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Abstract. In the compiler literature, parsing algorithms for context-free gram-
mars are presented using string rewriting systems or abstract machines such as
pushdown automata. Unfortunately, the resulting descriptions can be baroque,
and even a basic understanding of some parsing algorithms, such as Earley’s
algorithm for general context-free grammars, can be elusive. In this paper, we
present a graphical representation of context-free grammars called the Grammar
Flow Graph (GFG) that permits parsing problems to be phrased as path problems
in graphs; intuitively, the GFG plays the same role for context-free grammars
that nondeterministic finite-state automata play for regular grammars. We show
that the GFG permits an elementary treatment of Earley’s algorithm that is much
easier to understand than previous descriptions of this algorithm. In addition,
look-ahead computation can be expressed as a simple inter-procedural dataflow
analysis problem, providing an unexpected link between front-end and back-end
technologies in compilers. These results suggest that the GFG can be a new foun-
dation for the study of context-free grammars.

1 Introduction

The development of elegant and practical parsing algorithms for context-free grammars
is one of the major accomplishments of 20th century Computer Science. Two abstrac-
tions are used to present these algorithms: string rewriting systems and pushdown au-
tomata, but the resulting descriptions are unsatisfactory for several reasons.
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– Even an elementary understanding of some grammar classes requires mastering
a formidable number of complex concepts. For example, LR(k) parsing requires
an understanding of rightmost derivations, right sentential forms, viable prefixes,
handles, complete valid items, and conflicts, among other notions.

– Parsing algorithms for different grammar classes are presented using different ab-
stractions; for example, LL grammars are presented using recursive-descent, while
LR grammars are presented using shift-reduce parsers. This obscures connections
between different grammar classes and parsing techniques.

– Although regular grammars are a proper subset of context-free grammars, parsing
algorithms for regular grammars, which are presented using finite-state automata,
appear to be entirely unrelated to parsing algorithms for context-free grammars.

In this paper, we present a novel approach to context-free grammar parsing that is
based on a graphical representation of context-free grammars called the Grammar Flow
Graph(GFG). Intuitively, the GFG plays the same role for context-free grammars that
the nondeterministic finite-state automaton (NFA) does for regular grammars: parsing
problems can be formulated as path problems in the GFG, and parsing algorithms be-
come algorithms for solving these path problems. The GFG simplifies and unifies the
presentation of parsing algorithms for different grammar classes; in addition, finite-
state automata can be seen as an optimization of the GFG for the special case of regular
grammars, providing a pleasing connection between regular and context-free grammars.

Section 2 introduces the GFG, and shows how the GFG for a given context-free
grammar can be constructed in a straight-foward way. Membership of a string in the
language generated by the grammar can be proved by finding what we call a complete
balanced GFG path that generates this string. Since every regular grammar is also a
context-free grammar, a regular grammar has both a GFG and an NFA representation.
In Section 2.4, we establish a connection between these representations: we show that
applying the continuation-passing style (CPS) optimization [13,18] to the GFG of a
right-linear regular grammar produces an NFA that is similar to the NFA produced by
the standard algorithm for converting a right-linear regular grammar to an NFA.

Earley’s algorithm[6] for parsing general context-free grammars is one of the more
complicated parsing algorithms in the literature [1]. The GFG reveals that this algorithm
is a straightforward extension of the well-known “ε-closure” algorithm for simulating
all the moves of an NFA (Section 3). The resulting description is much simpler than
previous descriptions of this algorithm, which are based on dynamic programming,
abstract interpretation, and Galois connections [6,8,5].

Look-ahead is usually presented in the context of particular parsing strategies such
as SLL(1) parsing. In Section 4, we show that the GFG permits look-ahead computa-
tion to be formulated independently of the parsing strategy as a simple inter-procedural
dataflow analysis problem, unifying algorithmic techniques for compiler front-ends and
back-ends. The GFG also enables a simple description of parsers for LL and LR gram-
mars and their sub-classes such as SLL, SLR and LALR grammars, although we do not
discuss this in this paper.

Section 5 describes related work. Structurally, the GFG resembles the recursive
transition network (RTN) [20], which is used in natural language processing and parsers
like ANTLR [10], but there are crucial differences. In particular, the GFG is a single
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graph in which certain paths are of interest, not a collection of recursive state machines
with an operational model like chart parsing for their interpretation. Although motivated
by similar concerns, complete balanced paths are different from CFL-paths [21].

Proofs of the main theorems are given in the appendix.

2 Grammar Flow Graph (GFG) and complete balanced paths

A context-free grammar Γ is a 4-tuple <N,T, P, S> where N is a finite set of non-
terminals, T is a finite set of terminals, P ⊆ N × (N ∪ T )∗ is the set of productions,
and S ∈ N is the start symbol. To simplify the development, we make the following
standard assumptions about Γ throughout this paper.

– A1: S does not appear on the righthand side of any production.
– A2: Every non-terminal is used in a derivation of some string of terminals from S

(no useless non-terminals [1]).

Any grammar Γ ′ can be transformed in time O(|Γ ′|) into an equivalent grammar Γ
satisfying the above assumptions [17]. The running example in this paper is this gram-
mar: E→int|(E + E)|E + E. An equivalent grammar is shown in Figure 1, where the
production S→E has been added to comply with A1.

2.1 Grammar flow graph (GFG)

Figure 1 shows the GFG for the expression grammar. Some edges are labeled explicitly
with terminal symbols, and the others are implicitly labeled with ε. The GFG can be
understood by analogy with inter-procedural control-flow graphs: each production is
represented by a “procedure” whose control-flow graph represents the righthand side
of that production, and a non-terminal A is represented by a pair of nodes •A and A•,
called the start and end nodes for A, that gather together the control-flow graphs for
the productions of that non-terminal. An occurrence of a non-terminal in the righthand
side of a production is treated as an invocation of that non-terminal.

The control-flow graph for a production A→u1u2..ur has r+1 nodes. As in finite-
state automata, node labels in a GFG do not play a role in parsing and can be chosen ar-
bitrarily, but it is convenient to label these nodes A→•u1u2..ur through A→u1u2..ur•;
intuitively, the • indicates how far parsing has progressed through a production (these la-
bels are related to items [1]). The first and last nodes in this sequence are called the entry
and exit nodes for that production. If ui is a terminal, there is a scan edge with that label
from the scan node A→u1..ui−1•ui..ur to node A→u1..ui•ui+1..ur, just as in finite-
state automata. If ui is a non-terminal, it is considered to be an “invocation” of that
non-terminal, so there are call and return edges that connect nodesA→u1..ui−1•ui..ur
to the start node of non-terminal ui and its end node to A→u1..ui•ui+1..ur.

Formally, the GFG for a grammar Γ is denoted by GFG(Γ ) and it is defined as
shown in Definition 1. It is easy to construct the GFG for a grammar Γ in O(|Γ |) time
and space using Definition 1.

Definition 1. If Γ=<N,T, P, S> is a context-free grammar, G = GFG(Γ ) is the
smallest directed graph (V (Γ ), E(Γ )) that satisfies the following properties.
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Fig. 1. Grammar Flow Graph example

� For each non-terminal A ∈ N , V (Γ ) contains nodes labeled •A and A•, called the
start and end nodes respectively for A.

