
2/1/2015

1

Computational Science
Algorithms

Computational science

• Simulations of physical phenomena
– fluid flow over aircraft (Boeing 777)
– fatigue fracture in aircraft bodies
– evolution of galaxies
– ….

• Two main approaches
– continuous models: fields and differential equations (eg. Navier-Stokes

equations, Maxwell’s equations,…)
– discrete models: particles and forces (eg. gravitational forces)

• Paradox
– most differential equations cannot be solved exactly

• must use numerical techniques that convert calculus problem to
matrix computations: discretization

– n-body methods are straight-forward
• but need to use a lot of bodies to get accuracy
• must find a way to reduce O(N2) complexity of obvious algorithm

Roadmap

Physical
Phenomena

Continuous
Models

Discrete
Models

Finite-difference

Finite-element

Spectral

Explicit

Implicit

MVM

Ax=b

Direct
methods

(Cholesky,LU)

Iterative
methods

(Jacobi,CG,..)

Spatial decomposition
trees

Mesh generation
and refinement

FFT

Organization

• Finite-difference methods
– ordinary and partial differential equations
– discretization techniques

• explicit methods: Forward-Euler method
• implicit methods: Backward-Euler method

• Finite-element methods
– mesh generation and refinement
– weighted residuals

• N-body methods
– Barnes-Hut

• Key algorithms and data structures
– matrix computations

• algorithms
– MVM and MMM
– solution of systems of linear equations

» direct methods
» iterative methods

• data structures
– dense and sparse matrices

– graph computations
• mesh generation and refinement

– spatial decomposition trees

2/1/2015

2

Ordinary differential equations

• Consider the ode
u‘(t) = -3u(t)+2
u(0) = 1

• This is called an initial value
problem
– initial value of u is given
– compute how function u

evolves for t > 0

• Using elementary calculus, we
can solve this ode exactly

u(t) = 1/3 (e-3t+2)

2/3

Problem

• For general ode’s, we may not be able to express
solution in terms of elementary functions

• In most practical situations, we do not need exact
solution anyway
– enough to compute an approximate solution, provided

• we have some idea of how much error was introduced
• we can improve the accuracy as needed

• General solution:
– convert calculus problem into algebra/arithmetic problem

• discretization: replace continuous variables with discrete variables
• in finite differences,

– time will advance in fixed-size steps: t=0,h,2h,3h,…
– differential equation is replaced by difference equation

Forward-Euler method

• Intuition:
– we can compute the derivative at

t=0 from the differential equation
u‘(t) = -3u(t)+2

– so compute the derivative at t=0
and advance along tangent to t =h
to find an approximation to u(h)

• Formally, we replace derivative
with forward difference to get a
difference equation

– u’(t) (u(t+h) – u(t))/h
• Replacing derivative with

difference is essentially the
inverse of how derivatives were
probably introduced to you in
elementary calculus

x x x x x x x x
h

Back to ode

• Original ode
u‘(t) = -3u(t)+2

• After discretization using Forward-Euler:
(uf(t+h) – uf(t))/h = -3uf(t)+2

• After rearrangement, we get difference equation
uf(t+h) = (1-3h)uf(t)+2h

• We can now compute values of u:
uf(0) = 1
uf(h) = (1-h)
uf(2h) = (1-2h+3h2)
…..

2/1/2015

3

Tabulation
• Numerical solution

– Choose a value for h
– Tabulate the values of uf at t = nh

for n = 0,1,2,…, using the
recurrence formula

• Question: how do you choose the
step size h?

– Small h is more accurate but also
more computationally intensive

– If we assume we want to estimate
the value of u at t = T, we will
need O(T/h) evaluations of the
recurrence formula

• Important property of forward-
Euler:

– Numerical solution is stable only if
h is “small enough”

– If h is too big, numerical estimate
will blow up

– Recurrence formula is a feedback
loop and error introduced at one
time step gets amplified by the
recurrence formula

h=1/3

h=.2

h=0.1

h=0.01

exact solution

x
x

x
x

x
x

o

o

o

xo

Analysis of recurrence formula

• Understanding notions like stability of finite-difference
formulas is complex in general

• In this particular case, we can do the analysis easily
because we can solve difference equation exactly

• It is not hard to show that if difference equation is
uf(t+h) = a*uf(t)+b
uf(0) = 1

the solution is
uf(nh) = an+b*(1-an)/(1-a)

