
�
�

�
�

Control Dependence, Program Analyses
 and

The Roman Chariots Problem

Keshav Pingali
Cornell University

Gianfranco Bilardi
Universita di Padova, Italy

�

�
�

�
�

Organization
1. Optimal Representation of Control dependence

3. Other applications of APT:
 - SSA computation in linear time per variable

- DFG computation in linear time per variable
- SDEG computation in linear time per problem

- APT is a factored form of the CDG
which requires ‘filtered search’ to answer queries

4. Conclusions:

2. Our approach:

APT

- Is the control dependence graph (O(|E|*|V|) space/time) optimal?

data structure in O(|E| + |V|) space/time

APT is an optimal representation of control dependence=>

- Definition

 - Reduce problem to ROMAN CHARIOTS PROBLEM
- Build

�

�
�

�
�

Optimal Representation
of

Control Dependence?

What is an

Part 1:

�

�
�

�
�

Examples of control dependence

p1

S1

p

S1 S2 p2

m S2 S3

m1

m2

p

m

S1

START

START START

T F T F

T F

F

T

S1 is control dependent on p.true
S2 is control dependent on p.false
p and m are control dependent on START->p S1 is control dependent on p1.true

S2 is control dependent on p2.true
S3 is control dependent on p2.false
m1 is control dependent on p1.false
m2 is control dependent on START->p1

m is control dependent on START->m
m is control dependent on p.true
p is control dependent on START-> m
p is control dependent on p.true
S1 is control dependent on START->m

�

�
�

�
�

==

Node w is control dependent on edge (u -> v) if

- if w u, w does not postdominate u.

 - w postdominates v

END

START
e

b

a
d

cEND

START

a

c e

d

b

Control dependence: (Ferrante,Ottenstein,Warren 1987)

a b c d e
V

E

START -> a

b -> c

Control Flow Graph Postdominator Tree Control Dependence Relation

�

�
�

�
�

Queries on Control Dependence Relation:

- conds(v):

- cd(e):

- cdequiv(v): set of nodes with same control dependences

set of control dependences of node v

set of nodes control dependent on edge e

Control Flow Graph

a b c d e
V

E

START -> a

b -> c

END

START

a

c e

d

b

Control Dependence Relation

Applications: program analysis, scheduling for pipelines, parallelization

as node v (in same equivalence class as v)

�

�
�

�
�

Optimal Control Dependence Computation

Preprocessing Query

Query time for CD, CONDS,CDEQUIV sets is proportional to set size

Space and time for preprocessing should be minimal.

 A = A +1
START

 IF A > 0 TH
EN

cd

conds
cdequiv

a

b

c

a -> b

START -> a

CDR

CDR
�

�
�

�
�

Worst-case size of control dependence relation:

START

a

b

c

d

e

f

END

START -> a
f -> a

d -> c
e -> b

a b c d e fE
V

n nested repeat-until loops => size of CDR is n(n+3)

The size of the CDR can grow quadratically with program size.

�

�
�

�
�

b -> c

START -> a

b -> c

START -> a

Control Dependence Graph (CDG)

bipartite graph between edges and nodes

b

c

Control Dependence Graph

d e
V

E cba

Control Dependence Relation

connect node v to edge e if node v is control dependent on edge e

d

a

e

Query time: Proportional to size of output

Preprocessing : O(|E|*|V|) space and time

connect nodes in same CDEQUIV class into rings (not shown)

	

�
�

�
�

There have been many unsuccessful efforts
to reduce the size of the CDG.

‘‘ We therefore conjecture that to enumerate [conds sets]

 in time proportional to [the size of the set] requires

 a data structure of quadratic size."

[Cytron,Ferrante,Sarkar, PLDI 1990]

�

�
�

�
�

Roman Chariots Problem
and the

APT

Part II:

��

�
�

�
�

Our Solution:

- reduce control dependence computation to a graph problem called

optimal control dependence computation.
APT is a data structure for

- design a data structure called (augmented postdominator tree)

APT

(b) which can be used to answer CD,CONDS and CDEQUIV queries
(a) which can be built in O(|E|) space and time, and

 in time proportional to output size.

Roman Chariots Problem

��

�
�

�
�

Key Idea (I): Exploit structure of relation

Control dependence relation:

- nodes that are control dependent on an edge e
 form a simple path in the postdominator tree

- in a tree, a simple path is uniquely specified by its endpoints

 can be built in O(|E|) space and time
Postdominator tree + endpoints of each control dependence path

- queries: immediate pdom of node, all pdoms of node

2

- relation is transitive, so build transitive reduction (pdom tree)
in O(|E|) time [Harel,Tarjan]

- size of relation is O(|V |)

=> There is no point in constructing the entire relation

- query time using pdom tree is optimal

What structure is there in the control dependence relation?

