
CS 380C: Assignment 2
Problem Set on Fixpoint Equations

Spring 2024

Due: 11:59 PM, February 14th, 2024

In this assignment, the word domain refers to a finite set S with a partial order
≤ (⊆ S × S) under which there is a least element. We will write D = (S,≤) to
represent the domain.

1. (Iterative solution of linear systems, 10 points) Consider the linear system

3x+ y = 4
x+ 2y = 3

(a) (5 points) Write down the recurrence relation that corresponds to solving
this system using the Jacobi method, starting with the initial approximation
(x1 = 0, y1 = 0). Use the first equation to refine the approximation for
x and the second equation to refine the approximation for y. Express this
recurrence as a computation involving matrices and vectors.

(b) (2 points) Compute the first 10 approximations (xi, yi) and plot a 3D plot
(x, y, i) in which the z-axis is the iteration number i. Give an intuitive
explanation of this 3D plot. You do not need to turn in any code but turn
in your plot and explanation. You can use Matlab, Octave, or any other
program for the 3D plot.

(c) (3 points) Repeat these two parts for the Gauss-Seidel method. You can
find a description of the Gauss-Seidel method online.

2. (10 points) Consider the domain D that is the powerset of the set {a,b,c}, in
which elements are ordered by subset ordering, and {} is the least element.

(a) (1 point) Draw a Hasse diagram of this partially ordered set. You do not
have to show transitive edges.

(b) (2 points) Write down a function D→ D that is monotonic but not extensive.

(c) (2 points) Write down a function D→ D that is extensive but not monotonic.

(d) (2 points) Write down a function D→ D that is both extensive and mono-
tonic.

1

https://en.wikipedia.org/wiki/Jacobi_method
https://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method

(e) (2 points) Write down a function f : D → D for which the equation
x = f(x) has no solutions. Explain why your function is not monotonic.

(f) (1 point) Write down a function f : D → D for which the equation x =
f(x) has multiple solutions.

3. (10 points) Let D = (S,≤) be a domain, and let f : D → D be monotonic. Let
set L ⊆ S be the set of solutions to the equation x = f(x). Show that (L,≤) is
itself a domain.

4. (10 points) Let D = (S ,⊆) be the domain consisting of the powerset of a set S
ordered by subset ordering, and let a, b ∈ S. Consider the function f : S → S
defined as follows: f(T) = if (a ∈ T) then (T ∪ {b}) else T . Argue that f is
monotonic.

How about the function g(T) = (T − {a}) ?

5. (10 points) If D is a domain and f:D→D and g:D→D are monotonic, show that
the function h(x) = f(g(x)) is monotonic.

6. (10 points) Let D be a domain and let f:D→D and g:D→D be monotonic and
extensive functions.

(a) (4 points) Show that any solution to the following system of simultaneous
equations:
x = f(x)
x = g(x)
is a solution to the equation x = f(g(x)) and vice versa.

(b) (2 points) From this and the result of Q(5), argue that this system of simul-
taneous equations always has a least solution, and describe how to compute
it.

(c) (2 points) Do the results of (a) and (b) always hold if f and g are monotonic
but not extensive?

(d) (2 points) Do the results of (a) and (b) always hold if f and g are extensive
but not monotonic?

7. (10 points) Let ℜ denote the set of real numbers [0,1] ordered in the usual way by
the ≤ relation. This is a totally ordered set whose least element is 0, and whose
greatest element is 1. Consider a function f:ℜ→ℜ.

(a) (2 points) Suppose f is extensive. Give an informal description of what its
graph may (and may not) look like, using a few pictures.

(b) (2 points) Suppose f is monotonic. Give an informal description of what its
graph may (and may not) look like, using a few pictures. Hint: the word
”derivative” might be useful here.

(c) (2 points) Complete the following sentence: the fixpoints of f, if they exist,
must lie on the line .

2

(d) (2 points) Give an example of a function f:ℜ→ℜ without any fixpoints.
Give an example of such a function that has one or more fixpoints.

(e) (2 points) Another famous fixpoint theorem is known humorously as the
“hairy ball theorem.” Read up about it and write a few sentences about this
theorem.