• For our difference equation,
uf(t+h) = (1-3h)uf(t)+2h

the exact solution is
uf(nh) =1/3((1-3h)n+2)

Comparison
• Exact solution

u(t) = 1/3 (e-3t+2)
u(nh) = 1/3(e-3nh+2) (at time-steps)

• Forward-Euler solution
uf(nh) =1/3((1-3h)n+2)

• Use series expansion to compare
u(nh) = 1/3(1-3nh+9/2 n2h2 … + 2)
uf(nh) = 1/3(1-3nh+n(n-1)/2 9h2+…+2)
So error = O(nh2)

• Conclusion:
– error per time step (local error) =

O(h2)
– error at time nh = O(nh2)

• In general, Forward-Euler
converges only if time step is
“small enough”

h=1/3

h=.2

h=0.1

h=0.01

exact solution

Choosing time step
• Time-step needs to be small enough to

capture highest frequency
phenomenon of interest

• Nyquist’s criterion
– sampling frequency must be at least

twice highest frequency to prevent
aliasing

– for most finite-difference formulas, you
need sampling frequencies (much)
higher than the Nyquist criterion

• In practice, most functions of interest
are not band-limited, so use

– insight from application or
– reduce time-step repeatedly till

changes are not significant
• Fixed-size time-step can be inefficient

if frequency varies widely over time
interval

– other methods like finite-elements
permit variable time-steps as we will
see later

time

2/1/2015

4

Backward-Euler method
• Replace derivative with

backward difference
u’(t) (u(t) – u(t-h))/h

• For our ode, we get
ub(t)-ub(t-h)/h = -3ub(t)+2
which after rearrangement
ub(t)= (2h+ub(t-h))/(1+3h)

• As before, this equation is
simple enough that we can write
down the exact solution:
ub(nh) = ((1/(1+3h))n + 2)/3

• Using series expansion, we get
ub(nh) = (1-3nh + (-n(-n-1)/2) 9h2 +

...+2)/3
ub(nh) = (1 -3nh + 9/2 n2h2 + 9/2 nh2

+...+2)/3
So error = O(nh2) (for any value of h)

h=1000

h=0.1

h=0.01

exact solution

Comparison

• Exact solution
u(t) = 1/3 (e-3t+2)
u(nh) = 1/3(e-3nh+2) (at time-steps)

• Forward-Euler solution
uf(nh) =1/3((1-3h)n+2)
error = O(nh2) (provided h < 2/3)

• Backward-Euler solution
ub(n*h) = 1/3 ((1/(1+3h))n + 2)
error = O(nh2) (h can be any value

you want)
• Many other discretization

schemes have been studied in the
literature

– Runge-Kutta
– Crank-Nicolson
– Upwind differencing
– … Red: exact solution

Blue: Backward-Euler solution (h=0.1)
Green: Forward-Euler solution (h=0.1)

Higher-order difference formulas

• First derivatives:
– Forward-Euler: y’(t) yf(t+h)-yf(t) /h
– Backward-Euler: y’(t) yb(t)-yb(t-h) /h
– Centered: y’(t) yc(t+h)-yc(t-h)/2h

• Second derivatives:
– Forward: y’’(t)

(yf(t+2h)-yf(t+h))- (yf(t+h)-yf(t))/h2

= yf(t+2h)-2yf(t+h)+yf(t)/h2

– Backward: y’’(t) yb(t)-2yb(t-h)+yb(t-2h)/h2

– Centered: y’’(t) yc(t+h) – 2yc(t)+yc(t-h)/h2

t-h t t+h

Finite-differences:
partial differential equations

2/1/2015

5

Finite-difference methods for solving
partial differential equations

• Basic ideas carry over unchanged
• Example: 2-d heat equation

• Assume temperature at boundary is fixed
• Discretize domain using a regular NxN grid of pitch h
• Approximate derivatives as centered differences

డଶ௨	

డ௬ଶ

ೠ ,ೕశ షೠሺ,ೕሻ

	ି	

ೠ ,ೕ షೠሺ,ೕషሻ

డଶ௨	

డ௫ଶ

ೠ శ,ೕ షೠሺ,ೕሻ

	ି	

ೠ ,ೕ షೠሺష,ೕሻ

• So we get a system of (N-1)x(N-1) difference equations
in terms of the unknowns at the (N-1)x(N-1) interior points

for all interior point (i,j)
u(i,j+h)+u(i,j-h)+u(i+h,j)+u(i-h,j) – 4u(i,j) = h2 f(i,j)

