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Organization
1.  Optimal Representation of Control dependence 

           

3. Other applications of APT: 
       - SSA computation in linear time per variable

- DFG computation in linear time per variable
- SDEG computation in linear time per problem

- APT is a factored form of the CDG
which requires ‘filtered search’ to answer queries

4. Conclusions:

2. Our approach:

APT

-  Is the control dependence graph  (O(|E|*|V| ) space/time) optimal?

data structure in  O(|E| + |V|) space/time

APT is an optimal  representation of control dependence=>

- Definition 

       -  Reduce problem to ROMAN CHARIOTS PROBLEM 
-  Build 
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Optimal Representation 
of 

Control Dependence? 

What is an 

Part 1:
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Examples of control dependence

p1

S1

p

S1 S2 p2

m S2 S3

m1

m2

p

m

S1

START

START START

T F T F

T F

F

T

S1 is control dependent on p.true
S2 is control dependent on p.false
p and m are control dependent on START->p S1 is control dependent on p1.true

S2 is control dependent on p2.true
S3 is control dependent on p2.false
m1 is control dependent on p1.false
m2 is control dependent on START->p1

m is control dependent on START->m
m is control dependent on p.true
p is control dependent on START-> m
p is control dependent on p.true
S1 is control dependent on START->m
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==

Node w is control dependent on edge (u -> v) if 

- if w u, w does not postdominate u. 

    - w postdominates v

END

START
e

b

a
d

cEND

START

a

c e

d

b

Control dependence: (Ferrante,Ottenstein,Warren 1987)

a b c d e
V

E

START -> a

b -> c

Control Flow Graph Postdominator Tree Control Dependence Relation
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Queries on Control Dependence Relation:

- conds(v):

- cd(e): 

- cdequiv(v): set of nodes with same control dependences

set of control dependences of node v

set of nodes control dependent on edge e  

Control Flow Graph

a b c d e
V

E

START -> a

b -> c

END

START

a

c e

d

b

Control Dependence Relation

Applications: program analysis, scheduling for pipelines, parallelization

as node v (in same equivalence class as v)
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Optimal Control Dependence Computation

Preprocessing Query

Query time for CD, CONDS,CDEQUIV sets is proportional to set size

Space and time for preprocessing should be minimal.

   A = A +1 
START

 IF A > 0 TH
EN

cd

conds
cdequiv

a

b

c

a -> b

START -> a

CDR

CDR
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Worst-case size of control dependence relation:

START

a

b

c

d

e

f

END

START -> a
f -> a

d -> c
e -> b

a b c d e fE
V

n nested repeat-until loops => size of CDR  is n(n+3)

The size of the CDR can grow quadratically with program size.
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b -> c

START -> a

b -> c

START -> a

Control Dependence Graph (CDG)

bipartite graph between edges and nodes 

b

c

Control Dependence Graph

d e
V

E cba

Control Dependence Relation

connect node v to edge e if node v is control dependent on edge e

d

a

e

Query time: Proportional to size of output

Preprocessing : O(|E|*|V|)  space and time

connect nodes in same CDEQUIV class into rings (not shown)
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There have been many unsuccessful efforts
to reduce the size of the CDG. 

‘‘ We therefore conjecture that to enumerate [conds sets]

     in time proportional to [the size of the set] requires 

     a data structure of quadratic size."

[Cytron,Ferrante,Sarkar, PLDI 1990]
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Roman Chariots Problem
and the 

APT

Part II: 
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Our Solution:

- reduce control dependence computation to a graph problem called

    

optimal control dependence computation. 
APT is a data structure for 

- design a data structure called (augmented postdominator tree)

     
APT 

(b) which  can be used to answer CD,CONDS and CDEQUIV queries 
(a) which can be built in O(|E|) space and time, and

      in time proportional to output size. 

Roman Chariots Problem

��



�
�

�
�

Key Idea (I): Exploit structure of relation

Control dependence relation:

- nodes that are control dependent on an edge e 
    form a simple path in the postdominator tree

- in a tree, a simple path is uniquely specified by its endpoints

    can be built in O(|E|) space and time
Postdominator tree + endpoints of each  control dependence path

- queries:  immediate pdom of node, all pdoms of node

2

- relation is transitive, so build transitive reduction  (pdom tree)
in O(|E|) time  [Harel,Tarjan]

- size of relation is O(|V    |) 

=> There is no point in constructing the entire relation

- query time using pdom tree is optimal

What structure is there in the control dependence relation? 