(f) (Extra credit, 10 points)) Is monotonicity of f enough to guarantee that it
has a least fixpoint? If so, give a proof. This is a difficult problem and its
solution uses results that we did not cover in class.

8. (10 points) Answer the following questions briefly.

• (2 points) What is the difference between a grammar and a language?

• (4 points) What is an ambiguous grammar? Give an example of an ambigu-
ous grammar and explain using an example why it is ambiguous.

• (2 points) Can all context-free grammars be parsed using recursive-descent
parsing? Explain using a simple grammar as a counter-example.

• (2 points) What algorithm would you use to parse general context-free
grammars? This was not covered in class so you will need to do some
research on your own.

9. (20 points) SLL(1) grammars can be generalized in a natural way to SLL(k)
grammars for which we use k lookahead symbols to make parsing decisions.
The theory of SLL(k) parsers is based on two relations called FIRSTk and
FOLLOWk that generalize the FIRST and FOLLOW relations that we dis-
cussed in class. Some of the concepts used in the definitions below are defined
at the end of this problem set. In the rest of this problem, assume that we are
given a context-free grammar G=<N,T, P, S> and that k is a fixed integer.
The augmented grammar is G′=<N ′, T ′, P ′, S′> (see definition below).

• If α is a string of terminals and/or non-terminals, FIRSTk(α) is defined
to be the set of k-prefixes of strings that can be produced from α by ap-
plying the productions of the grammar. One way to think about this is the
following.
If A is a non-terminal, FIRSTk(A) is defined as the set of k-prefixes of
strings that can be derived from A using the grammar productions. The
definition of FIRSTk can be extended to strings of terminals and non-
terminals as follows:

FIRSTk(ϵ) = {ϵ},
F IRSTk(t ∈ T) = {t},
F IRSTk(u1u2...un) = FIRSTk(u1) +k ...+k FIRSTk(un).

Let M be the finite lattice whose elements are sets of terminal strings of
length at most k, ordered by containment with the empty set being the least

3

element. FIRSTk sets for non-terminals can be computed as the least
solution in M of this equational system:

∀A ∈ N FIRSTk(A) =
⋃

A→α

FIRSTk(α).

• FOLLOWk sets can be defined analogously. Let L be the lattice whose
elements are sets of terminal strings of length exactly k for the augmented
grammar, ordered by containment with the empty set being the least ele-
ment. FOLLOWk sets for non-terminals other than S′ can be computed
as the least solution in L of this equational system:

FOLLOWk(S) = {$k},

FOLLOWk(B) =
⋃

A→αBγ

FIRSTk(γ) +k FOLLOWk(A),

∀B ∈ (N ′ − {S, S′}).

i. (5 points) Explain briefly the intuition behind the equations for computing
FIRSTk and FOLLOWk. How do these definitions avoid the need for
computing NULLABLE non-terminals, as we did in class?

ii. (15 points) Consider the grammar

S → yLab|yLbc|M,

L → a|ϵ,
M → MM |x.

Write down the equational systems for the FIRST2 and FOLLOW2 sets
for the non-terminals of the grammar. Solve these equations to compute
these sets.

The following definitions are needed for the last problem.

• Given a string s of terminal symbols, the k-prefix of s, written as (s)k, is the
string consisting of the first k symbols of s. If the length of the string is less than
k, then the k-prefix is just the string itself. For example,

(abc)2 = ab,

(abc)1 = a,

(abc)4 = abc.

• The operator +k takes two terminal strings and returns the k-prefix of their con-
catenation. This operator can be lifted to sets of strings in the obvious way. For
example,

a+2 bcd = ab,

a+2 ϵ = a,

{ϵ, t, tu, abc}+2 {ϵ, x, xy, xya}={ϵ, x, xy, t, tx, tu, ab}.

4

• Lookahead computation is simplified if we pad the input string with k $ symbols
at the end; this ensures that we always have at least k symbols of lookahead
even when we are near the end of the string. This can be described formally by
defining an augmented grammar

G′=<N ′=N ∪ {S′}, T ′=T ∪ {$}, P ′=P ∪ {S′→S$k}, S′>.

Intuitively, we add a new non-terminal S′, a new terminal symbol $, and a pro-
duction S′ → S$k to the grammar, and make the new start symbol S′.

5

