<u>Dominators</u>, <u>control-dependence</u> <u>and SSA form</u>

Organization

- Dominator relation of CFGs
 postdominator relation
- Dominator tree
- Computing dominator relation and tree
 - Dataflow algorithm
 - Lengauer and Tarjan algorithm
- Control-dependence relation
- SSA form

Control-flow graphs

- CFG is a directed graph
- Unique node START from which all nodes in CFG are reachable
- Unique node END reachable from all nodes
- Dummy edge to simplify discussion START → END
- Path in CFG: sequence of nodes, possibly empty, such that successive nodes in sequence are connected in CFG by edge
 - If x is first node in sequence and y is last node, we will write the path as x →* y
 - If path is non-empty (has at least one edge) we will write x →+ y

Dominators

- In a CFG G, node a is said to dominate node b if every path from START to b contains a.
- Dominance relation: relation on nodes
 - We will write a dom b if a dominates b

END

Computing dominance relation

• Dataflow problem:

 $Dom(N) = \{N\} U \cap Dom(M)$ $M \epsilon pred(N)$

Domain: powerset of nodes in CFG

Find greatest solution.

Work through example on previous slide to check this. Question: what do you get if you compute least solution?

Properties of dominance

- Dominance is
 - reflexive: a dom a
 - anti-symmetric: a dom b and b dom a \rightarrow a = b
 - transitive: a dom b and b dom c \rightarrow a dom c
 - tree-structured:
 - a dom c and b dom c → a dom b or b dom a
 - intuitively, this means dominators of a node are themselves ordered by dominance

Example of proof

- Let us prove that dominance is transitive.
 - Given: a dom b and b dom c
 - Consider any path P: START \rightarrow + c
 - Since b dom c, P must contain b.
 - Consider prefix of P = Q: START \rightarrow + b
 - Q must contain a because a dom b.
 - Therefore P contains a.

Dominator tree example

Check: verify that from dominator tree, you can generate full relation

Computing dominator tree

- Inefficient way:
 - Solve dataflow equations to compute full dominance relation
 - Build tree top-down
 - Root is START
 - For every other node
 - Remove START from its dominator set
 - If node is then dominated only by itself, add node as child of START in dominator tree
 - Keep repeating this process in the obvious way

Building dominator tree directly

- Algorithm of Lengauer and Tarjan
 - Based on depth-first search of graph
 - O(E* α (E)) where E is number of edges in CFG
 - Essentially linear time
- Linear time algorithm due to Buchsbaum et al
 - Much more complex and probably not efficient to implement except for very large graphs

Immediate dominators

- Parent of node b in tree, if it exists, is called the immediate dominator of b
 - written as idom(b)
 - idom not defined for START
- Intuitively, all dominators of b other than b itself dominate idom(b)

– In our example, idom(c) = a

<u>Useful lemma</u>

- Lemma: Given CFG G and edge a→b, idom(b) dominates a
- Proof: Otherwise, there is a path P: START → + a that does not contain idom(b). Concatenating edge a→b to path P, we get a path from START to b that does not contain idom(b) which is a contradiction.

a→b is edge in CFG idom(b) = q which dominates f

Postdominators

• Given a CFG G, node b is said to postdominate node a if every path from a to END contains b.

we write b pdom a to say that b postdominates a

- Postdominance is dominance in reverse CFG obtained by reversing direction of all edges and interchanging roles of START and END.
- Caveat: a dom b does not necessarily imply b pdom a.
 - See example: a dom b but b does not pdom a

Obvious properties

- Postdominance is a tree-structured relation
- Postdominator relation can be built using a backward dataflow analysis.
- Postdominator tree can be built using Lengauer and Tarjan algorithm on reverse CFG
- Immediate postdominator: ipdom
- Lemma: if a → b is an edge in CFG G, then ipdom(a) postdominates b.

Control dependence

- Intuitive idea:
 - node w is control-dependent on a node u if node u determines whether w is executed
- Example:

We would say S1 and S2 are control-dependent on e

Examples (contd.)

We would say node S1 is control-dependent on e.

It is also intuitive to say node e is control-dependent on itself:

- execution of node e determines whether or not e is executed again.

Example (contd.)

- S1 and S3 are controldependent on f
- Are they control-dependent on e?
- Decision at e does not fully determine if S1 (or S3 is executed) since there is a later test that determines this
- So we will NOT say that S1 and S3 are control-dependent on e
 - Intuition: control-dependence is about "last" decision point
- However, f is controldependent on e, and S1 and S3 are transitively (iteratively) control-dependent on e

Example (contd.)