Analogy: Postdominator relation
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END

START

a

c e

d

b

a b c d e
V

E

START -> a

b -> c

Control Dependence Relation

Control Flow Graph

Example:

Postdominator Tree

b -> c

START -> a

E
Path

[a,e]

[c,b]

END

START
e

b

a
d

c

Path Array A 

O(|E|) Representation of the Control Dependence Relation

��



�
�

�
�

compact representation of the CDR
How can we use the 

to answer queries for 
CD,CONDS and CDEQUIV sets

in time proportional to output size?
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Roman Chariots Problem

ROMA

BOLOGNA

VERONA

VENEZIA

MILANO

NAPOLI

POMPEII

(a) CD(n): Which cities are served by chariot n?
(b) CONDS(w): Which chariots serve city w?
(c) CDEQUIV(w): Which cities are served by the same chariots that serve w?

CORLEONE

Tree:  - nodes are cities
            - edges are roads

Given a tree T, and an array A of chariot routes specified by endpoints,

[MILANO,ROMA]

[POMPEII,BOLOGNA]

[VENEZIA,ROMA]

II

III

I
Route #

Path

Cities on route ordered by ancestor relation

In route [x,y], x is descendant of y

design a data structure to answer the following queries in optimal time.
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- Look up entry for chariot n in Route Array (say it is [x,y])

- Traverse nodes in tree T, starting at x and ending at y

- Output all nodes encountered in traversal

CD(n): Which cities are served by chariot n?

Query procedure: (similar to FOW 87)

CD query time is proportional to output size.

(cf. CDG: many routes can share tree nodes/edges)
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b

a
d

c

[a,e]

[c,b]

END

START
e

I

II

Chariot #
Route

Query procedure:

for each chariot c in Route Array do 
     let route of c be [x,y];
     if w is an ancestor of x

od

         then output c;  fi

         and w is a descendant of y 

Can we avoid examining all routes in Route Array?

CONDS(w): Which chariots serve city w?
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At each node n in the tree, keep a list of chariot # s whose bottom node is n.

[a,e]

[c,b]

END

START
e

I

II

Chariot #
Route

{I}

{II}

b

a
d

c

Query procedure: CONDS(w)

for each route c = [x,y] in list at d do 

         then output c; fi
od

od

     if w is a descendant of y

for each descendant d of w do

Query time is proportional to # of descendants + size of all lists at descendants

Key Idea (II): Cache  route information in tree
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Query procedure: CONDS(w)

for each route c = [x,y] in list at d do 

         then output c;

     if w is a descendant of y

for each descendant d of w do

          else BREAK; fi od 
od

II

Chariot #
Route

I

IV

III

[f,e]

[f,d]

[f,c]

[f,b]{IV,III,II,I}
f

e
d

c
b

a

[
[

[

At most one ‘non-overlapping’ path is examined at a descendant =>

Query time is proportional to size of output + # of descendants

]

]

]

]

IVIII

II

[
I

Refinement: Sort each list by decreasing length.
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   (2) Chariot # stored at all nodes on route
                  Space: O(|V|*|A|)

              Query Time: O(|Output|)

Step 3: Cache route at multiple nodes.

{IV,III,II,I}
f

e
d

c
b

a

[
[

[

]

]

]

]

IVIII

II

[
I

{IV,III,II,I}
f

e
d

c
b

a

[
[

[

]

]

]

]

IVIII

II

[
I {IV,III,II,I}

{IV,III,II}

{IV,III}

{IV}

Two extremes:
   (1) Chariot # stored only at bottom node of route

             Query Time: O(|V| + |Output|)
                 Space : O(|V| + |A|)

Can we have a disciplined caching policy to  have linear space
and optimal query time?
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- Nodes are partitioned into 
    - boundary nodes: lowest nodes in zone
    -  interior nodes: all other nodes

- Caching rule:
      - boundary node: store all chariots serving node

       - interior node: store all chariots whose bottom node is that node

-  Our algorithm: bottom-up, greedy zone construction 

Key idea (III): Cache a route at multiple nodes

Divide tree into ZONES

    and in the same zone as query node
   Visit only nodes below query node
Query procedure:

Caching Rule:

vZone construction:  For all nodes v, |Z    | <  |A   | + 1vα

α=> space requirements  <  |A| +  |V| /

=> Query time       |A | + |Z |        (α + 1) |A   |v vv
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How do we construct zones?