� For each productionA→ε, V (Γ ) contains a node labeledA→•, andE(Γ ) contains
edges (•A,A→•), and (A→•, A•).

� For each production A→u1u2...ur
• V (Γ ) contains (r+1) nodes labeledA→•u1...ur,A→u1•...ur, ...,A→u1...ur•,
• E(Γ ) contains entry edge (•A,A→•u1...ur), and exit edge (A→u1...ur•, A•),
• for each ui ∈ T , E(Γ ) contains a scan edge
(A→u1...ui−1•ui..ur, A→u1...ui•ui+1..ur) labeled ui,
• for each ui ∈ N , E(Γ ) contains a call edge (A→u1...ui−1•ui...ur, •ui) and

a return edge (ui•, A→u1...ui•ui+1...ur).
Node A→u1...ui−1•ui...ur is a call node, and matches the return node
A→u1...ui•ui+1...ur.

� Edges other than scan edges are labeled with ε.

When the grammar is obvious from the context, a GFG will be denoted byG=(V,E).
Note that start and end nodes are the only nodes that can have a fan-out greater than
one. This fact will be important when we interpret the GFG as a nondeterministic au-
tomaton in Section 2.3.
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Node type Description
start Node labeled •A
end Node labeled A•
call Node labeled A→α•Bγ
return Node labeled A→αB•γ
entry Node labeled A→•α
exit Node labeled A→α•
scan Node labeled A→α•tγ

Table 1. Classification of GFG nodes: a node can belong to several categories. (A,B ∈ N ,
t ∈ T , and α, γ ∈ (T +N)∗)

2.2 Balanced paths

The following definition is standard.

Definition 2. A path in a GFGG=(V,E) is a non-empty sequence of nodes v0, . . . , vl,
such that (v0, v1), (v1, v2), ..., (vl−1, vl) are all edges in E.

In a given GFG, the notation v1 v2 denotes the edge from v1 to v2, and the notation
v1 ∗vn denotes a path from v1 to vn; the symbol “→” is reserved for productions and
derivations. If Q1:v1 ∗vm and Q2:vm ∗vr are paths in a GFG, the notation Q1+Q2

denotes the concatenation of paths Q1 and Q2. In this spirit, we denote string concate-
nation by + as well. It is convenient to define the following terms to talk about certain
paths of interest in the GFG.

Definition 3. A complete path in a GFG is a path whose first node is •S and whose last
node is S•.

A path is said to generate the word w resulting from the concatenation of the labels
on its sequence of edges. By convention, w = ε for a path with a single node.

The GFG can be viewed as a nondeterministic finite-state automaton (NFA) whose
start state is •S, whose accepting state is S•, and which makes nondeterministic choices
at start and end nodes that have a fan-out more than one. Each complete GFG path
generates a word in the regular language recognized by this NFA. In Figure 1, the path
Q: •S  S→•E  •E  E→•(E + E)  E→(•E + E)  •E  E→•int  
E→int• E• S→E• S• generates the string ”( int”. However, this string is not
generated by the context-free grammar from which this GFG was constructed.

To interpret the GFG as the representation of a context-free grammar, it is necessary
to restrict the paths that can be followed by the automaton. Going back to the intuition
that the GFG is similar to an inter-procedural call graph, we see that Q is not an inter-
procedurally valid path [14]: at E•, it is necessary to take the return edge to node
E→(E•+E) since the call of E that is being completed was made at node E→(•E +
E). In general, the automaton can make a free choice at start nodes just like an NFA,
but at end nodes, the return edge to be taken is determined by the call that is being
completed.

The paths the automaton is allowed to follow are called complete balanced paths
in this paper. Intuitively, if we consider matching call and return nodes to be opening
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and closing parentheses respectively of a unique color, the parentheses on a complete
balanced path must be properly nested [4]. In the formal definition below, if K is a se-
quence of nodes, we let v,K,w represent the sequence of nodes obtained by prepending
node v and appending node w to K.

Definition 4. Given a GFG for a grammar Γ=<N,T, P, S>, the set of balanced se-
quences of call and return nodes is the smallest set of sequences of call and return
nodes that is closed under the following conditions.

– The empty sequence is balanced.
– The sequence (A→α•Bγ),K, (A→αB•γ) is balanced ifK is a balanced sequence,

and production (A→αBγ) ∈ P .
– The concatenation of two balanced sequences v1...vf and y1...ys is balanced if
vf 6= y1. If vf = y1, the sequence v1...vfy2...ys is balanced.

This definition is essentially the same as the standard definition of balanced se-
quences of parentheses; the only difference is the case of vf = y1 in the last clause,
which arises because a node of the form A→αX•Y β is both a return node and a call
node.

Definition 5. A GFG path v0  ∗ vl is said to be a balanced path if its subsequence of
call and return nodes is balanced.

Theorem 1. If Γ=<N,T, P, S> is a context-free grammar and w ∈ T ∗, w is in the
language generated by Γ iff it is generated by a complete balanced path in GFG(Γ ).

Proof. This is a special case of Theorem 4 in the Appendix.

Therefore, the parsing problem for a context-free grammar Γ can be framed in
GFG terms as follows: given a string w, determine if there are complete balanced paths
in GFG(Γ ) that generate w (recognition), and if so, produce a representation of these
paths (parsing). If the grammar is unambiguous, each string in the language is generated
by exactly one such path.

The parsing techniques considered in this paper read the input string w from left to
right one symbol at a time, and determine reachability along certain paths starting at
•S. These paths are always prefixes of complete balanced paths, and if a prefix u of w
has been read up to that point, all these paths generate u. For the technical development,
similar paths are needed even though they begin at nodes other than •S. Intuitively, these
call-return paths (CR-paths for short) are just segments of complete balanced paths;
they may contain unmatched call and return nodes, but they do not have mismatched
call and return nodes, so they can always be extended to complete balanced paths.

Definition 6. Given a GFG, a CR-sequence is a sequence of call and return nodes
that does not contain a subsequence vc,K, vr where vc ∈ call, K is balanced, vr ∈
return, and vc and vr are not matched.

Definition 7. A GFG path is said to be a CR-path if its subsequence of call and return
nodes is a CR-sequence.

Unless otherwise specified, the origin of a CR-path will be assumed to be •S, the
case that arises most frequently.
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2.3 Nondeterministic GFG automaton (NGA)

NGA configuration (PC × C ×K), where:

Program counter PC ∈ V (Γ ) (a state of the finite control)
Partially-read input strings C ∈ T ∗ × T ∗
(C = (u, v), where prefix u of input string w = uv has been read)
Stack of return nodes K ∈ VR(Γ )

∗, where VR(Γ ) is the set of return nodes

Initial Configuration: <•S, [ ], •w>
Accepting configuration: <S•, [ ], w•>

Transition function:

CALL <A→α•Bγ,C,K> 7−→ <•B,C, (A→αB•γ,K)>

START <•B,C,K> 7−→ <B→•β,C,K> (nondeterministic choice)

EXIT <B→β•, C,K> 7−→ <B•, C,K>

END <B•, C, (A→αB•γ,K)> 7−→ <A→αB•γ,C,K>

SCAN <A→α•tγ, u•tv,K> 7−→ <A→αt•γ, ut•v,K>

Fig. 2. Nondeterministic GFG Automaton (NGA)

Figure 2 specifies a push down automaton (PDA), called the nondeterministic GFG
automaton (NGA), that traverses complete balanced paths in a GFG under the control of
the input string. To match call’s with return’s, it uses a stack of “return addresses” as is
done in implementations of procedural languages. The configuration of the automaton is
a three-tuple consisting of the GFG node where the automaton currently is (this is called
the PC), a stack of return nodes, and the partially read input string. The symbol 7−→
denotes a state transition.