(i,j)(i-h,j) (i+h,j)

(i,j-h)

(i,j+h)

5-point stencil

x

y

h

h

డଶ௨

డ௫ଶ
+
డଶ௨

డ௬ଶ
	 = f(x,y)

Example

డଶ௨

డ௫ଶ
+
డଶ௨

డ௬ଶ
	 = f(x,y)

Assume f(x,y) = 0

Example (contd)

Assume f(x,y) = 0

-4T1 + T2 + T3 = -150

T1 – 4T2 + T4 = -300

T1 - 4T3 + T4 = -350

T2 + T3 - 4T4 = -500

-4 1 1 0
1 -4 0 1
1 0 -4 1
0 1 1 -4

T1
T2
T3
T4

=
-150
-300
-350
-500

Solution: T1 = 119, T2 = 156, T3 = 169, T4 = 206

How do we solve large systems of linear equations?

డଶ௨

డ௫ଶ
+
డଶ௨

డ௬ଶ
	 = f(x,y)

………………………………
………………………………
………………………………
………………………………
0..1 0..0 1 -4 1 0..0 1 0…0.
0..0 0 1 0..0 1 -4 1 0..0 1 0.
………………………………
………………………………
……………………………...

• System of (N-1)x(N-1) difference equations
in terms of the unknowns at the (N-1)x(N-1) interior points

for all interior point (i,j)
u(i,j+h)+u(i,j-h)+u(i+h,j)+u(i-h,j) – 4u(i,j) = h2 f(i,j)

General picture for heat equation

(i,j)(i-h,j) (i+h,j)

(i,j-h)

(i,j+h)

5-point stencil

….
u(i-h,j)
….
u(i,j-h)
u(i,j)
u(i,j+h)
.....
u(i+h,j)
……

= h2

…….
f(i,j)
……..

• Matrix notation: use natural order for u’s

Pentadiagonal sparse matrix
Matrix is known at compile-time and has simple structure.

2/1/2015

6

Solving linear systems

• Linear system: Ax = b
• Two approaches

– direct methods: Cholesky, LU with pivoting
• factorize A into product of lower and upper triangular matrices A =

LU
• solve two triangular systems

Ly = b
Ux = y

• problems:
– even if A is sparse, L and U can be quite dense (“fill”)
– no useful information is produced until the end of the procedure

– iterative methods: Jacobi, Gauss-Seidel, CG, GMRES
• guess an initial approximation x0 to solution
• error is Ax0 – b (called residual)
• repeatedly compute better approximation xi+1 from residual (Axi – b)
• terminate when approximation is “good enough”

Iterative method: Jacobi iteration

• Linear system
4x+2y=8
3x+4y=11

• Exact solution is (x=1,y=2)
• Jacobi iteration for finding approximations to solution

– guess an initial approximation
– iterate

• use first component of residual to refine value of x
• use second component of residual to refine value of y

• For our example
xi+1 = (8 - 2yi)/4
yi+1 = (11 - 3xi)/4

– for initial guess (x0=0,y0=0)

i 0 1 2 3 4 5 6 7
x 0 2 0.625 1.375 0.8594 1.1406 0.9473 1.0527
y 0 2.75 1.250 2.281 1.7188 2.1055 1.8945 2.0396

Jacobi iteration: matrix notation

• Linear system
4x+2y=8
3x+4y=11

• Jacobi iteration
xi+1 = (8 - 2yi)/4
yi+1 = (11 - 3xi)/4

• Useful to write Jacobi iteration in terms of residual (error):

xi+1 = xi –
ଵ

ସ
(4xi+2yi-8)

yi+1 = yi -
ଵ

ସ
(3xi+4yi-11)

• In matrix terms, this is

xi+1

yi+1
ൌ	

xi

yi
	െ 	

1/4 0
0 1/4

4xi+2yi−8

3xi+4yi−11

Jacobi iteration: general picture

• Linear system Ax = b
• Jacobi iteration

xi+1 = xi – M-1(Axi – b) (where M is the diagonal of A)