Analogy: Postdominator relation

��

�
�

�
�

END

START

a

c e

d

b

a b c d e
V

E

START -> a

b -> c

Control Dependence Relation

Control Flow Graph

Example:

Postdominator Tree

b -> c

START -> a

E
Path

[a,e]

[c,b]

END

START
e

b

a
d

c

Path Array A

O(|E|) Representation of the Control Dependence Relation

��

�
�

�
�

compact representation of the CDR
How can we use the

to answer queries for
CD,CONDS and CDEQUIV sets

in time proportional to output size?
��

�
�

�
�

Roman Chariots Problem

ROMA

BOLOGNA

VERONA

VENEZIA

MILANO

NAPOLI

POMPEII

(a) CD(n): Which cities are served by chariot n?
(b) CONDS(w): Which chariots serve city w?
(c) CDEQUIV(w): Which cities are served by the same chariots that serve w?

CORLEONE

Tree: - nodes are cities
 - edges are roads

Given a tree T, and an array A of chariot routes specified by endpoints,

[MILANO,ROMA]

[POMPEII,BOLOGNA]

[VENEZIA,ROMA]

II

III

I
Route #

Path

Cities on route ordered by ancestor relation

In route [x,y], x is descendant of y

design a data structure to answer the following queries in optimal time.

��

�
�

�
�

- Look up entry for chariot n in Route Array (say it is [x,y])

- Traverse nodes in tree T, starting at x and ending at y

- Output all nodes encountered in traversal

CD(n): Which cities are served by chariot n?

Query procedure: (similar to FOW 87)

CD query time is proportional to output size.

(cf. CDG: many routes can share tree nodes/edges)

��

�
�

�
�

b

a
d

c

[a,e]

[c,b]

END

START
e

I

II

Chariot #
Route

Query procedure:

for each chariot c in Route Array do
 let route of c be [x,y];
 if w is an ancestor of x

od

 then output c; fi

 and w is a descendant of y

Can we avoid examining all routes in Route Array?

CONDS(w): Which chariots serve city w?

��

�
�

�
�

At each node n in the tree, keep a list of chariot # s whose bottom node is n.

[a,e]

[c,b]

END

START
e

I

II

Chariot #
Route

{I}

{II}

b

a
d

c

Query procedure: CONDS(w)

for each route c = [x,y] in list at d do

 then output c; fi
od

od

 if w is a descendant of y

for each descendant d of w do

Query time is proportional to # of descendants + size of all lists at descendants

Key Idea (II): Cache route information in tree

�	

�
�

�
�

Query procedure: CONDS(w)

for each route c = [x,y] in list at d do

 then output c;

 if w is a descendant of y

for each descendant d of w do

 else BREAK; fi od
od

II

Chariot #
Route

I

IV

III

[f,e]

[f,d]

[f,c]

[f,b]{IV,III,II,I}
f

e
d

c
b

a

[
[

[

At most one ‘non-overlapping’ path is examined at a descendant =>

Query time is proportional to size of output + # of descendants

]

]

]

]

IVIII

II

[
I

Refinement: Sort each list by decreasing length.

�

�
�

�
�

 (2) Chariot # stored at all nodes on route
 Space: O(|V|*|A|)

 Query Time: O(|Output|)

Step 3: Cache route at multiple nodes.

{IV,III,II,I}
f

e
d

c
b

a

[
[

[

]

]

]

]

IVIII

II

[
I

{IV,III,II,I}
f

e
d

c
b

a

[
[

[

]

]

]

]

IVIII

II

[
I {IV,III,II,I}

{IV,III,II}

{IV,III}

{IV}

Two extremes:
 (1) Chariot # stored only at bottom node of route

 Query Time: O(|V| + |Output|)
 Space : O(|V| + |A|)

Can we have a disciplined caching policy to have linear space
and optimal query time?

��

�
�

�
�

- Nodes are partitioned into
 - boundary nodes: lowest nodes in zone
 - interior nodes: all other nodes

- Caching rule:
 - boundary node: store all chariots serving node

 - interior node: store all chariots whose bottom node is that node

- Our algorithm: bottom-up, greedy zone construction

Key idea (III): Cache a route at multiple nodes

Divide tree into ZONES

 and in the same zone as query node
 Visit only nodes below query node
Query procedure:

Caching Rule:

vZone construction: For all nodes v, |Z | < |A | + 1vα

α=> space requirements < |A| + |V| /

=> Query time |A | + |Z | (α + 1) |A |v vv

��

�
�

�
�

How do we construct zones?

