
CS 380C:
Advanced Topics in Compilers

Administration

• Instructor: Keshav Pingali
– Professor (CS, Oden Institute)
– Email: pingali@cs.utexas.edu

• TA: Lamha Goel
– Email: lamhag@utexas.edu

mailto:pingali@cs.utexas.edu

Meeting times

• Lecture:
– TTh 10AM-11:30PM
– GDC 2.210

• Office hours:
– Keshav Pingali: Monday 3-4PM, POB 4.126
– Lamha Goel: TBD

Prerequisites

• Compilers and architecture
– Some background in compilers
– Basic computer architecture

• Machine learning
– Basic knowledge of machine learning

• Software and math maturity
– Able to implement large programs in C/C++
– Comfortable with abstractions like graph theory

• Ability to read research papers and understand
content

Course material

• Website for course
– http://www.cs.utexas.edu/users/pingali/CS380C/2024/index.html

• All lecture notes, announcements, papers,
assignments, etc. will be posted there

• No assigned book for the course
– post papers and other material as appropriate

http://www.cs.utexas.edu/users/pingali/CS380C/2023/index.html

Coursework

• 4-5 programming assignments and problem sets
• Mid-semester exam
• Paper presentations

– Second half of semester
• Term project

– Substantial implementation project in area of
compilers

• Final exam (at my discretion)

Why do we need
compilation technology?

• Traditional view:
– Translation: high-level language (HLL) programs to low-level

machine code
– Optimization: reduce number of arithmetic operations by

optimizations like common subexpression elimination
– Ignore data structures: too complex to analyze

• Modern view:
– Collection of automatic techniques for extracting meaning from

and transforming programs
– Useful for debugging, optimization, verification, detecting

malware, translation, …..
– Optimization:

• Restructure (reorganize) computation to optimize locality and parallelism
• Reducing amount of computation is useful but not critical
• Optimizing data structure accesses is critical

• Bridge the “semantic gap”
– Programmers prefer to write programs at a high level of

abstraction
– Modern architectures are very complex, so to get good

performance, we have to worry about a lot of low-level details
– Compilers let programmers write high-level programs and still get

good performance on complex machine architectures

• Application portability
– When a new ISA or architecture comes out, you only need to

reimplement the compiler on that machine
– Application programs should run without (substantial) modification
– Saves programming effort

• Summary: performance + portability of HLL programs

Why do we need translators?

Microprocessor trend data

9Before 2005 After 2005

Intel Skylake chip

Chip

Block diagram of each core10

Getting performance
• Programs must exploit

– coarse-grain (thread-level) parallelism
– memory hierarchy (L1,L2,L3,..)
– instruction-level parallelism (ILP)
– registers
– ….

• How important is it to exploit these hardware features?
– If you have n cores and you run on only one, you get at

most 1/n of peak performance, so this is obvious
– Memory hierarchy: typical latencies

• L1 cache: ~ 1 cycle
• L2 cache: ~ 10 cycles
• Memory: ~ 500-1000 cycles
• If most memory accesses hit in L1/L2 cache, performance is much

better than if most of accesses go to memory

Software problem

• Problem:
– Programs obtained by expressing most algorithms in

the straight-forward way perform poorly
– Worrying about performance when coding algorithms

complicates the software process greatly
• Let us study cache optimization to understand this
• Caches are useful only if programs have

locality of reference
– temporal locality: program references to given memory

address are clustered together in time
– spatial locality: program references clustered in address

space are clustered in time

Example: matrix multiplication

• All six loop permutations are computationally equivalent
(even modulo round-off error).

• Great algorithmic data reuse: each array element is
touched O(N) times!

• However, execution times of the six versions can be very
different if machine has a cache.

for I = 1, N //assume arrays stored in row-major order
 for J = 1, N
 for K = 1, N
 C(I,J) = C(I,J) + A(I,K)*B(K,J)

IJK version (large cache)

for I = 1, N
for J = 1, N

for K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Large cache scenario: matrices are small enough to fit into cache
– Assume only cold misses, no capacity or conflict misses
– Miss ratio:

• Data size = 3 N2

• Assume line size = b floating-point numbers
• Miss ratio = 3 N2 /b*4N3 = 0.75/bN = 0.019 (b = 4,N=10)

C

B
A

K

K

IJK version (small cache)

for I = 1, N
for J = 1, N

for K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Small cache scenario: matrices are large compared to cache/row-
major storage
– Cold and capacity misses (ignore conflict misses)
– Miss ratio:

• C: N2/b misses (good temporal locality)
• A: N3 /b misses (good spatial locality)
• B: N3 misses (poor temporal and spatial locality)
• Miss ratio 0.25 (b+1)/b = 0.3125 (for b = 4)