• Key operation:
– matrix-vector multiplication
– important to exploit sparsity structure of A to reduce storage and

computation

• Caveat:
– Jacobi iteration does not always converge
– even when it converges, it usually converges slowly
– there are faster iterative methods available: CG,GMRES,..
– what is important from our perspective is that key operation in all

these iterative methods is matrix-vector multiplication

2/1/2015

7

Assume f(x,y) = 0

-4T1 + T2 + T3 = -150

T1 – 4T2 + T4 = -300

T1 - 4T3 + T4 = -350

T2 + T3 - 4T4 = -500

-4T1n+1 + T2n +T3n + 0 = -150
T1n -4T2n+1 + 0 + T4n = -300
T1n + 0 -4T3n+1 + T4n = -350
0 + T2n + T3n -4T4n+1 = -500

Jacobi

T1n+1 = ¼ (T2n + T3n + 100 + 50)
T2n+1 = ¼(T1n + T4n + 100 + 200)
T3n+1 = ¼(T1n + T4n + 300 + 50)
T4n+1 = ¼(T2n + T3n + 300 + 200)

Example (contd)

- Initialize the interior temperatures to some values
- Iterate until some measure of convergence is met
- Key operation is a sparse MVM
- However, code is implemented without explicit sparse matrices

డଶ௨

డ௫ଶ
+
డଶ௨

డ௬ଶ
	 = f(x,y)

Implementation

5-point stencil

current next

1

N

N

• Data structures
– temperature values at a given iteration can

be stored in a NxN matrix
– use two matrices, current and next

• Algorithm
– compute values in next using values in

current
– operator: five-point stencil

next[i,j]=(current[i-1,j]+current[i,j-1]
+current[i+1,j]+current[i,j+1])/4

– switch between current and next in
successive iterations

• Questions:
– Where is the parallelism in this algorithm?

• All grid points in next can be computed in parallel
– Can we exploit locality?

• Postpone discussion

Operator formulation of algorithms

• Data-centric abstraction of algorithms
• Active element

– Node /edge where computation is needed
– Jacobi: all nodes of next grid

• Operator
– Computation at active element
– Jacobi: five-point stencil

• Activity: application of operator to active
element

• Neighborhood
– Set of nodes/edges read/written by activity
– Jacobi: active node in next grid and

neighbors in current grid
• Ordering : scheduling constraints on

execution order of activities
– Unordered algorithms: no semantic

constraints but performance may depend on
schedule

– Ordered algorithms: problem-dependent
order

– Jacobi: unordered algorithm

5-point stencil

current next

1

N

N

TAO analysis: algorithm abstraction

5-point stencil

current next

Jacobi
• Topology: structured (grid)
• Active nodes: topology-driven (all nodes of next grid), unordered
• Operator: local computation for next, reader for current

2/1/2015

8

Parallelism in unordered algorithms
• Work on multiple active nodes

simultaneously
• Constraint:

– final state must be identical to state produced
by processing active nodes serially in some
order

– amorphous data‐parallelism

• One implementation:
– activities can be executed in parallel if and only

if their neighborhoods are disjoint (otherwise,
activities conflict)

– correct but conservative: nearby active nodes
in grid cannot be processed in parallel

• Another implementation:
– if neighborhoods of concurrent activities

overlap, graph elements in intersection of
neighborhoods are read‐only (more refined
notion of conflict)

– satisfactory for Jacobi
– most general picture: commutativity of

activities (we won’t worry about this)

• Data parallelism:
– topology‐driven algorithm
– no conflicts between activities

5-point stencil

current next

1

N

N

Summary

• Finite-difference methods
– can be used to find

approximate solutions to ode’s
and pde’s

• Many large-scale
computational science
simulations use these methods

• Time step or grid step needs to
be constant and is determined
by highest-frequency
phenomenon
– can be inefficient for when

frequency varies widely in
domain of interest

– one solution: structured AMR
methods

Big picture

Physical
Models

Continuous
Models

Discrete
Models

Finite-difference

Finite-element

Explicit

Implicit

MVM

Ax=b

Direct
methods

(Cholesky,LU)

Iterative
methods

(Jacobi,CG,..)

Finite-element methods

• Express approximate solution to pde as a linear combination
of certain basis functions

• Similar in spirit to Fourier analysis
– express periodic functions as linear combinations of sines and

cosines

• Questions:
– what should be the basis functions?