Query time for CONDS(v) = O(|A | + |Z |)
= O((α +1) |A | + 1)
= O(|A |)

v v
v

v

Invariant: For any node v, v|Z | < α |Α | + 1v
I

II Build zones bottom-up, making them as large as possible
w/o violating invariant

v is an interior node =>
v is a leaf node => make v a boundary node

 if (1 +
ε

Σ α |Z |) > |A | + 1 vu children(v) u

then make v a boundary node
else make v an interior node

where α is a design parameter.

��

�
�

�
�

|Α | + 1v

e

a

b

g

c

f

d

h 3

4

5

6

6

5

4

3

END

START

{START -> a, h -> a}

{g -> b}

{f->c}

{e->d}

{}

{START->a, h->a, g->b,f->c}

{}

{}

α

α = 1 (some caching)

��

�
�

�
�

END

��

�
�

�
�

|Α | + 1v

e

a

b

g

c

f

d

h

END

START

{START -> a, h -> a}

{g -> b}

{f->c}

{e->d}

{}

{}

{}

α = >>

{}

α

(no caching)

��

�
�

�
�

|Α | + 1v

e

a

b

g

c

f

d

h

END

START

α = <<

{START -> a, h -> a}

{START->a, h->a,g -> b}

{START->a, h->a, g->b, f->c}

{START->a, h->a, g->b, f->c, e->d}

{START->a, h->a, g->b, f->c, e->d}

{START->a, h->a, g->b, f->c}

{START->a, h->a,g -> b}

{START -> a, h -> a}1

1

1

1

1

1

1

1

α

(full caching)

��

�
�

�
�

Summary of CONDS Approach:

- Parameter α is used to partition tree into zones
<< : lower query time, increased space requirements

α >> : higher query time, lower space requirements
α

- Nodes are partitioned into
 - boundary nodes: lowest nodes in zone
 - interior nodes: all other nodes

- Caching rule:
 - boundary node: store all chariots serving node
 - interior node: store all chariots whose bottom node is that node

Query procedure:
 Visit only nodes below query node and in the same zone as query node

-

Query Time: (α +1) |A |v
Space : |A| + |V| / α

��

�
�

�
�

�	

�
�

�
�

Which cities are served by same chariots that serve v?CDEQUIV(v):

]

[[
]

a

b c

r1
r2 [d

e

Lo(CONDS(a)) = a
Lo(CONDS(d)) = f
Lo(CONDS(e)) = f

f]
[

]

Two CONDS sets are equal iff they have the same finger-prints.
Can compute finger-prints in O(|V| + |A|) space and time

- Ferrante, Ottenstein, Warren 87: O(|E|
3

) using hashing for set equality

- Cytron, Ferrante, Sarkar 90: O(|E| 2)

- Ball 92: O(|E|) for structured programs
- Podgurski 93: O(|E|) for forward control dependence in general graphs
- Johnson, Pearson, Pingali 94: O(|E|) for general graphs (optimal)

CDEQUIV for Roman Chariots Problem

- cleaned-up version of JPP94 algorithm
- compute two finger prints for CONDS sets

. size of CONDS set

. Lo:lowest node contained in all routes of CONDS set
�

�
�

�
�

APT

1. Postdominator tree with bidirectional edges

2. dfs-number[v]: integer

- used for ancestorship determination in CONDS query

3. boundary?[v]: boolean

- true if v is a boundary node, false otherwise
- used in CONDS query

- boundary node: all chariots serving v (all control dependences of v)

- used in CONDS query

- used in CDEQUIV query

- interior node: all chariots whose bottom node is v (all immediate control dependences of v)

5. R[v]: pointer to CDEQUIV equivalence class

4. L[v]: list of chariots #’s/control dependences

(α+1) * output-size
Space: |E| + |V| / α
Query time:

��

�
�

�
�

Experimental Results

��

�
�

�
�

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Nesting Depth

S
to

ra
ge CDG

ALPHA = 1/32

ALPHA = 1/16

ALPHA = 1

��

�
�

�
�

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

ALPHA = 1

ALPHA = 4

ALPHA = 32

ALPHA = >>

Nesting Depth

S
to

ra
ge

��

�
�

�
�

−8 −6 −4 −2 0 2 4 6 8
0

2000

4000

6000

8000

10000

12000

depth = 100

depth = 64

depth = 32

actual predicted

log(ALPHA)

S
to

ra
ge

��

�
�

�
�

−8 −6 −4 −2 0 2 4 6 8
0

50

100

150

200

250

300

350

400

450

500

depth = 100

depth = 64

depth = 32

depth = 4

log(ALPHA)