The NGA begins at •S with the empty stack. At a call node, it pushes the matching
return node on the stack. At a start node, it chooses the production nondeterministi-
cally. At an end node, it pops a return node from the stack and continues the traversal
from there. If the input string is in the language generated by the grammar, the automa-
ton will reach S• with the empty stack (the end rule cannot fire at S• because the stack
is empty). We will call this a nondeterministic GFG automaton or NGA for short. It is
a special kind of pushdown automaton (PDA). It is not difficult to prove that the NGA
accepts exactly those strings that can be generated by some complete balanced path in
GFG(Γ ) whence, by Theorem 1, the NGA accepts the language of Γ . (Technically,
acceptance is by final state [9], but it is easily shown that the final state S• can only be
reached with an empty stack.)

The nondeterminism in the NGA is called globally angelic nondeterminism [3] be-
cause the nondeterministic transitions at start nodes have to ensure that the NGA ul-
timately reaches S• if the string is in the language generated by the grammar. The
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recognition algorithms described in this paper are concerned with deterministic imple-
mentations of the globally angelic nondeterminism in the NGA.

2.4 Relationship between NFA and GFG for regular grammars

Every regular grammar is also a context-free grammar, so a regular grammar has two
graphical representations, an NFA and a GFG. A natural question is whether there is a
connection between these graphs. We show that applying the continuation-passing style
(CPS) optimization [13,18] to the NGA of a context-free grammar that is a right-linear
regular grammar3 produces an NFA for that grammar.

For any context-free grammar, consider a productionA→αB in which the last sym-
bol on the righthand side is a non-terminal. The canonical NGA in Figure 2 will push
the return node A→αB• before invoking B, but after returning to this exit node, the
NGA just transitions to A• and pops the return node for the invocation of A. Had a
return address not been pushed when the call to B was made, the NGA would still rec-
ognize the input string correctly because when the invocation ofB completes, the NGA
would pop the return stack and transition directly to the return node for the invocation
of A. This optimization is similar to the continuation-passing style (CPS) transforma-
tion, which is used in programming language implementations to convert tail-recursion
to iteration.

To implement the CPS optimization in the context of the GFG, it is useful to intro-
duce a new type of node called a no-op node, which represents a node at which the NGA
does nothing other than to transition to the successor of that node. If a production for a
non-terminal other than S ends with a non-terminal, the corresponding call is replaced
with a no-op node; since the NGA will never come back to the corresponding return
node, this node can be replaced with a no-op node as well. For a right-linear regular
grammar, there are no call or return nodes in the optimized GFG. The resulting GFG
is just an NFA, and it is a variation of the NFA that is produced by using the standard
algorithms for producing an NFA from a right-linear regular grammar [9].

3 Parsing of general context-free grammars

General context-free grammars can be parsed using an algorithm due to Earley [6].
Described using derivations, the algorithm is not very intuitive and seems unrelated
to other parsing algorithms. For example, the monograph on parsing by Sippu and
Soisalon-Soininen [17] omits it, Grune and Jacobs’ book describes it as “top-down
restricted breadth-first bottom-up parsing” [8], and the “Dragon book” [1] mentions it
only in the bibliography as “a complex, general-purpose algorithm due to Earley that
tabulates LR-items for each substring of the input.” Cousot and Cousot use Galois con-
nections between lattices to show that Earley’s algorithm is an abstract interpretation of
a refinement of the derivation semantics of context-free grammars [5].

In contrast to these complicated narratives, a remarkably simple interpretation of
Earley’s algorithm emerges when it is viewed in terms of the GFG: Earley’s algorithm

3 A right-linear regular grammar is a regular grammar in which the righthand side of a produc-
tion consists of a string of zero or more terminals followed by at most one non-terminal.
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Fig. 3. Earley parser: example.

is the context-free grammar analog of the well-known simulation algorithm for non-
deterministic finite-state automata (NFA) [1]. While the latter tracks reachability along
prefixes of complete paths, the former tracks reachability along prefixes of complete
balanced paths.

3.1 NFA simulation algorithm

As a step towards Earley’s algorithm, consider interpreting the GFG as an NFA (so non-
deterministic choices are permitted at both start and end nodes). The NFA simulation
on a given an input word w[1..n] can be viewed as the construction of a sequence of
node sets Σ0, ..., Σn. Here, Σ0 is the ε-closure of {•S}. For i = 1, . . . , n, set Σi is the
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(a) NFA Simulation of GFG

Sets of GFG nodes Σ: P(V (Γ ))
Partially-read input strings C : T ∗ × T ∗
Recognizer configurations (Σ × C)+

Acceptance: S• ∈ Σ|w|

INIT
(•S ∈ Σ0) ∧ (C0 = •w)

CALL
A→α•Bγ ∈ Σj

•B ∈ Σj

START
•B ∈ Σj

B→•β ∈ Σj

EXIT
B→β• ∈ Σj

B• ∈ Σj

END
B• ∈ Σj

A→αB•γ ∈ Σj

SCAN
A→α•tγ ∈ Σj Cj = u•tv

(A→αt•γ ∈ Σj+1) ∧ (Cj+1 = ut•v)

(b) Earley recognizer

Non-negative integers:N
Sets of tagged GFG nodes Σ: P(V (Γ )×N )
Partially-read input strings C : T ∗ × T ∗
Recognizer configurations (Σ × C)+

Acceptance: <S•, 0> ∈ Σ|w|

INIT
(<•S, 0> ∈ Σ0) ∧ (C0 = •w)

CALL
<A→α•Bγ, i> ∈ Σj

<•B, j> ∈ Σj

START
<•B, j> ∈ Σj

<B→•β, j> ∈ Σj

EXIT
<B→β•, k> ∈ Σj

<B•, k> ∈ Σj

END
<B•, k> ∈ Σj <A→α•Bγ, i> ∈ Σk

<A→αB•γ, i> ∈ Σj

SCAN
<A→α•tγ, i> ∈ Σj Cj = u•tv

(<A→αt•γ, i> ∈ Σj+1) ∧ (Cj+1 = ut•v)

(c) Earley parser

Non-negative integers:N
Program counter PC: V (Γ )×N
Stack of call nodes K: VR(Γ )

∗

Parser configurations: (PC ×N ×K)
Acceptance: final configuration is <<•S, 0>, 0, [ ]>

INIT <<S•, 0>, |w|, [ ]>

CALL−1 <<•B, j>, j, (<A→α•Bγ, i>,K)> 7−→ <<A→α•Bγ, i>, j,K>

START−1 <<B→•β, j>, j,K> 7−→ <<•B, j>, j,K>

EXIT−1 <<B•, k>, j,K> 7−→ <<B→β•, k>, j,K>

if (<B→β•, k>∈Σj)(non−determinism)

END−1 <<A→αB•γ, i>, j,K> 7−→ <<B•, k>, j, (<A→α•Bγ, i>,K)>

if (<B•, k>∈Σj and <A→α•Bγ, i>∈Σk)(non−determinism)

SCAN−1 <<A→αt•γ, i>, (j + 1),K> 7−→ <<A→α•tγ, i>, j,K>

Fig. 4. NFA, Earley recognizer, and Earley parser: input word is w
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ε-closure of the set of nodes reachable from nodes in Σi−1 by scan edges labeled w[i].
The string w is in the language recognized by the NFA if and only if S• ∈ Σn.

