

Atomic Operations
CS378 – Fall 2012 – UT Austin

Andrew Lenharth

Goal: Implement a Mutex

● Take some state, compute an updated,
communicate update

● Validity of update depends on state
– No update should be communicated if it is based

on out-dated state

● Mutex.lock:
– Read State

– If (unacquired), Write acquired(me)

– Else, Write waiting(me) to the wait list

Read-Modify-Write Problem

The code: *p++
Thread 1: Thread 2: Value of *p

Load R1, p 0

Add R1, 1 0

Store p, R1 1

Load R1, p 1

Add R1, 1 1

Store p, R1 2

Load R1, p 2

Add R1, 1 2

Store p, R1 3

Load R1, p 3

Add R1, 1 3

Store p, R1 4

Thread 1: Thread 2: Value of *p

Load R1, p 0

Load R1, p 0

Add R1, 1 0

Store p, R1 1

Add R1, 1 1

Store p, R1 1

Load R1, p 1

Load R1, p 1

Add R1, 1 1

Store p, R1 2

Add R1, 1 2

Store p, R1 2

Solving RMW

● Hardware provides a way of doing a RMW
– Load Locked-Store Conditional

● HW Transactions

– Compare and Swap

– Atomic Fetch and Operation

● Global consensus is expensive

Load Linked – Store Conditional

● Load Linked
– Track reads and writes

to location

● Store Conditional
– Fails if tracked was

read or written
– Must be same address

as load

● Limit 1 track per CPU

● Allows arbitrary code
between load and store
– More = higher chance of

conflict
– Only the final store is

conditional

● Forward Progress?
– Not at the HW level
– Requires Algorithm support

X = *p; Y = f(X); *p = Y conditionally

Load Linked – Store Conditional

Thread 1: Thread 2: *p

LL R1, p 0

Add R1, 1 0

LL R1, p 0

SC p, R1, R2 0

BNZ R2 (t) 0

Add R1, 1 0

SC p, R1, R2 0

LL R1, p 0

Add R1, 1 0

SC p, R1, R2 1

BNZ R2 (nt) 1

BNZ R2 (t) 1

LL R1, p 1

Add R1, 1 1

SC p, R1, R2 2

BNZ R2 (nt) 2

do {
 int x = LL(p);
 int y = x + 1;
} while (!SC(p,y));

Compare and Swap

● Conditionally replace old value with new value
● Returns old value

– or success flag

– ABA problem

● Forward Progress?
– Not at the HW level

– Requires algorithm support

If (*r == test) {*r = swap; return true; }

else { return false; }

Compare and Swap

Thread 1: Thread 2: *p

Load R1, p 0

Add R2, R1, 1 0

Load R1, p 0

CAS p, R1, R2 1

BNE R2, R1 (nt) 1

Add R2, R1, 1 1

CAS p, R1, R2 1

BNE R2, R1 (t) 1

Load R1, p 1

Add R2, R1, 1 1

CAS p, R1, R2 2

BNE R2, R1 (nt) 1

do {
 int x = *p;
 int y = x + 1;
} while (!CAS(p,x,y));

Fetch and Op

● Load, perform integer ALU operation, store
● Operations available determined by

architecture
– Add common, others less so

● Usually returns old value
● Forward Progress?

– Trivially – no retry problem under contention

*p = op (*p, v)

Fetch and Op

Thread 1: Thread 2: *p

Lock add p, 1 1

Lock add p, 1 2

fetch_and_add(p, 1)

Isn't this exactly what we wanted?

Is this any easier for HW to implement?

Comparison

● LL-SC
– On Alpha, MIPS, Power,

ARM, others

– Most general

– Easiest to implement in
hardware

● Load is a single
instruction, store is a
separate instruction

– Why not everywhere?
● Mostly it is.
● Will be soon be, in an

extended form

● Compare and
Swap
– x86, Itanium

– Very General

– Load and
Store in one
instruction

● Problem for
simple
pipeline
machines

● Fetch and Op
– x86
– Weakest

● But often fastest

– Can be executed
remotely

● IBM Blue Gene

– Load and Store
in one instruction

How Do We Implement CAS?

Implementation Constraints

● RMW must not have visible intermediate state
– Not true for LL-SC (thus their wide spread use)

● Though memory-level implementation on modern
machines similar for all 3

● RMW takes at least 2 memory operations
– No write may interrupt atomic_add between read

and write

T1 Ins T1
Mem

T2 Inst T2
MEM

*p

l_add R(p) l_add 0

R(p) 0

W(p) 1

W(p) 1

What if we had a mutex?

● Let's imaging CAS being implemented with a
mutex
– isn't this circular?