Query time for CONDS(v) = O(|A   | + |Z   |)
= O( (α +1 ) |A   | + 1)
= O(|A   |)

v v
v

v

Invariant: For any node v, v|Z    | <   α |Α   |  + 1v
I

II Build zones bottom-up, making them as large as possible 
w/o violating invariant

v is an interior node => 
v is a leaf node => make v a boundary node

           if (1 +  
ε

Σ α |Z   | ) > |A   | + 1 vu children(v) u

then make v a boundary node 
else make v an interior node

where α is a design parameter. 
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|Α   | + 1v

e

a

b

g

c

f

d

h 3

4

5

6

6

5

4

3

END

START

{START -> a, h -> a}

{g -> b}

{f->c}

{e->d}

{}

{START->a, h->a, g->b,f->c}

{}

{}

α 

α = 1 (some caching)
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END
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|Α   | + 1v

e

a

b

g

c

f

d

h

END

START

{START -> a, h -> a}

{g -> b}

{f->c}

{e->d}

{}

{}

{}

α = >>

{}

α

(no caching)
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|Α   | + 1v

e

a

b

g

c

f

d

h

END

START

α = <<

{START -> a, h -> a}

{START->a, h->a,g -> b}

{START->a, h->a, g->b, f->c}

{START->a, h->a, g->b, f->c, e->d}

{START->a, h->a, g->b, f->c, e->d}

{START->a, h->a, g->b, f->c}

{START->a, h->a,g -> b}

{START -> a, h -> a}1

1

1

1

1

1

1

1

α 

(full caching)
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Summary of CONDS Approach:

- Parameter α is used to partition tree into zones
<< : lower query time, increased space requirements

α >> : higher query time, lower space requirements
α

- Nodes are partitioned into 
    - boundary nodes: lowest nodes in zone
    -  interior nodes: all other nodes

- Caching rule:
      - boundary node: store all chariots serving node
       - interior node: store all chariots whose bottom node is that node

Query procedure:
   Visit only nodes below query node    and in the same zone as query node

-

Query Time: ( α +1) |A   |v
Space : |A| + |V| / α
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Which cities are served by same chariots that serve v?CDEQUIV(v):

]

[ [
]

a

b c

r1
r2 [d

e

Lo(CONDS(a)) = a
Lo(CONDS(d)) = f
Lo(CONDS(e)) = f

f ]
[

]

Two CONDS sets are equal iff they have the same finger-prints.
Can compute finger-prints in O(|V| + |A|) space and time

- Ferrante, Ottenstein, Warren 87: O(|E| 
3

) using hashing for set equality

- Cytron, Ferrante, Sarkar 90: O(|E| 2)

- Ball 92: O(|E|) for structured programs 
- Podgurski 93: O(|E|) for forward control dependence in general graphs
- Johnson, Pearson, Pingali 94: O(|E|) for general graphs (optimal)

CDEQUIV for Roman Chariots Problem

- cleaned-up version of JPP94 algorithm
- compute two finger prints for CONDS sets 

.  size of CONDS set

.  Lo:lowest node contained in all routes of CONDS set
�
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APT

1. Postdominator tree with bidirectional edges

2. dfs-number[v]: integer

- used for ancestorship determination in CONDS query

3. boundary?[v]: boolean

- true if v is a boundary node, false otherwise
- used in CONDS query

- boundary node: all chariots serving v (all control dependences of v)

- used in CONDS query 

- used in CDEQUIV query 

- interior node: all chariots whose bottom node is v (all immediate control dependences of v)

5. R[v]: pointer to CDEQUIV equivalence class

4. L[v]: list of chariots #’s/control dependences

( α+1) * output-size
Space:  |E| + |V| / α
Query time:

��
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Experimental Results
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�




�
�

�
�

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

+: Full Caching

*: Some Caching: ALPHA = 1

o: No Caching

Program Size: Nodes

S
to

ra
ge

��



�
�

�
�

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

Program Size

H
ei

gh
t o

f P
os

td
om

in
at

or
 T

re
e

��



�
�

�
�

Comparison with factoring:

- Factoring attempts to reduce size of CDG by making nodes

    ‘share’ control dependences in the representation (CFS 90)

Nodes Edges Nodes Edges

‘merge’ point

- Our caching approach can be viewed as factoring in which 
    ‘filtered search’ is used to answer queries (Chazelle)

{I}

[

{I}[

I
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Other Applications of APT

Control Dependence Dataflow Analysis

CONDS 

CDEQUIV

CD

iterate

iterate
SSA,GSA

DFG,PDW,VDG,....