Figure 3(a) shows the GFG of Figure 1, but with simple node labels. Figure 3(b)
illustrates the behavior of the NFA simulation algorithm for the input string “7+8+9”.
Each Σi is associated with a terminal string pair Ci=u.v, which indicates that prefix u
of the input string w = uv has been read up to that point.

The behavior of this NFA ε-closure algorithm on a GFG is described concisely by
the rules shown in Figure 4(a). Each rule is an inference rule or constraint; in some
rules, the premises have multiple consequents. It is straightforward to use these rules
to compute the smallest Σ-sets that satisfy all the constraints. The INIT rule enters •S
into Σ0. Each of the other rules is associated with traversing a GFG edge from the node
in its assumption to the node in its consequence. Thus, the CALL, START, END, and
EXIT rules compute the ε-closure of a Σ-set; notice that the END rule is applied to all
outgoing edges from END nodes.

3.2 Earley’s algorithm

Like the NFA ε-closure algorithm, Earley’s algorithm builds Σ sets, but it computes
reachability only along CR-paths starting at •S. Therefore, the main difference between
the two algorithms is at end nodes: a CR-path that reaches an end node should be
extended only to the return node corresponding to the last unmatched call node on
that path.

One way to find this call node is to tag each start node with a unique ID (tag)
when it is entered into a Σ-set, and propagate this tag through the nodes of productions
for this non-terminal all the way to the end node. At the end node, this unique ID can
be used to identify the Σ-set containing corresponding start node. The last unmatched
call node on the path must be contained in that set as well, and from that node, the
return node to which the path should be extended can easily be determined.

To implement the tag, it is simple to use the number of the Σ-set to which the start
node is added, as shown in Figure 4(b). When the CALL rule enters a start node into
a Σ set, the tag assigned to this node is the number of that Σ set. The END rule is
the only rule that actually uses tags; all other rules propagate tags. If <B•, k> ∈ Σj ,
then the matching start and call nodes are in Σk, so Σk is examined to determine
which of the immediate predecessors of node •B occur in this set. These must be call
nodes of the formA→α•Bγ, so the matching return nodesA→αB•γ are added toΣj
with the tags of the corresponding call nodes. For a given grammar, this can easily be
done in time constant with respect to the length of the input string. A string is in the
language recognized by the GFG iff Σn contains <S•, 0>. Figure 3(c) shows the Σ
sets computed by the Earley algorithm for the input string “7+8+9”.

We discuss a small detail in using the rules of Figures 4(a,b) to construct Σ-sets for
a given GFG and input word. The existence of a unique smallest sequence ofΣ-sets can
be proved in many ways, such as by observing that the rules have the diamond property
and are strongly normalizing [19]. A canonical order of rule application for the NFA
rules is the following. We give a unique number to each GFG edge, and associate the
index 〈j,m〉 with a rule instance that corresponds to traversing edge m and adding the
destination node to Σj ; the scheduler always pick the rule instance with the smallest
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index. This order completes the Σ sets in sequence, but many other orders are possible.
The same order can be used for the rules in Figure 4(b) except that for the END rule,
we use the number on the edge (B•, A→ αB•γ).

Correctness of the rules of Figure 4(b) follows from Theorem 2.

Theorem 2. For a grammar Γ=<N,T, P, S> and an input word w,< S•, 0 >∈ Σ|w|
iff w is a word generated by grammar Γ .

Proof. See Section A.2.

The proof of Theorem 2 shows the following result, which is useful as a charac-
terization of the contents of Σ sets. Let w[i..j] denote the substring of input w from
position i to position j inclusive if i ≤ j, and let it denote ε if i > j. It is shown that
<A→α•β, i> ∈ Σj iff there is a CR-path P : •S  ∗ •A ∗ (A→ α•β) such that

1. •S  ∗ •A generates w[1..i], and
2. •A ∗ (A→ α•β) is balanced and generates w[(i+ 1)..j].

Like the NFA algorithm, Earley’s algorithm determines reachability along certain
paths but does not represent paths explicitly. Both algorithms permit such implicitly
maintained paths to share “sub-paths”: in Figure 3(c), E• in Σ1 is reached by two CR-
paths, Q1: (•S  p  •E  g  h  E•), and Q2: (•S  p  •E  i  
•E  g  h  E•), and they share the sub-path (•E  g  h  E•). This path
sharing permits Earley’s algorithm to run inO(|w|3) time for any grammar (improved to
O(|w|3/log|w|) by Graham et al [7]), andO(|w|2) time for any unambiguous grammar,
as we show in Theorem 3.

Theorem 3. For a given GFG G = (V,E) and input word w, Earley’s algorithm re-
quires O(|w|2) space and O(|w|3) time. If the grammar is unambiguous, the time com-
plexity is reduced to O(|w|2).

Proof. See Section A.2

Earley parser The rules in Figure 4(b) define a recognizer. To get a parser, we need a
way to enumerate a representation of the parse tree, such as a complete, balanced GFG
path, from the Σ sets; if the grammar is ambiguous, there may be multiple complete,
balanced paths that generate the input word.

Figure 4(c) shows a state transition system that constructs such a path in reverse;
if there are multiple paths that generate the string, one of these paths is reconstructed
non-deterministically. The parser starts with the entry <S•, 0> in the last Σ set, and
reconstructs in reverse the inference chain that produced it from the entry <•S, 0> in
Σ0; intuitively, it traverses the GFG in reverse from S• to •S, using the Σ set entries to
guide the traversal. Like the NGA, it maintains a stack, but it pushes the matching call
node when it traverses a return node, and pops the stack at a start node to determine
how to continue the traversal.

The state of the parser is a three-tuple: a Σ set entry, the number of that Σ set, and
the stack. The parser begins at <S•, 0> in Σn and an empty stack. It terminates when
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it reaches<•S, 0> inΣ0. The sequence of GFG nodes in the reverse path can be output
during the execution of the transitions. It is easy to output other representations of parse
trees if needed; for example, the parse tree can be produced in reverse post-order by
outputting the terminal symbol or production name whenever a scan edge or exit node
respectively is traversed in reverse by the parser.

To eliminate the need to look up Σ sets for the EXIT−1 and END−1 rules, the rec-
ognizer can save information relevant for the parser in a data structure associated with
each Σ set. This data structure is a relation between the consequent and the premise(s)
of each rule application; given a consequent, it returns the premise(s) that produced that
consequent during recognition. If the grammar is ambiguous, there may be multiple
premise(s) that produced a given consequent, and the data structure returns one of them
non-deterministically. By enumerating these non-deterministic choices, it is possible to
enumerate different parse trees for the given input string. Note that if the grammar is
cyclic (that is, A +→ A for some non-terminal A), there may be an infinite number of
parse trees for some strings.