CAS(p, t, v) {
 GlobalLock.acquire()
 old = *p
 If (old == t) {
 *p = v;
 GlobalLock.release();
 return old; //or true
 } else {
 GlobalLock.release();
 return old; //or false
 }
}

CAS(p, t, v) {
 ShadowLock(p).acquire()
 old = *p
 If (old == t) {
 *p = v;
 ShadowLock(p).release();
 return old; //or true
 } else {
 ShadowLock(p).release();
 return old; //or false
 }
}

Lock Within The Processor
● No Load/Store may execute or commit out-of-order

with respect to an atomic
– Atomics may be protecting a critical section

– Don't execute critical section before lock

– Don't execute critical section after unlock

● Sequence (CAS):
– Flush pipeline

– Issue a load which also locks the cache line

– Perform operation

– Issue store releasing lock on cache line

– Resume issuing instructions

We have pushed the lock to the cache system

Three+
instructions
In LL-SC

A Review of Modern Topologies

L1 L1

T T T T

L2

L1 L1

T T T T

L2

L3

DRAM

L1 L1

T T T T

L2

L1 L1

T T T T

L2

L3

DRAM

Network / Interconnect

Cache Coherence

● Reads in the absence of writes should return
the same value

● Writes should be ordered
– No ties allowed. Simultaneous writes by multiple

processors are ordered

● A write on P1 then a read on P2 should see
the written value
– After a while

MESI protocol

Any cache line can be in one of 4 states (2 bits)

● Modified - cache line has been modified, is different
from main memory - is the only cached copy.
(multiprocessor ‘dirty’)

● Exclusive - cache line is the same as main memory
and is the only cached copy

● Shared - Same as main memory but copies may
exist in other caches.

● Invalid - Line data is not valid (empty)

MESI Transitions

Local Event Initial
State

Local Message Remote

Read Hit S, E , M

Read Miss I I → (S,E) READ (S,E) → S
M → S + WB

Write Hit S S → M INVALIDATE S → I

E, M E → M

Write Miss I I → M READEX (S,E) → I
M → I + WB

MESI with non-atomic RMW

● Read: Bring in cache line
● Op
● Write: Invalidate other caches

● Notice that there is an “I” in the possible states
during the Op

Instruction Memory Possible Initial
States

Possible
Messages

Possible Final
States

Load READ M,E,S,I READ M,E,S

Op NONE M,E,S NONE M,E,S,I

Store WRITE M,E,S,I INVALIDATE M

The Fix

● The problem is an Invalidate message could arrive
between the load and store

● The other writer cannot have “E” or “M”, we just
read the line

● If we could be sure we were in “M” after the read,
the protocol would require the other writer to wait for
us to write back memory before it could proceed

● Add a new event which is Read and LOCK
– Lock until next write

– Don't respond to events until unlocked

– Only one active lock per cache at a time

New Event

Event Initial
State

Local Message Remote

Read Hit S, E , M

Read Miss I I → S READ (S,E) → S
M → S + WB

Write Hit S S → M INVALIDATE S → I

E, M E → M

Write Miss I I → M READEX (S,E) → I
M → I + WB

Read
Locked

S, E, M, I → M READEX → I

MESI with atomic RMW

● Read: Bring in cache line (M)
● Op
● Write: Cache local (M → M)

● Note that no “I” can be introduced during Op
because we just delay processing them

Instruction
(subpart)

Memory Possible Initial
States

Possible
Messages

Possible Final
States

Load READ LOCKED M,E,S,I READ /
INVALIDATE

M

Op NONE M NONE M

Store WRITE M NONE M

The (near) future: hardware transactional memory

HW Transactional Memory

A multi-location extensions of LL-SC. In a region, if any location
read to or written from is used remotely, no changes propagate.

● You start a transaction
– HW: starts tracking all operations

● Do whatever
– HW: writes are stored in a buffer

– HW: Loads and stores cause cache lines to be locked locally

● Finish a transaction
– HW: if no remote access to tracked addresses, perform writes
– HW: release locks on cache lines

Atomic Operations

RESUME

Consistency Model
(details in future lecture)

● When does a write from one processor appear
 to another?

● In what order do writes from one processor
appear to another?

● Are writes from one processor observed in the
same order on all processors?

In the details be dragons, and not the small
kind.

Caveat

● Memory models are critical to reasoning about
synchronization

● We are going to assume “weak consistency”
– Atomics are going to impose a partial order on all

reads and writes

– Atomics and fences are your way of expressing
the partial order on which memory operations are
transmitted

– There are even weaker forms of consistency

Atomic V.S. Read/Write

● Atomic operations are not reordered locally
– Normal ops are

● Atomic operations appear in-order remotely
– Normal ops don't

● Atomic operations to the same location are
seen in the same order by all processors
– Normal ops are not

Looking forward, atomic operations act as
fences.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