- can be used to build SSA form in O(|E|) per variable 
α <<)        - subsumes algorithm of Cytron et al  (

        - subsumes algorithm of Sreedhar and Gao  ( α >>) 

- can be used to build DFG in O(|E|) time per variable
         - SESE determination in O(|E|) time
         - see Johnson, Pearson, Pingali (PLDI 94)
                    Johnson’s thesis at Cornell

ADT and APT 

ADT : augmented dominator tree (APT on reverse CFG)
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- phi-placement = iterated dominance frontier computation

- exploit the fact that conds relation is same as
    edge dominance frontier relation in reverse graph

SSA Computation

Solution: Use APT on reverse graph = ADT on CFG 

Two nodes in S belonging to same zone

Zone
ADT

a

b

- to compute DF(b), visit sub-zone below b

- First, look at DF(S) where S is given offline

Algorithm: Sort S by level, and query in bottom-up order 

- after this, to compute DF(a), no need to visit subzone below a !
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Algorithm:

- Sort nodes in S by level.

- Remove nodes from sorted list by decreasing level order,

    and query in ADT

- After a node is queried, mark it in ADT
so further queries that reach v do not look below v.

  (O|E|) in CFG termsTime = O(|V| + |A|)   

What if set for querying is given online? 

 - Sreedhar and Gao: use an array of size k 

 - van Emde Boas: O(log(log(k))) per insertion and deletion

- Priority queue implementation: (k = # of keys = height of ADT )
=> use a priority queue for ‘dynamic sorting’

-  Happily, if  n is in DF(m), then level(n) <= level(m) !!

     in bottom-up order.
- We can use same strategy provided nodes are presented for querying

��



�
�

�
�

��



�
�

�
�

START

END

c

b

a

x

y

a

y

c

x

b

END

START

CFG

phi({a,x}) = {a,b,c}

phi({c}) = {c}

Dominance Frontier

b

x

a

y

c

a b c x y
E

V

y -> a
x -> b
a -> c

y -> END

DF({c}) = {c,END}
DF({b}) = {b,c,END}
DF({a})  = {a,b,c,END})
DF(node) = destination(EDF(node))

EDFDominator tree

Example:
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- Time to build SSA form: O(|E|) per variable

- Subsumes algorithms of Cytron etal and Sreedhar and Gao

<< : Cytron et al [91] - O(|E|*|V|) per variableα

>> : Sreedhar and Gao (PLDI 95) - O(|E|) per variableα

- Same idea can be used to build sparse dataflow evaluator graphs

     for other dataflow problems

- small value: repeatedly discover that some node 
is in transitive closure

- large value: time to compute individual DF sets may be large

Remarks:

- What is best value of Interesting tradeoff?α

- intermediate value may be best!
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Conclusions

1. APT data structure:

( α+1) 

Control Dependence Dataflow Analysis

CONDS (v): optimal

CDEQUIV(v): optimal

CD(e): optimal DFG: O(|E|) per variable

SDEG: O(|E|) per problem

SSA: O(|E|) per variable

2. Key concepts

- exploit structure of control dependence relation

- intelligent caching of information

Query time: * output-size
Preprocessing Space and Time:  O(|E| + |V| /         )α
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Applications of Technology

� DCPI� Digital Continuous Pro�ling Infrastructure uses control

dependence equivalence algorithm to reduce overhead of

program pro�ling http���www�research�digital�com�SRC�dcpi�

� IBM VLIW Compiler� Ebcioglu et al use Dependence Flow

Graph �DFG� as their IF in VLIW compiler work

http���www�research�ibm�com�vliw�

� Aristotle Analysis System� Ohio State University �� uses weak

control dependence algorithms

� Toby compiler �IBM�� Intel����� use some of the control

dependence algorithms
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