C

B
A

K

K

MMM Experiments
• Simulated L1 Cache Miss Ratio for Intel Pentium III

– MMM with N = 1…1300
– 16KB 32B/Block 4-way 8-byte elements

Quantifying performance differences
for I = 1, N //assume arrays stored in row-major order

for J = 1, N
for K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Typical cache parameters:
– L2 cache hit: 10 cycles, cache miss 70 cycles

• Time to execute IKJ version:
2N3 + 70*0.13*4N3 + 10*0.87*4N3 = 73.2 N3

• Time to execute JKI version:
2N3 + 70*0.5*4N3 + 10*0.5*4N3 = 162 N3

• Speed-up = 2.2
• Key transformation: loop permutation

Even better…..
• Break MMM into a bunch of smaller MMMs so that large cache model is true

for each small MMM
 large cache model is valid for entire computation
 miss ratio will be 0.75/bt for entire computation where t is

Loop tiling/blocking

• Break big MMM into sequence of smaller MMMs where
each smaller MMM multiplies sub-matrices of size txt.

• Parameter t (tile size) must be chosen carefully
– as large as possible
– working set of small matrix multiplication must fit in cache

A

B

C

It

Kt

Jt

I

K

Jfor It = 1,N, t
 for Jt = 1,N,t
 for Kt = 1,N,t
 for I = It,It+t-1
 for J = Jt,Jt+t-1
 for K = Kt,Kt+t-1
 C(I,J) = C(I,J)+A(I,K)*B(K,J)

t
t

t
t

Speed-up from tiling/blocking

• Miss ratio for block computation
= miss ratio for large cache model
= 0.75/bt
= 0.001 (b = 4, t = 200)

• Time to execute tiled version =
2N3 + 70*0.001*4N3 + 10*0.999*4N3 = 42.3N3

• Speed-up over JKI version = 4

Observations
• Locality optimized code is more complex than high-level algorithm.
• Locality optimization changed the order in which operations were

done, not the number of operations
• “Fine-grain” view of data structures (arrays) is critical
• Loop orders and tile size must be chosen carefully

– cache size is key parameter
– associativity matters

• Actual code is even more complex: must optimize for processor
resources

– registers: register tiling
– pipeline: loop unrolling
– Optimized MMM code can be ~1000’s of lines of C code

• Wouldn’t it be nice to have all this be done automatically by a
compiler?

– Actually, it is done automatically nowadays…

Performance of MMM code produced by
Intel’s Itanium compiler (-O3)

Goto BLAS obtains close to 99% of peak, so compiler is pretty good!

GFLOPS relative to -O2; bigger is better

0

5

10

15

20

25

30

-O
1

-O
2

+ p
ref

etc
h

+ i
nte

rch
an

ge

+ u
nro

ll-j
am

+ b
loc

kin
g =

 -O
3

gc
c -

O4

fa
ct

or
 fa

st
er

 th
an

 -O
2

92% of Peak
Performance

Chart1

		-O1

		-O2

		+ prefetch

		+ interchange

		+ unroll-jam

		+ blocking = -O3

		gcc -O4

factor faster than -O2

GFLOPS relative to -O2; bigger is better

0.75

1

0.9

6.5

20

25.5

0.4

Sheet1

		-O1		0.15		0.75

		-O2		0.2		1

		+ prefetch		0.18		0.9

		+ interchange		1.3		6.5

		+ unroll-jam		4		20

		+ blocking = -O3		4.7		25.5

		gcc -O4		0.08		0.4

Sheet1

		

GFLOPS relative to -O2; bigger is better

Sheet2

		

Sheet3

		

Summary

• Exploiting parallelism, memory hierarchies etc. is very
important

• If program uses only one core out of n cores in processors,
you get at most 1/n of peak performance

• Memory hierarchy optimizations are very important
– can improve performance by 10X or more

• Key points:
– need to focus on data structure manipulation
– reorganization of computations and data structure layout are key
– few opportunities usually to reduce the number of computations

except in address arithmetic

Organization of modern compiler

Our focus

Front-end

• Goal: convert linear representation of program
to hierarchical representation
– Input: text file
– Output: abstract syntax tree + symbol table

• Key modules:
– Lexical analyzer: converts sequence of characters in

text file into sequence of tokens
– Parser: converts sequence of tokens into abstract

syntax tree + symbol table
– Semantic checker: (eg) perform type checking

High-level optimizer

• Goal: perform high-level analysis and
optimization of program

• Input: AST + symbol table from front-end
• Output: Low-level program representation

such as 3-address code
• Tasks:

– Procedure/method inlining
– Array/pointer dependence analysis
– Loop transformations: unrolling, permutation,

tiling, jamming,….