3.3 Discussion

In Earley’s paper, the call and start rules were combined into a single rule called
prediction, and the exit and end rules were combined into a single rule called comple-
tion [6]. Aycock and Horspool pre-compute some of the contents of Σ-sets to improve
the running time in practice [2].

Erasing tags from the rules in Figure 4(b) for the Earley recognizer produces the
rules for the NFA ε-closure algorithm in Figure4(a). The only nontrivial erasure is for
the end rule: k, the tag of the tuple<B•, k>, becomes undefined when tags are deleted,
so the antecedent <A→α•Bγ, i> ∈ Σk for this rule is erased. Erasure of tags demon-
strates lucidly the close and previously unknown connection between the NFA ε-closure
algorithm and Earley’s algorithm.

4 Preprocessing the GFG: look-ahead

Preprocessing the GFG is useful when many strings have to be parsed since the invest-
ment in preprocessing time and space is amortized over the parsing of multiple strings.
Look-ahead computation is a form of preprocessing that permits pruning of the set of
paths that need to be explored for a given input string.

Given a CR-path Q: •S  ∗ v which generates a string of terminals u, consider the
set of all strings of k terminals that can be encountered along any CR extension of Q.
When parsing a string u`z with ` ∈ T k, extensions of path Q can be safely ignored if `
does not belong to this set. We call this set the context-dependent look-ahead set at v for
path Q, which we will write as CDLk(Q) (in the literature on program optimization,
Q is called the calling context for its last node v). LL(k) and LR(k) parsers use context-
dependent look-ahead sets.

We note that for pruning paths, it is safe to use any superset of CDLk(Q): larger
supersets may be easier to compute off-line, possibly at the price of less pruning on-
line. In this spirit, a widely used superset is FOLLOWk(v), associated with GFG node
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v, which we call the context-independent look-ahead set. It is the union of the sets
CDLk(Q), over all CR-paths Q: •S  ∗ v. Context-independent look-ahead is used
by SLL(k) and SLR(k) parsers. It has also been used to enhance Earley’s algorithm.
Look-ahead sets intermediate between CDLk(Q) and FOLLOWk(v) have also been
exploited, for example in LALR(k) and LALL(k) parsers [17].

The presentation of look-ahead computations algorithms is simplified if, at every
stage of parsing, there is always a string ` of k symbols that has not yet been read. This
can be accomplished by (i) padding the input string w with k $ symbols to form w$k,
where $ /∈ (T +N) and (ii) replacing Γ=<N,T, P, S>, with the augmented grammar
Γ ′= <N ′=N ∪ {S′}, T ′=T ∪ {$}, P ′=P ∪ {S′→S$k}, S′>.

Figure 5(a) shows an example using a stylized GFG, with node labels omitted for
brevity. The set FOLLOW2(v) is shown in braces next to node v. If the word to be
parsed is ybc, the parser can see that yb /∈ FOLLOW2(v) for v = S→•yLab, so it can
avoid exploration downstream of that node.

The influence of context is illustrated for node v = L→•a, in Figure 5(a). Since the
end node L• is reached before two terminal symbols are encountered, it is necessary to
look beyond node L•, but the path relevant to look-ahead depends on the path that was
taken to node •L. If the path taken wasQ: •S′  ∗ (S→y•Lab) (•L) L→•a, then
relevant path for look-ahead is L• (S→yL•ab) ∗ S′•, so that CDL2(Q) = {aa}.
If the path taken was R: •S′  ∗ (S→y•Lbc) (•L) L→•a, then the relevant path
for look-ahead is (L•) (S→yL•bc) ∗ S′•, and CDL2(R) = {ab}.

We define these concepts formally next.

Definition 8. Context-dependent look-ahead: If v is a node in the GFG of an aug-
mented grammar Γ ′=<N ′, T ′, P ′, S′>, the context-dependent look-ahead CDLk(Q)
for a CR-path Q: •S′  ∗ v is the set of all k-prefixes of strings generated by paths
Qs : v  ∗ S′• where Q+Qs is a complete CR-path.

Definition 9. Context-independent look-ahead: If v is a node in the GFG for an aug-
mented grammar Γ ′=<N ′, T ′, P ′, S′>, FOLLOWk(v) is the set of all k-prefixes of
strings generated by CR-paths v  ∗ S′•.

As customary, we letFOLLOWk(A) andFOLLOW (A) respectively denoteFOLLOWk(A•)
and FOLLOW1(A•).

The rest of this section is devoted to the computation of look-ahead sets. It is con-
venient to introduce the function s1 +k s2 of strings s1 and s2, which returns their
concatenation truncated to k symbols. In Definition 10, this operation is lifted to sets of
strings.

Definition 10. Let T ∗ denote the set of strings of symbols from alphabet T .

– For E ⊆ T ∗, (E)k is set of k-prefixes of strings in E.
– For E,F ∈ T ∗, E +k F = (E + F )k.

IfE={ε, t, tu, abc} andF={ε, x, xy, xya}, (E)2={ε, t, tu, ab} and (F )2={ε, x, xy}.
E +2 F=(E + F )2={ε, x, xy, t, tx, tu, ab}. Lemma 1(a) says that concatenation fol-
lowed by truncation is equivalent to “pre-truncation” followed by concatenation and
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Fig. 5. Look-head computation example
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truncation; this permits look-ahead computation algorithms to work with strings of
length at most k throughout the computation rather than with strings of unbounded
length truncated to k only at the end.

Lemma 1. Function +k has the following properties.

(a) E +k F = (E)k +k (F )k.
(b) +k is associative and distributes over set union.

4.1 Context-independent look-ahead

FOLLOWk(v) can be computed by exploring CR-paths from v to S′•. However, for
the “bulk” problem of computing these sets for many GFG nodes, such as all entry
nodes in a GFG, coordination of path explorations at different nodes can yield greater
efficiency.

Although we do not use this approach directly, the GFG permits FOLLOWk com-
putation to be viewed as an inter-procedural backward dataflow analysis problem [14].
Dataflow facts are possible FOLLOWk sets, which are the subsets of T k, and which
form a finite lattice under subset ordering (the empty set is the least element). For an
edge e with label t, the dataflow transfer function Fe(X) is {t}+k X (for ε edges, this
reduces to the identity function as expected). For a path Q with edges labeled t1, ...tn,
the composite transfer function is ({t1} +k ({t2} +k ...({tn} +k X)), which can be
written as ({t1}+k {t2}+k ...{tn}) +k X because +k is associative. If we denote the
k-prefix of the terminal string generated by Q by FIRSTk(Q), the composite trans-
fer function for a path Q is FIRSTk(Q) +k X . The confluence operator is set union.
To ensure that dataflow information is propagated only along (reverse) CR-paths, it is
necessary to find inter-procedural summary functions that permit look-ahead sets to be
propagated directly from a return node to its matching call node. These summary func-
tions are hard to compute for most dataflow problems but this is easy for FOLLOWk

computation because the lattice L is finite, the transfer functions distribute over set
union, and the +k operation is associative. For a non-terminal A, the summary function
is FA(X) = FIRSTk(A) +k X , where FIRSTk(A) is the set of k-prefixes of termi-
nal strings generated by balanced paths from •A to A•. The FIRSTk relation can be
computed efficiently as described in Section 4.1. This permits the use of the functional
approach to inter-procedural dataflow analysis [14] to solve the FOLLOWk computa-
tion problem (the development below does not rely on any results from this framework).