- Can a node be controldependent on more than one node?
 - yes, see example
 - nested repeat-until loops
 - n is control-dependent on t1 and t2 (why?)
- In general, controldependence relation can be quadratic in size of program

Formal definition of control dependence

- Formalizing these intuitions is quite tricky
- Starting around 1980, lots of proposed definitions
- Commonly accepted definition due to Ferrane, Ottenstein, Warren (1987)
- Uses idea of postdominance
- We will use a slightly modified definition due to Bilardi and Pingali which is easier to think about and work with

Control dependence definition

- First cut: given a CFG G, a node w is controldependent on an edge (u→v) if
 - w postdominates v
 - w does not postdominate u
- Intuitively,
 - first condition: if control flows from u to v it is guaranteed that w will be executed
 - second condition: but from u we can reach END without encountering w
 - so there is a decision being made at u that determines whether w is executed

Control dependence definition

- Small caveat: what if w = u in previous definition?
 - See picture: is u controldependent on edge $u \rightarrow v$?
 - Intuition says yes, but definition on previous slides says "u should not postdominate u" and our definition of postdominance is reflexive
- Fix: given a CFG G, a node w is control-dependent on an edge (u→v) if
 - w postdominates v
 - if w is not u, w does not postdominate u

Strict postdominance

- A node w is said to strictly postdominate a node u if
 - w != u
 - w postdominates u
- That is, strict postdominance is the irreflexive version of the postdominance relation
- Control dependence: given a CFG G, a node w is control-dependent on an edge (u→v) if
 - w postdominates v
 - w does not strictly postdominate u

START→ f→b c→d c→e a→b

a	Х		Х			Х	Χ
		Х	Х			Х	
				Х			
					Х		
		Х					

Computing control-dependence relation

- Control dependence: given a CFG G, a node w is control-dependent on an edge (u→v) if
 - w postdominates v
 - w does not strictly postdominate u
- Nodes control dependent on edge (u→v) are nodes on path up the postdominator tree from v to ipdom(u), excluding ipdom(u)
 - We will write this as [v,ipdom(u))
 - half-open interval in tree

Computing control-dependence relation

- Compute the postdominator tree
- Overlay each edge u→v on pdom tree and determine nodes in interval [v,ipdom(u))
- Time and space complexity is O(EV).
- Faster solution: in practice, we do not want the full relation, we only make queries
 - cd(e): what are the nodes control-dependent on an edge e?
 - conds(w): what are the edges that w is control-dependent on?
 - cdequiv(w): what nodes have the same control-dependences as node w?
- It is possible to implement a simple data structure that takes O(E) time and space to build, and that answers these queries in time proportional to output of query (optimal) (Pingali and Bilardi 1997).

- Static single assignment form
 - Intermediate representation of program in which every use of a variable is reached by exactly one definition
 - Most programs do not satisfy this condition
 - (eg) see program on next slide: use of Z in node F is reached by definitions in nodes A and C
 - Requires inserting dummy assignments called Φ -functions at merge points in the CFG to "merge" multiple definitions
 - Simple algorithm: insert Φ -functions for all variables at all merge points in the CFG and rename each real and dummy assignment of a variable uniquely
 - (eg) see transformed example on next slide

SSA example

Minimal SSA form

- In previous example, dummy assignment Z3 is not really needed since there is no actual assignment to Z in nodes D and G of the original program.
- Minimal SSA form
 - SSA form of program that does not contain such "unnecessary" dummy assignments
 - See example on next slide
- Question: how do we construct minimal SSA form directly?

Minimal-SSA form Example

(a) Original Control Flow Graph

(b) Control Flow Graph with Φ -functions

Minimal SSA form

- Compute Merge relation M: $V \rightarrow P(V)$
- If node N contains an assignment to a variable x, then node Z is in M(N) if:
 - 1. There is a non-null path P1 := N \rightarrow^+ Z
 - The value computed at X reaches Z
 - 2. There is a non-null path P2 := START \rightarrow^+ Z
 - 3. P1 and P2 are disjoint except for Z

• If $S \subseteq V$ where there are assignments to variable x, then place ϕ functions for x in nodes $\bigcup_{N \in S} M(N)$