Low-level optimizer

• Goal: perform scalar optimizations on low-level
representation of program

• Input: low-level representation of program such as
3-address code

• Output: optimized low-level representation +
additional information such as def-use chains

• Tasks:
– Dataflow analysis: live variables, reaching definitions, …
– Scalar optimizations: constant propagation, partial

redundancy elimination, strength reduction, ….

Code generator

• Goal: produce assembly/machine code from
optimized low-level representation of program

• Input: optimized low-level representation of
program from low-level optimizer

• Output: assembly/machine code for real or
virtual machine

• Tasks:
– Register allocation
– Instruction selection

JIT compilation

• Traditionally, all phases of compilation were completed
before program was executed

• New twist: virtual machines
– Offline compiler:

• Generates code for virtual machine like JVM
– Just-in-time compiler:

• Generates code for real machine from VM code while program is
executing

• Advantages:
– Portability
– JIT compiler can perform optimizations for particular input

My lectures (scalar stuff)

• Introduction
– compiler structure, architecture and compilation, sources of improvement

• Control flow analysis
– basic blocks & loops, dominators, postdominators, control dependence

• Data flow analysis
– lattice theory, iterative frameworks, reaching definitions, liveness

• Static-single assignment form (SSA)
– static-single assignment, constant propagation.

• Global optimizations
– loop invariant code motion, common subexpression elimination, strength

reduction.
• Register allocation

– coloring, allocation, live range splitting.
• Instruction scheduling (depending on schedule)

– pipelined and VLIW architectures, list scheduling.

My lectures (data structure stuff)

• Array dependence analysis
– integer linear programming, dependence abstractions.

• Loop transformations for array programs
– linear loop transformations, loop fusion/fission, enhancing

parallelism and locality

• Self-optimizing programs
– empirical search, ATLAS, FFTW

• Analysis of pointer-based programs
– points-to and shape analysis

• Parallelizing graph programs
– amorphous data parallelism, exploiting amorphous data-

parallelism

Advanced topics for CS 380C

• Optimizing machine learning programs
– Training and testing times can be large

• Models are getting more complex
• Lot of training data

– How do we optimize training and testing
times on modern architectures?

• Exploiting machine learning in compilers
– Some work in this area; LLMs for synthesizing

programs from English descriptions
– Active research topic

• Course
– See website for partial list of papers we will

study in this area
– Papers will be presented by students
– Ideally, your paper presentation and course

project will be linked

Schedule for lectures

• See
– http://www.cs.utexas.edu/users/pingali/CS380C/2023/i

ndex.html

• Some lectures will be given by guest
lecturers from my group and from industry

http://www.cs.utexas.edu/users/pingali/CS380C/2023/index.html
http://www.cs.utexas.edu/users/pingali/CS380C/2023/index.html

Reading assignments for next class

• Lecture slides on SAM
– Simple stack machine

• My SIGARCH blogpost:
– Why has machine learning not had more impact on systems?

• Mike O’Boyle’s survey article on using machine
learning in compilers
– Machine learning in compiler optimization

Wang and O’Boyle, arXiv:1805.03441
• Eran Yahav’s SIGPLAN blog post on machine

learning in compilers
– From-programs-to-deep-models-part-1

https://www.cs.utexas.edu/%7Epingali/CS380C/2019/lectures/sam.pdf
https://www.sigarch.org/the-unreasonable-ineffectiveness-of-machine-learning-in-computer-systems-research/
https://arxiv.org/abs/1805.03441
https://blog.sigplan.org/2019/08/22/from-programs-to-deep-models-part-1/

	CS 380C:�Advanced Topics in Compilers
	Administration
	Meeting times
	Prerequisites
	Course material
	Coursework
	Why do we need �compilation technology?
	Why do we need translators?
	Microprocessor trend data
	Intel Skylake chip
	Getting performance
	Software problem
	Example: matrix multiplication
	IJK version (large cache)
	IJK version (small cache)
	MMM Experiments
	Quantifying performance differences
	Even better…..
	Loop tiling/blocking
	Speed-up from tiling/blocking
	Observations
	Performance of MMM code produced by �Intel’s Itanium compiler (-O3)
	Summary
	Organization of modern compiler
	Front-end
	High-level optimizer
	Low-level optimizer
	Code generator
	JIT compilation
	My lectures (scalar stuff)
	My lectures (data structure stuff)
	Advanced topics for CS 380C
	Schedule for lectures
	Reading assignments for next class