FIRSTk computation For Γ=<N,T, P, S>, FIRSTk(A) for A ∈ N is defined
canonically as the set of k-prefixes of terminal strings derived from A [17]. This is
equivalent to the following, as we show in Theorem 4.

Definition 11. Given a grammar Γ=<N,T, P, S>, a positive integer k and A ∈ N ,
FIRSTk(A) is the set of k-prefixes of terminal strings generated by balanced paths
from •A to A•.

Following convention, we write FIRST (A) to mean FIRST1(A).
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Definition 12. FIRSTk is extended to a string u1u2...un ∈ (N ∪ T )∗ as follows.

FIRSTk(ε) = {ε}
FIRSTk(t ∈ T ) = {t}
FIRSTk(u1u2...un) = FIRSTk(u1) +k ...+k FIRSTk(un)

FIRSTk sets for non-terminals can be computed as the least solution of a system
of equations derived from the grammar.

Algorithm 1 For Γ=<N,T, P, S> and positive integer k, letM be the finite lattice
whose elements are sets of terminal strings of length at most k, ordered by containment
with the empty set being the least element. The FIRSTk sets for the non-terminals are
given by the least solution inM of this equational system:

∀A ∈ N FIRSTk(A) =
⋃
A→α

FIRSTk(α)

Figure 5(a) shows an example.

FOLLOWk computation

Algorithm 2 Given an augmented grammar Γ ′=<N ′, T ′, P ′, S′> and positive inte-
ger k, let L be the lattice whose elements are sets of terminal strings of length k, or-
dered by containment with the empty set being the least element. The FOLLOWk sets
for non-terminals other than S′ are given by the least solution of this equational system:

FOLLOWk(S) = {$k}

∀B ∈ N − {S, S′}.FOLLOWk(B) =
⋃

A→αBγ
FIRSTk(γ) +k FOLLOWk(A)

Given FOLLOWk sets for non-terminals, FOLLOWk sets at all GFG nodes are
computed by interpolation:
FOLLOWk(A→α•β) = FIRSTk(β) +k FOLLOWk(A).

Figure 5(a) shows an example. M occurs in three places on the righthand sides of
the grammar productions, so the righthand side of the equation for FOLLOWk(M)
is the union of three sets: the first from S→M•, the second from M→M•M , and the
third from M→MM•.

Using context-independent look-ahead in the Earley parser Some implementations
of Earley’s parser use a context-independent look-ahead of one symbol at start nodes
and end nodes (this is called prediction look-ahead and completion look-ahead respec-
tively) [6]. The practical benefit of using look-ahead in the Earley parser has been de-
bated in the literature. The implementation of Graham et al does not use look-ahead [7];
other studies argue that some benefits accrue from using prediction look-ahead [8]. Pre-
diction look-ahead is implemented by modifying the START rule in Figure 4(b):the
production B→β is explored only if β might produce the empty string or a string that
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starts with the first look-ahead symbol. For this, the following formula is added to the
antecedents of the START rule: (ε ∈ FIRST (β)) ∨ (Cj = u.tv ∧ t ∈ FIRST (β)).

Completion look-ahead requires adding the following check to the antecedents of
the END rule in Figure 4(b):
(Cj = u.tv) ∧ (t ∈ FIRST (γ) ∨ (ε ∈ FIRST (γ) ∧ t ∈ FOLLOW (A))).

4.2 Context-dependent look-ahead

LL(k) and LR(k) parsers use context-dependent k-look-ahead. As one would expect, ex-
ploiting context enables a parser to rule out more paths than if it uses context-independent
look-ahead. One way to implement context-dependent look-ahead for a grammar Γ is
to reduce it to the problem of computing context-independent look-ahead for a related
grammar Γ c through an operation similar to procedure cloning.

In general, cloning a non-terminal A in a grammar Γ creates a new grammar in
which (i) non-terminalA is replaced by some number of new non-terminalsA1,A2,...Ac
(c ≥ 2) with the same productions as A, and (ii) all occurrences of A in the righthand
sides of productions are replaced by some Aj (1 ≤ j ≤ c). Figure 5(b) shows the result
of cloning non-terminal L in the grammar of Figure 5(a) into two new non-terminals
L1, L2. Cloning obviously does not change the language recognized by the grammar.

The intuitive idea behind the use of cloning to implement context-dependent look-
ahead is to create a cloned grammar that has a copy of each production in Γ for each
context in which that production may be invoked, so as to “de-alias” look-ahead sets.
In general, it is infeasible to clone a non-terminal for every one of its calling contexts,
which can be infinitely many. Fortunately, contexts with the same look-ahead set can be
represented by the same clone. Therefore, the number of necessary clones is bounded by
the number of possible k-look-ahead sets for a node, which is 2|T |

k

. Since this number
grows rapidly with k, cloning is practical only for small values of k, but the principle is
clear.

Algorithm 3 Given an augmented grammar Γ ′=(N ′, T ′, P ′, S′), and a positive inte-
ger k, Tk(Γ ′) is following grammar:

– Nonterminals: {S′} ∪ {[A,R]|A ∈ (N ′−S′), R ⊆ T ′k}
– Terminals: T’
– Start symbol: S′

– Productions:
• S′→α where S′→α ∈ Γ ′
• all productions [A,R]→Y1Y2...Ym where for some A→X1X2X3...Xm ∈ P ′
Yi = Xi if Xi is a terminal, and
Yi = [Xi, F IRSTk(Xi+1...Xm) +k R] otherwise.

Therefore, to convert the context-dependent look-ahead problem to the context-
independent problem, cloning is performed as follows. For a given k, each non-terminal
A in the original grammar is replaced by a set of non-terminals [A,R] for everyR ⊆ T k
(intuitively, R will end up being the context-independent look-ahead at [A,R]• in the
cloned grammar). The look-ahead R is then interpolated into each production of A to
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determine the new productions as shown in Algorithm 3.Figure 5(b) shows the result
of full 2-look-ahead cloning of the grammar in Figure 5(a) after useless non-terminals
have been removed.

5 Related work

The connection between context-free grammars and procedure call/return in program-
ming languages was made in the early 1960’s when the first recursive-descent parsers
were developed. The approach taken in this paper is to formulate parsing problems as
path problems in the GFG, and the procedure call/return mechanism is used only to
build intuition.

In 1970, Woods defined a generalization of finite-state automata called recursive
transition networks (RTNs) [20]. Perlin defines an RTN as “..a forest of disconnected
transition networks, each identified by a nonterminal label. All other labels are terminal
labels. When, in traversing a transition network, a nonterminal label is encountered,
control recursively passes to the beginning of the correspondingly labeled transition
network. Should this labeled network be successfully traversed, on exit, control returns
back to the labeled calling node” [12]. The RTN was the first graphical representation
of context-free grammars, and all subsequent graphical representations including the
GFG are variations on this theme. Notation similar to GFG start and end nodes was
first introduced by Graham et al in their study of the Earley parser [7]. The RTN with
this extension is used in the ANTLR system for LL(*) grammars [10].

