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Goal: Implement a Mutex

● Take some state, compute an updated, 
communicate update

● Validity of update depends on state
– No update should be communicated if it is based 

on out-dated state

● Mutex.lock:
– Read State

– If (unacquired), Write acquired(me)

– Else, Write waiting(me) to the wait list



  

Read-Modify-Write Problem

The code: *p++
Thread 1: Thread 2: Value of *p

Load R1, p 0

Add R1, 1 0

Store p, R1 1

Load R1, p 1

Add R1, 1 1

Store p, R1 2

Load R1, p 2

Add R1, 1 2

Store p, R1 3

Load R1, p 3

Add R1, 1 3

Store p, R1 4

Thread 1: Thread 2: Value of *p

Load R1, p 0

Load R1, p 0

Add R1, 1 0

Store p, R1 1

Add R1, 1 1

Store p, R1 1

Load R1, p 1

Load R1, p 1

Add R1, 1 1

Store p, R1 2

Add R1, 1 2

Store p, R1 2



  

Solving RMW

● Hardware provides a way of doing a RMW
– Load Locked-Store Conditional

● HW Transactions

– Compare and Swap

– Atomic Fetch and Operation

● Global consensus is expensive



  

Load Linked – Store Conditional

● Load Linked
– Track reads and writes 

to location

● Store Conditional
– Fails if tracked was 

read or written
– Must be same address 

as load

● Limit 1 track per CPU

● Allows arbitrary code 
between load and store
– More = higher chance of 

conflict
– Only the final store is 

conditional

● Forward Progress?
– Not at the HW level
– Requires Algorithm support

X = *p; Y = f(X); *p = Y conditionally



  

Load Linked – Store Conditional

Thread 1: Thread 2: *p

LL R1, p 0

Add R1, 1 0

LL R1, p 0

SC p, R1, R2 0

BNZ R2 (t) 0

Add R1, 1 0

SC p, R1, R2 0

LL R1, p 0

Add R1, 1 0

SC p, R1, R2 1

BNZ R2 (nt) 1

BNZ R2 (t) 1

LL R1, p 1

Add R1, 1 1

SC p, R1, R2 2

BNZ R2 (nt) 2

do {
  int x = LL(p);
  int y = x + 1;
} while (!SC(p,y));



  

Compare and Swap

● Conditionally replace old value with new value
● Returns old value

– or success flag

– ABA problem

● Forward Progress?
– Not at the HW level

– Requires algorithm support

If (*r == test) {*r = swap; return true; } 

else { return false; }



  

Compare and Swap

Thread 1: Thread 2: *p

Load R1, p 0

Add R2, R1, 1 0

Load R1, p 0

CAS p, R1, R2 1

BNE R2, R1 (nt) 1

Add R2, R1, 1 1

CAS p, R1, R2 1

BNE R2, R1 (t) 1

Load R1, p 1

Add R2, R1, 1 1

CAS p, R1, R2 2

BNE R2, R1 (nt) 1

do {
  int x = *p;
  int y = x + 1;
} while (!CAS(p,x,y));



  

Fetch and Op

● Load, perform integer ALU operation, store
● Operations available determined by 

architecture
– Add common, others less so

● Usually returns old value
● Forward Progress?

– Trivially – no retry problem under contention

*p = op (*p, v)



  

Fetch and Op

Thread 1: Thread 2: *p

Lock add p, 1 1

Lock add p, 1 2

fetch_and_add(p, 1)

Isn't this exactly what we wanted?

Is this any easier for HW to implement?



  

Comparison

● LL-SC
– On Alpha, MIPS, Power, 

ARM, others

– Most general

– Easiest to implement in 
hardware

● Load is a single 
instruction, store is a 
separate instruction

– Why not everywhere?
● Mostly it is.
● Will be soon be, in an 

extended form 

● Compare and 
Swap
– x86, Itanium

– Very General

– Load and 
Store in one 
instruction

● Problem for 
simple 
pipeline 
machines

● Fetch and Op
– x86
– Weakest

● But often fastest

– Can be executed 
remotely

● IBM Blue Gene

– Load and Store 
in one instruction



  

How Do We Implement CAS?



  

Implementation Constraints

● RMW must not have visible intermediate state
– Not true for LL-SC (thus their wide spread use)

● Though memory-level implementation on modern 
machines similar for all 3

● RMW takes at least 2 memory operations
– No write may interrupt atomic_add between read 

and write

T1 Ins T1 
Mem

T2 Inst T2 
MEM

*p

l_add R(p) l_add 0

R(p) 0

W(p) 1

W(p) 1



  

What if we had a mutex?

● Let's imaging CAS being implemented with a 
mutex
– isn't this circular?