• mesh generation: discretization step for finite-elements
• mesh defines basis functions φ0, φ1, φ2,…which are low-degree piecewise

polynomial functions
– given the basis functions, how do we find the best linear combination

of these for approximating solution to pde?
• u = i ci φi

• weighted residual method: similar in spirit to what we do in Fourier
analysis, but more complex because basis functions are not necessarily
orthogonal

2/1/2015

9

Mesh generation and refinement

• 1-D example:
– mesh is a set of points, not necessarily equally spaced
– basis functions are “hats” which

• have a value of 1 at a mesh point,
• decay down to 0 at neighboring mesh points
• 0 everywhere else

– linear combinations of these produce piecewise linear functions in domain, which may
change slope only at mesh points

• In 2-D, mesh is a triangularization of domain, while in 3-D, it might be a
tetrahedralization

• Mesh refinement: called h-refinement
– add more points to mesh in regions where discretization error is large
– irregular nature of mesh makes this easy to do this locally
– finite-differences require global refinement which can be computationally expensive

Delaunay Mesh Refinement

• Iterative refinement to remove bad
triangles with lots of discretization error:

while there are bad triangles do {
Pick a bad triangle;
Find its cavity;
Retriangulate cavity;

// may create new bad triangles
}

• Don’t-care non-determinism:
– final mesh depends on order in which bad

triangles are processed
– applications do not care which mesh is

produced

• Data structure:
– graph in which nodes represent triangles

and edges represent triangle adjacencies
• Parallelism:

– bad triangles with cavities that do not
overlap can be processed in parallel

– parallelism is dependent on runtime values
• compilers cannot find this parallelism

TAO analysis

DMR
• Topology: unstructured graph
• Active nodes: data-driven, unordered
• Operator: morph

Finding coefficients

• Weighted residual technique
– similar in spirit to what we do in Fourier analysis, but basis

functions are not necessarily orthogonal

• Key idea:
– problem is reduced to solving a system of equations Ax = b
– solution gives the coefficients in the weighted sum
– because basis functions are zero almost everywhere in the

domain, matrix A is usually very sparse
• number of rows/columns of A ~ O(number of points in mesh)
• number of non-zeros per row ~ O(connectivity of mesh point)

– typical numbers:
• A is 109x109

• only about ~100 non-zeros per row

2/1/2015

10

Weighted residuals: intuitive idea

• Residual depends on choice of ci
• Choose ci so that integral of residual, weighted

by each k is zero.
• This gives N equations in N unknowns, which

can be solved to find values for ci

t

u(t)

c5

c1
c2

c3 c4

u*(t)

Sparse matrices in finite-element
method

• Sparsity pattern is complex and irregular
– Pattern and values of non-zeros depends on

the mesh and basis functions, and is not
known at compile-time

– Cannot be inlined into code like we did for
heat equation

• Solution:
– represent sparse matrix explicitly
– Use sparse MVM code specialized to that

representation

2/1/2015

11

Sparse matrix representations MVM with sparse matrices

• Coordinate storage
for P = 1 to NZ do

Y(A.row(P))=Y(A.row(P)) + A.val(P)*X(A.column(P))

• CRS storage
for I = 1 to N do

for JJ = A.rowptr(I) to A.rowPtr(I+1)-1 do

Y(I)=Y(I)+A.val(JJ)*X(A.column(J)))

Barnes Hut
N-body Simulation

2/1/2015

12

Introduction

• Physical system simulation (time evolution)
– System consists of bodies

– “n” is the number of bodies

– Bodies interact via pair-wise forces

• Many systems can be modeled in these
terms
– Galaxy clusters (gravitational force)

– Particles (electric force, magnetic force)

Barnes Hut N-body Simulation 45

Barnes Hut Idea

• Precise force calculation
– Requires O(n2) operations (O(n2) body pairs)

• Barnes and Hut (1986)
– Algorithm to approximately compute forces

• Bodies’ initial position & velocity are also
approximate

– Requires only O(n log n) operations
– Idea is to “combine” far away bodies
– Error should be small because force 1/r2

Barnes Hut N-body Simulation 46

Barnes Hut Algorithm

• Set bodies’ initial position and velocity

• Iterate over time steps
1. Subdivide space until at most one body per cell

• Record this spatial hierarchy in an octree

2. Compute mass and center of mass of each cell

3. Compute force on bodies by traversing octree
• Stop traversal path when encountering a leaf (body)

or an internal node (cell) that is far enough away

4. Update each body’s position and velocity

Barnes Hut N-body Simulation 47

Build Tree (Level 1)