The key difference between RTNs and GFGs is in the interpretation of the graphical
representation. An interpretation based on a single locus of control that flows between
productions is adequate for SLL(k)/LL(k)/LL(*) languages but inadequate for handling
more general grammars for which multiple paths through the GFG must be followed, so
some notion of multiple threads of control needs to be added to the basic interpretation
of the RTN. For example, Perlin models LR grammars using a chart parsing strategy in
which portions of the transition network are copied dynamically [12]. In contrast, the
GFG is a single graph, and all parsing problems are formulated as path problems in this
graph; there is no operational notion of a locus of control that is transferred between
productions. In particular, the similarity between Earley’s algorithm and the NFA sim-
ulation algorithm emerges only if parsing problems are framed as path problems in a
single graph. We note that the importance of the distinction between the two viewpoints
was highlighted by Sharir and Pnueli in their seminal work on inter-procedural dataflow
analysis [14].

The logic programming community has explored the notion of “parsing as deduc-
tion” [11,15,16] in which the rules of the Earley recognizer in Figure 4(b) are consid-
ered to be inference rules derived from a grammar, and recognition is viewed as the
construction of a proof that a given string is in the language generated by that grammar.
The GFG shows that this proof construction can be interpreted as constructing complete
balanced paths in a graphical representation of the grammar.

An important connection between inter-procedural dataflow analysis and reacha-
bility computation was made by Yannakakis [21], who introduced the notion of CFL-
paths. Given a graph with labeled edges and a context-free grammar, CFL-paths are
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paths that generate strings recognized by the given context-free grammar. Therefore,
the context-free grammar is external to the graph, whereas the GFG is a direct repre-
sentation of a context-free grammar with labeled nodes (start and end nodes must be
known) and labeled edges. If node labels are erased from a GFG and CFL-paths for the
given grammar are computed, this set of paths will include all the complete balanced
paths but in general, it will also include non-CR-paths that happen to generate strings
in the language recognized by the context-free grammar.

6 Conclusions

In other work, we have shown that the GFG permits an elementary presentation of LL,
SLL, LR, SLR, and LALR grammars in terms of GFG paths. These results and the
results in this paper suggest that the GFG can be a new foundation for the study of
context-free grammars.

Acknowledgments: We would like to thank Laura Kallmeyer for pointing us to the
literature on parsing in the logic programming community, and Giorgio Satta and Lillian
Lee for useful discussions about parsing.
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A Appendix

A.1 Derivations, parse trees and GFG paths

The following result connects complete balanced paths to parse trees.

Theorem 4. Let Γ=<N,T, P, S> be a context-free grammar and G = GFG(Γ ) the
corresponding grammar flow graph. Let A ∈ N . There exists a balanced path from •A
toA• with ncr call-return pairs that generates a stringw ∈ T ∗ if and only if there exists
a parse tree for w with nint = ncr + 1 internal nodes.

Proof. We proceed by induction on ncr. The base case, ncr = 0, arises for a produc-
tion A→u1u2 . . . ur where each uj is a terminal. The GFG balanced path contains the
sequence of nodes

•A,A→•u1u2 . . . ur, . . . A→u1u2 . . . ur•, A•

The corresponding parse tree has a root with labelA and r children respectively labeled
u1, u2, . . . , ur (from left to right), with nint = 1 internal node. The string generated by
the path and derived from the tree is w = u1u2 . . . ur.

Assume now inductively the stated property for paths with fewer than ncr call-return
pairs and trees with fewer than nint internal nodes. Let Q be a path from •A to A• with
ncr call-return pairs. Let A→u1u2 . . . ur be the “top production” used by Q, i.e., the
second node on the path is A→•u1u2 . . . ur. If uj ∈ N , then Q will contain a segment
of the form

A→u1 . . . uj−1•uj . . . ur, Qj , A→u1 . . . uj•uj+1 . . . ur

where Qj is a balanced path from •uj to uj•, generating some word wj . Let Tj be a
parse tree for wj with root labeled uj , whose existence follows by the inductive hypoth-
esis. If instead uj ∈ T , then Q will contain the scan edge

(A→u1 . . . uj−1•uj . . . ur, A→u1 . . . uj•uj+1 . . . ur)
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generating the word wj = uj . Let Tj be a tree with a single node labeled wj = uj . The
word generated by Q is w = w1w2 . . . wr. Clearly, the tree T with a root labeled A
and r subtrees equal (from left to right) to T1, T2, . . . , Tr derives string w. Finally, it is
simple to show that T has nint = ncr + 1 internal nodes.

The construction of a balanced path generating w from a tree deriving w follows the
same structure.

A.2 Correctness and complexity of Earley’s algorithm

The following result is an “inductive version” of Theorem 2, which asserts the correct-
ness of the rules for the Earley parser.

Theorem 5. Consider the execution of Earley’s algorithm on input stringw = a1a2 . . . an.
Let z be a GFG node and i and j be integers such that 0 ≤ i ≤ j ≤ n. The following
two properties are equivalent.

(A) The algorithm creates an entry <z, i> in Σj .

(B) There is a CR-path Q = (•S)Q′z (represented as a sequence of GFG nodes begin-
ning at •S and ending at z) that generates a1a2 . . . aj and whose prefix preceding the
last unmatched call edge generates a1a2 . . . ai.

Proof. Intuitively, the key fact is that each rule of Earley’s algorithm (aside from ini-
tialization) uses an entry <y, i′> ∈ Σj′ and a GFG edge (y, z) to create an entry
<z, i> ∈ Σj , where the dependence of i and j upon i′ and j′ depends on the type
of edge (y, z). For a return edge, a suitable entry <z′, k> ∈ Σi′ is also consulted. In
essence, if a CR-path can be extended by an edge, then (and only then) the appropriate
rule creates the entry for the extended path. The formal proof is an inductive formula-
tion of this intuition and carries out a case analysis with respect to the type of edge that
extends the path.
Part I. B ⇒ A (from CR-path to Earley entry). The argument proceeds by induction
on the length (number of edges) ` of path Q.
- Base cases (` = 0, 1).
The only path with no edges is Q = (•S), for which i = j = 0. The INIT rule produces
the corresponding entry <•S, 0> ∈ Σ0. The paths with just one edge are also easily
dealt with, as they are of the formQ = (•S)(S → •σ), that is, they contain one ENTRY
edge.
- Inductive step (from `− 1 ≥ 1 to `).
Consider a CR-path Q = (•S)Ryz of length `. It is straightforward to check that Q′ =
(•S)Ry is also a CR-path, of length `− 1. Hence, by the inductive hypothesis, an entry
<y, i′> is created by the algorithm in some Σj′ , with Q′ generating a1a2 . . . aj′ and
with the prefix of Q′ preceding its last unmatched call edge generating a1a2 . . . ai′ .

Inspection of the rules for the Earley parser in Figure 4 reveals that, given<y, i′> ∈
Σj′ and given the presence edge (y, z) in the CR-path Q, an entry <z, i> ∈ Σj is
always created by the algorithm. It remains to show that i and j have, with respect to
path Q, the relationship stated in property (B).
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- Frame number j. We observe that the string of terminals generated by Q is the
same as the string generated by Q′, except when (y, z) is a scan edge, in which case Q
does generate a1a2 . . . aj′+1. Correspondingly, the algorithm sets j = j′, except when
(y, z) is a scan edge, in which case it sets j = j′ + 1.