CAS(p, t, v) {
  GlobalLock.acquire()
  old = *p
  If (old == t) {
    *p = v;
    GlobalLock.release();
    return old; //or true
  } else {
    GlobalLock.release();
    return old; //or false
  }
}

CAS(p, t, v) {
  ShadowLock(p).acquire()
  old = *p
  If (old == t) {
    *p = v;
    ShadowLock(p).release();
    return old; //or true
  } else {
    ShadowLock(p).release();
    return old; //or false
  }
}



  

Lock Within The Processor
● No Load/Store may execute or commit out-of-order 

with respect to an atomic
– Atomics may be protecting a critical section

– Don't execute critical section before lock

– Don't execute critical section after unlock

● Sequence (CAS):
– Flush pipeline

– Issue a load which also locks the cache line

– Perform operation

– Issue store releasing lock on cache line

– Resume issuing instructions

We have pushed the lock to the cache system

Three+
instructions
In LL-SC



  

A Review of Modern Topologies

L1 L1

T T T T

L2

L1 L1

T T T T

L2

L3

DRAM

L1 L1

T T T T

L2

L1 L1

T T T T

L2

L3

DRAM

Network / Interconnect



  

Cache Coherence

● Reads in the absence of writes should return 
the same value

● Writes should be ordered
– No ties allowed.  Simultaneous writes by multiple 

processors are ordered

● A write on P1 then a read on P2 should see 
the written value
– After a while



  

MESI protocol

Any cache line can be in one of 4 states (2 bits)

● Modified - cache line has been modified, is different 
from main memory - is the only cached copy. 
(multiprocessor ‘dirty’)

● Exclusive - cache line is the same as main memory 
and is the only cached copy

● Shared - Same as main memory but copies may 
exist in other caches.

● Invalid - Line data is not valid (empty)



  

MESI Transitions

Local Event Initial 
State

Local Message Remote

Read Hit S, E , M

Read Miss I I → (S,E) READ (S,E) → S
M → S + WB

Write Hit S S → M INVALIDATE S → I

E, M E → M

Write Miss I I → M READEX (S,E) → I
M → I + WB



  

MESI with non-atomic RMW

● Read: Bring in cache line
● Op
● Write: Invalidate other caches

● Notice that there is an “I” in the possible states 
during the Op

Instruction Memory Possible Initial  
States

Possible
Messages

Possible Final 
States

Load READ M,E,S,I READ M,E,S

Op NONE M,E,S NONE M,E,S,I

Store WRITE M,E,S,I INVALIDATE M



  

The Fix

● The problem is an Invalidate message could arrive 
between the load and store

● The other writer cannot have “E” or “M”, we just 
read the line

● If we could be sure we were in “M” after the read, 
the protocol would require the other writer to wait for 
us to write back memory before it could proceed

● Add a new event which is Read and LOCK
– Lock until next write

– Don't respond to events until unlocked

– Only one active lock per cache at a time



  

New Event

Event Initial 
State

Local Message Remote

Read Hit S, E , M

Read Miss I I → S READ (S,E) → S
M → S + WB

Write Hit S S → M INVALIDATE S → I

E, M E → M

Write Miss I I → M READEX (S,E) → I
M → I + WB

Read 
Locked

S, E, M, I → M READEX → I



  

MESI with atomic RMW

● Read: Bring in cache line (M)
● Op
● Write: Cache local (M → M)

● Note that no “I” can be introduced during Op 
because we just delay processing them

Instruction 
(subpart)

Memory Possible Initial  
States

Possible
Messages

Possible Final 
States

Load READ LOCKED M,E,S,I READ / 
INVALIDATE

M

Op NONE M NONE M

Store WRITE M NONE M



  

The (near) future: hardware transactional memory



  

HW Transactional Memory

A multi-location extensions of LL-SC.  In a region, if any location 
read to or written from is used remotely, no changes propagate.

● You start a transaction
– HW: starts tracking all operations

● Do whatever
– HW: writes are stored in a buffer

– HW: Loads and stores cause cache lines to be locked locally

● Finish a transaction
– HW: if no remote access to tracked addresses, perform writes
– HW: release locks on cache lines



  

Atomic Operations



  

RESUME



  

Consistency Model
(details in future lecture)

● When does a write from one processor appear 
 to another?

● In what order do writes from one processor 
appear to another?

● Are writes from one processor observed in the 
same order on all processors?

In the details be dragons, and not the small 
kind.



  

Caveat

● Memory models are critical to reasoning about 
synchronization

● We are going to assume “weak consistency”
– Atomics are going to impose a partial order on all 

reads and writes

– Atomics and fences are your way of expressing 
the partial order on which memory operations are 
transmitted

– There are even weaker forms of consistency



  

Atomic V.S. Read/Write

● Atomic operations are not reordered locally
– Normal ops are

● Atomic operations appear in-order remotely
– Normal ops don't

● Atomic operations to the same location are 
seen in the same order by all processors
– Normal ops are not

Looking forward, atomic operations act as 
fences.
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