Minimal-SSA form Example

(a) Original Control Flow Graph

(b) Control Flow Graph with Φ -functions

Computing Merge(v)

- If u ε Merge(w), w does not strictly dominate u
 - Proof: there is a path from START to v that does not contain w
- Conversely
 - if w dominates u, u & Merge(w)
- Idea:
 - compute nodes on the dominance frontier of w
 - w does not strictly dominate u but dominates some CFG predecessor of u
 - iterate

Dominance frontier

- Dominance frontier of node w
 - Node u is in dominance frontier of node w if w
 - dominates a CFG predecessor v of u, but
 - does not strictly dominate u
- Dominance frontier = control dependence in reverse graph
 A B C D E F G

Running example:

Iterated dominance frontier

- Irreflexive closure of dominance frontier relation
- Related notion: iterated control dependence in reverse graph
- Where to place Φ -functions for a variable Z
 - Let Assignments = {START} U {nodes with assignments to Z in original CFG}
 - Find set I = iterated dominance frontier of nodes in Assignments
 - Place Φ-functions in nodes of set I
- For example
 - Assignments = {START,A,C}
 - DF(Assignments) = {E}
 - DF(DF(Assignments)) = {B}
 - DF(DF(DF(Assignments))) = {B}
 - So $\hat{I} = \{E,B\}$
 - This is where we place $\Phi\mathchar`-$ functions, which is correct

(a) Original Control Flow Graph

(b) Control Flow Graph with Φ -function

Why is SSA form useful?

- For many dataflow problems, SSA form enables "sparse" dataflow analysis that
 - yields the same precision as bit-vector CFG-based dataflow analysis
 - but is asymptotically faster since it permits the exploitation of sparsity
 - Example: constant propagation (see following slides)
- SSA has two distinct features
 - factored def-use chains
 - renaming
 - you do not have to perform renaming to get advantage of SSA for many dataflow problems

Constant propagation

- Dataflow algorithm described earlier will determine that the last use of y is constant
- Intuition: it discovers that the false side of the conditional is dead

state vectorson CFG edges

Def-use chains algorithm

• Algorithm:

- Compute reaching definitions
- Add def-use chains to CFG
- Cell for each definition and use, initialized to \bot
- Propagate lattice values from definitions to uses, using confluence operator to merge values from multiple definitions that reach a given use
- Algorithm will not find all the constants found by CFG dataflow algorithm

- control flow graph (CFG)
- → def-use edges
- \Box cell for value at definition/use

SSA algorithm

- Cells for each def and use of SSA edges initialized to \bot
- Cell per edge and statement to mark liveness
- Propagate liveness along CFG edges to mark live edges
- Statement is live if any incoming edge is live
- Propagate constants along SSA edges from live statements
- At conditional, evaluate condition using propagated values to mark liveness on outgoing edges
- Will find all constants found by CFG dataflow algorithm

Computing SSA form

- Cytron et al algorithm
 - compute DF relation (see slides on computing control-dependence relation)
 - find irreflexive transitive closure of DF relation for set of assignments for each variable
- Computing full DF relation
 - Cytron et al algorithm takes O(|V| +|DF|) time
 - |DF| can be quadratic in size of CFG
- Faster algorithms
 - O(|V|+|E|) time per variable: see Bilardi and Pingali

<u>Dependences</u>

- We have seen control-dependences.
- What other kind of dependences are there in programs?
 - Data dependences: dependences that arise from reads and writes to memory locations
- Think of these as constraints on reordering of statements

Data dependences

- Flow-dependence (read-after-write): $S1 \rightarrow S2$
 - Execution of S2 may follow execution of S1 in program order
 - S1 may write to a memory location that may be read by
 S2
 - Example:

while e do ...x... x: = ... flow-dependence

This is called a loop-carried dependence

.

Anti-dependences

- Anti-dependence (write-after-read): $S1 \rightarrow S2$
 - Execution of S2 may follow execution of S1 in program order
 - S1 may read from a memory location that may be (over)written by S2
 - Example:

Output-dependence

- Output-dependence (write-after-write):
 S1→S2
 - Execution of S2 may follow execution of S1 in program order
 - S1 and S2 may both write to same memory location

Summary of dependences

- Dependence
 - Data-dependence: relation between nodes
 - Flow- or read-after-write (RAW)
 - Anti- or write-after-read (WAR)
 - Output- or write-after-write (WAW)
 - Control-dependence: relation between nodes and edges