- Tag i. We distinguish three cases, based on the type of edge.

– When (y, z) is an entry, scan, or exit edge,Q has the same last unmatched call edge
as Q′. Correspondingly, i = i′.

– When (y, z) is a call edge, then (y, z) is the last unmatched call edge on Q. The
algorithm correctly sets i = j′ = j.

– Finally, let (y, z) be a return edge, with y = B• and z = A → αB•γ. Since Q is
a CR-path, (y, z) must match the last unmatched call edge in Q′, say, (z′, y′), with
z′ = A → α•Bγ, and y′ = •B. We can then write Q = (•S)Q1z

′y′Q2yz where
Q2 is balanced, whence Q and (•S)Q1z

′ have the same last unmatched call edge,
say (u, v). Let i′ be such that the prefix of Q ending at z′ generates a1a2 . . . ai′
and let k ≤ i′ be such that the prefix of Q ending at u generates a1a2 . . . ak. By
the inductive hypothesis, corresponding to path (•S)Q1z

′, the algorithm will have
created entry <z′ = A → α•Bγ, k> ∈ Σi′ . From entries <y = B•, i′> ∈ Σj′
and <z′ = A→ α•Bγ, k> ∈ Σi′ as well as from return edge (y, z), the END rule
of the algorithm, as written in Figure 4, creates <z = A→ αB•γ, i = i′> ∈ Σj .

Part II. A ⇒ B (from Earley entry to CR-path). The argument proceeds by induction
on the number q of rule applications executed by the algorithm when entry <z, i> is
first added to Σj . (Further “discoveries” that <z, i> ∈ Σj are possible, but the entry is
added only once.)
- Base case (q = 1). The only rule applicable at first is INIT, creating the entry<•S, 0> ∈
Σ0, whose corresponding path is clearly Q = (•S).
- Inductive step (from q − 1 ≥ 1 to q). Let the q-th rule application of the algorithm
be based on GFG edge (y, z) and on entry <y, i′> ∈ Σj′ . Also let <z, i> ∈ Σj be
the entry created by the algorithm as a result of said rule application. By the inductive
hypothesis, there is a CR-path (•S)Q′y generating a1a2 . . . aj′ and with the prefix of
Q′ preceding its last unmatched call edge generating a1a2 . . . ai′ . To show that to entry
<z, i> ∈ Σj there corresponds a CR-path Q as in (B), we consider two cases, based
on the type of edge (y, z).

– When (y, z) is an entry, scan, exit or call edge, we consider the pathQ = (•S)Q′yz.
Arguments symmetric to those employed in Part I of the proof show that path theQ
does satisfy property (B), with exactly the values i and j of the entry <z, i> ∈ Σj
produced by the algorithm.

– When (y, z) is a return edge, the identification of path Q requires more care. Let
y = B• and z = A → αB•γ. The END rule of Earley’s algorithm creates entry
<z, i> ∈ Σj based on two previously created entries to each of which, by the
inductive hypothesis, there corresponds a path, as discussed next.
To entry <y = B•, k> ∈ Σj , there correspond a CR-path of the form Q′ =
(•S)Q′1x

′y′Q2y, with last unmatched call edge (x′, y′), where y′ = •B and Q2 is
balanced.
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To entry <z′ = A → α•Bγ, i> ∈ Σk there correspond a CR-path of the form
Q′′ = (•S)Q1z

′, where z′ = A→ α•Bγ.
From the above two paths, as well as from return edge (y, z), we can form a third
CR-path Q = (•S)Q1z

′y′Q2yz. We observe that is is legitimate to concatenate
(•S)Q1z

′ with y′Q2y via the call edge (z′, y′) since y′Q2y is balanced. It is also
legitimate to append return edge (y, z) to (•S)Q1z

′y′Q2y (thus obtainingQ), since
such edge does match (z′, y′), the last unmatched call edge of said path.
It is finally straightforward to check that the frame number j and the tag i are
appropriate for Q.

Proof of Theorem3 For a given GFG G = (V,E) and input word w, Earley’s algo-
rithm requires O(|w|2) space and O(|w|3) time. If the grammar is unambiguous, the
time complexity is reduced to O(|w|2).

Proof. – Space complexity: There are |w| + 1 Σ-sets, and each Σ-set can have at
most |V ||w| elements since there are |w| + 1 possible tags. Therefore, the space
complexity of the algorithm is O(|w|2).

– Time complexity: For the time complexity, we need to estimate the number of dis-
tinct rule instances that can be invoked and the time to execute each one (intuitively,
the number of times each rule can “fire” and the cost of each firing).
For the time to execute each rule instance, we note that the only non-trivial rule is
the end rule: when <B•, k> is added to Σj , we must look up Σk to find entries of
the form <A→α•Bγ, i>. To permit this search to be done in constant time per en-
try, we maintain a data structure with each Σ set, indexed by a non-terminal, which
returns the list of such entries for that non-terminal. Therefore, all rule instances
can be executed in constant time per instance.
We now compute an upper bound on the number of distinct rule instances for each
rule schema. The init rule schema has only one instance. The start rule schema has
a two parameters: the particular start node in the GFG at which this rule schema
is being applied and the tag j, and it can be applied for each outgoing edge of that
start node, so the number of instances of this rule is O(|V | ∗ |V | ∗ |w|); for a given
GFG, this is O(|w|).
Similarly, the end rule schema has four parameters: the particular end node in the
GFG, and the values of i, j, k; the relevant return node is determined by these
parameters. Therefore, an upper bound on the number of instances of this schema
is O(|V ||w|3), which is O(|w|3) for a given GFG.
A similar argument shows that the complexity of call, exit and scan rule schema
instances is O(|w|2).
Therefore the complexity of the overall algorithm is O(|w|3).

– Unambiguous grammar: As shown above, the cubic complexity of Earley’s algo-
rithm arises from the end rule. Consider the consequent of the end rule. The proof
of Theorem 2 shows that <A→αB•γ, i> ∈ Σj iff w[i..(j − 1)] can be derived
from αB. If the grammar is unambiguous, there can be only one such derivation;
considering the antecedents of the end rule, this means that for a given return node
A→αB•γ and given values of i and j, there can be exactly one k for which the an-
tecedents of the end rule are true. Therefore, for an unambiguous grammar, the end
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rule schema can be instantiated at most O(|w|2) times for a given grammar. Since
all other rules are bounded above similarly, we conclude that Earley’s algorithm
runs in time O(|w|2) for an unambiguous grammar.

A.3 Look-ahead computation

Proof of correctness of Algorithm 1:

Proof. The system of equations can be solved using Jacobi iteration, withFIRSTk(A) =
{} as the initial approximation for A ∈ N . If the sequence of approximate solutions for
the system is X0;X1; ..., the set Xi[A] (i ≥ 1) contains k-prefixes of terminal strings
generated by balanced paths from •A to A• in which the number of call-return pairs
is at most (i − 1). Termination follows from monotonicity of set union and +k, and
finiteness ofM.

Proof of correctness of Algorithm 2:

Proof. The system of equations can be solved using Jacobi iteration. If the sequence
of approximate solutions is X0;X1; ..., then Xi[B] (i ≥ 1) contains the k-prefixes of
terminal strings generated by CR-paths from B• to S′• in which there are i or fewer
unmatched return nodes.
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