Barnes Hut N-body Simulation

 *

 * *

*

* *

* *

* * *

* * *

* *

*

 * *

*

 * *

 *

48

o

Subdivide space until at most one body per cell

2/1/2015

13

Build Tree (Level 2)

Barnes Hut N-body Simulation

 *

 * *

 *

* *

* *

* * *

* * *

* *

*

 * *

 *

 * *

 *

49

o o o o

o

Subdivide space until at most one body per cell

Build Tree (Level 3)

Barnes Hut N-body Simulation

 *

 * *

*

* *

* *

* * *

* * *

* *

*

 * *

*

 * *

 *

50

o o o o

o

o o o o o o o o o o o o

Subdivide space until at most one body per cell

Build Tree (Level 4)

Barnes Hut N-body Simulation

 *

 * *

 *

* *

* *

* * *

* * *

* *

*

 * *

 *

 * *

 *

51

o o o o

o

o o o o

o o o o o o o o o o o o

o o o o o o o o

Subdivide space until at most one body per cell

Build Tree (Level 5)

Barnes Hut N-body Simulation

 *

 * *

*

* *

* *

* * *

* * *

* *

*

 * *

*

 * *

 *

52

o o o o

o o o o

o

o o o o

o o o o o o o o o o o o

o o o o o o o o

Subdivide space until at most one body per cell

2/1/2015

14

Compute Cells’ Center of Mass

Barnes Hut N-body Simulation

 *

 * *

 *

* *

* *

* * *

* * *

o

* *

*

 * *

 o *

 * *

 *

53

o o o o

o o o o

o

o o o o

o o o o o o o o o o o o

o o o o o o o o

For each internal cell, compute sum of mass and weighted average
of position of all bodies in subtree; example shows two cells only

Compute Forces

Barnes Hut N-body Simulation

 *

 * *

*

* *

* *

* * *

* * *

o

* *

*

 * *

 o *

 * *

 *

54

o o o o

o o o o

o

o o o o

o o o o o o o o o o o o

o o o o o o o o

Compute force, for example, acting upon green body

Compute Force (short distance)

Barnes Hut N-body Simulation

 *

 * *

 *

* *

* *

* * *

* * *

o

* *

*

 * *

 o *

 * *

 *

55

o o o o

o o o o

o

o o o o

o o o o o o o o o o o o

o o o o o o o o

Scan tree depth first from left to right; green portion already completed

Compute Force (down one level)

Barnes Hut N-body Simulation

 *

 * *

*

* *

* *

* * *

* * *

o

* *

*

 * *

 o *

 * *

 *

56

o o o o

o o o o

o

o o o o

o o o o o o o o o o o o

o o o o o o o o

Red center of mass is too close, need to go down one level

2/1/2015

15

Compute Force (long distance)

Barnes Hut N-body Simulation

 *

 * *

 *

* *

* *

* * *

* * *

o

* *

*

 * *

 o *

 * *

 *

57

o o o o

o o o o

o

o o o o

o o o o o o o o o o o o

o o o o o o o o

Yellow center of mass is far enough away

Compute Force (skip subtree)

Barnes Hut N-body Simulation

 *

 * *

*

* *

* *

* * *

* * *

o

* *

*

 * *

 o *

 * *

 *

58

o o o o

o o o o

o

o o o o

o o o o o o o o o o o o

o o o o o o o o

Therefore, entire subtree rooted in the yellow cell can be skipped

Pseudocode
Set bodySet = ...
foreach timestep do {

Octree octree = new Octree();
foreach Body b in bodySet {

octree.Insert(b);
}
OrderedList cellList = octree.CellsByLevel();
foreach Cell c in cellList {

c.Summarize();
}
foreach Body b in bodySet {

b.ComputeForce(octree);
}
foreach Body b in bodySet {

b.Advance();
}

} Barnes Hut N-body Simulation 59

Complexity
Set bodySet = ...
foreach timestep do { // O(n log n)

