligned at boundaries consistent with SIMD
memory subsystem architecture

2. Data arrangement: Arrangement needs to be in such a way that the access pattern
of code execution does not cause excessive cache misses.

Memory systems are built into banks. This allows multiple data paths for load/store of
vectors.