Octree octree = new Octree();
foreach Body b in bodySet { // O(n log n)

octree.Insert(b);
}
OrderedList cellList = octree.CellsByLevel();
foreach Cell c in cellList { // O(n)

c.Summarize();
}
foreach Body b in bodySet { // O(n log n)

b.ComputeForce(octree);
}
foreach Body b in bodySet { // O(n)

b.Advance();
}

} Barnes Hut N-body Simulation 60

2/1/2015

16

Parallelism
Set bodySet = ...
foreach timestep do { // sequential

Octree octree = new Octree();
foreach Body b in bodySet { // tree building

octree.Insert(b);
}
OrderedList cellList = octree.CellsByLevel();
foreach Cell c in cellList { // tree traversal

c.Summarize();
}
foreach Body b in bodySet { // fully parallel

b.ComputeForce(octree);
}
foreach Body b in bodySet { // fully parallel

b.Advance();
}

} Barnes Hut N-body Simulation 61

Summary

Physical
Phenomena

Continuous
Models

Discrete
Models

Finite-difference

Finite-element

Spectral

Explicit

Implicit

MVM

Ax=b

Direct
methods

(Cholesky,LU)

Iterative
methods

(Jacobi,CG,..)

Spatial decomposition
trees

Mesh generation
and refinement

FFT

Summary (contd.)

• Some key computational science algorithms and data
structures
– MVM:

• Source: explicit finite-difference methods for ode’s, iterative linear
solvers, finite-element methods

• Both dense and sparse matrices
– Stencil computations:

• Source: explicit finite-difference methods for pde’s
• Dense matrices

– A=LU:
• Source: implicit finite-difference methods
• Direct methods for solving linear systems: factorization
• Usually only dense matrices
• High-performance factorization codes use MMM as a kernel

– Mesh generation and refinement
• Finite-element methods
• Graph computations

Extra material

2/1/2015

17

Systems of ode’s

• Consider a system of coupled ode’s of the form
u'(t) = a11*u(t) + a12*v(t) + a13*w(t) + c1(t)
v'(t) = a21*u(t) + a22*v(t) + a23*w(t) + c2(t)
w'(t) = a31*u(t) + a32*v(t) + a33*w(t) + c3(t)

• If we use Forward-Euler method to discretize
this system, we get the following system of
simultaneous equations
uf(t+h)–uf(t) /h = a11*uf(t) + a12*vf(t) + a13*wf(t) + c1(t)
vf(t+h)–vf(t) /h = a21*uf(t) + a22*vf(t) + a23*wf(t) + c2(t)
wf(t+h)–wf(t) /h= a31*uf(t) + a32*vf(t) + a33*wf(t) + c3(t)

Forward-Euler (contd.)

• Rearranging, we get
uf(t+h) = (1+ha11)*uf(t) + ha12*vf(t) + ha13*wf(t) + hc1(t)

vf(t+h) = ha21*uf(t) + (1+ha22)*vf(t) + ha23*wf(t) + hc2(t)

wf(t+h) = ha31*uf(t) + ha32*vf(t) + (1+a33)*wf(t) + hc3(t)

• Introduce vector/matrix notation

x(t) = [u(t) v(t) w(t)]T

A = …..

c(t) =[c1(t) c2(t) c3(t)]T

Vector notation

• Our systems of equations was
uf(t+h) = (1+ha11)*uf(t) + ha12*vf(t) + ha13*wf(t) + hc1(t)
vf(t+h) = ha21*uf(t) + (1+ha22)*vf(t) + ha23*wf(t) + hc2(t)
wf(t+h) = ha31*uf(t) + ha32*vf(t) + (1+a33)*wf(t) + hc3(t)

• This system can be written compactly as follows
x(t+h) = (I+hA)x(t)+hc(t)

• We can use this form to compute values of
x(h),x(2h),x(3h),…

• Forward-Euler is an example of explicit method of
discretization
– key operation: matrix-vector (MVM) multiplication
– in principle, there is a lot of parallelism

• O(n2) multiplications
• O(n) reductions

– parallelism is independent of runtime values

Backward-Euler
• We can also use Backward-Euler method to

discretize system of ode’s
ub(t)–ub(t-h) /h = a11*ub(t) + a12*vb(t) + a13*wb(t) + c1(t)
vb(t)–vb(t-h) /h = a21*ub(t) + a22*vb(t) + a23*wb(t) + c2(t)
wb(t)–wb(t-h) /h= a31*ub(t) + a32*vb(t) + a33*wb(t) + c3(t)

• We can write this in matrix notation as follows
(I-hA)x(t) = x(t-h)+hc(t)

• Backward-Euler is example of implicit method of
discretization
– key operation: solving a linear system Ax = b

• How do we solve large systems of linear equations?
• Matrix (I-hA) is often very sparse

– Important to exploit sparsity in solving linear systems