W
or

st
 C

as
e

Q
ue

ry
 T

im
e

��

�
�

�
�

−8 −6 −4 −2 0 2 4 6 8
0

1

2

3

4

5

6

7

8

9
x 10

−3

Log(ALPHA)

P
re

pr
oc

es
si

ng
 T

im
e

(s
ec

s)

depth = 64

depth = 32

depth = 4

PDOM: depth = 64

PDOM: depth = 32
��

�
�

�
�

0 10 20 30 40 50 60 70 80 90 100
0

0.002

0.004

0.006

0.008

0.01

0.012

Nesting Depth

P
re

pr
oc

es
si

ng
 T

im
e

(s
ec

s) ALPHA = 1/32

ALPHA = 1/16

PDOM Time

ALPHA = 1
��

�
�

�
�

0

1000

2000

3000

4000

5000

6000

7000

8000

9000 espresso

li

eqntott

sc

cc1
eqn

cccp

Full Caching

Some Caching: ALPHA = 1

No Caching

S
to

ra
ge

Caching in APT for SPEC Integer Benchmarks

�	

�
�

�
�

0

2000

4000

6000

8000

10000

12000
spice

doduc

mdljdp

wave

tomcatv
ora

alvinn

ear

mdljsp

swm

su2cor
hydro2d

nasa7 fpppp

Full Caching

Some Caching: ALPHA = 1

No Caching

S
to

ra
ge

SPEC Floating Point Benchmarks

�

�
�

�
�

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

+: Full Caching

*: Some Caching: ALPHA = 1

o: No Caching

Program Size: Nodes

S
to

ra
ge

��

�
�

�
�

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

Program Size

H
ei

gh
t o

f P
os

td
om

in
at

or
 T

re
e

��

�
�

�
�

Comparison with factoring:

- Factoring attempts to reduce size of CDG by making nodes

 ‘share’ control dependences in the representation (CFS 90)

Nodes Edges Nodes Edges

‘merge’ point

- Our caching approach can be viewed as factoring in which
 ‘filtered search’ is used to answer queries (Chazelle)

{I}

[

{I}[

I

��

�
�

�
�

Other Applications of APT

Control Dependence Dataflow Analysis

CONDS

CDEQUIV

CD

iterate

iterate
SSA,GSA

DFG,PDW,VDG,....

- can be used to build SSA form in O(|E|) per variable
α <<) - subsumes algorithm of Cytron et al (

 - subsumes algorithm of Sreedhar and Gao (α >>)

- can be used to build DFG in O(|E|) time per variable
 - SESE determination in O(|E|) time
 - see Johnson, Pearson, Pingali (PLDI 94)
 Johnson’s thesis at Cornell

ADT and APT

ADT : augmented dominator tree (APT on reverse CFG)

��

�
�

�
�

- phi-placement = iterated dominance frontier computation

- exploit the fact that conds relation is same as
 edge dominance frontier relation in reverse graph

SSA Computation

Solution: Use APT on reverse graph = ADT on CFG

Two nodes in S belonging to same zone

Zone
ADT

a

b

- to compute DF(b), visit sub-zone below b

- First, look at DF(S) where S is given offline

Algorithm: Sort S by level, and query in bottom-up order

- after this, to compute DF(a), no need to visit subzone below a !

��

�
�

�
�

Algorithm:

- Sort nodes in S by level.

- Remove nodes from sorted list by decreasing level order,

 and query in ADT

- After a node is queried, mark it in ADT
so further queries that reach v do not look below v.

 (O|E|) in CFG termsTime = O(|V| + |A|)

What if set for querying is given online?

 - Sreedhar and Gao: use an array of size k

 - van Emde Boas: O(log(log(k))) per insertion and deletion

- Priority queue implementation: (k = # of keys = height of ADT)
=> use a priority queue for ‘dynamic sorting’

- Happily, if n is in DF(m), then level(n) <= level(m) !!

 in bottom-up order.
- We can use same strategy provided nodes are presented for querying

��

�
�

�
�

��

�
�

�
�

START

END

c

b

a

x

y

a

y

c

x

b

END

START

CFG

phi({a,x}) = {a,b,c}

phi({c}) = {c}

Dominance Frontier

b

x

a

y

c

a b c x y
E

V

y -> a
x -> b
a -> c

y -> END

DF({c}) = {c,END}
DF({b}) = {b,c,END}
DF({a}) = {a,b,c,END})
DF(node) = destination(EDF(node))

EDFDominator tree

Example:

��

�
�

�
�

�	

�
�

�
�

- Time to build SSA form: O(|E|) per variable

- Subsumes algorithms of Cytron etal and Sreedhar and Gao

<< : Cytron et al [91] - O(|E|*|V|) per variableα

>> : Sreedhar and Gao (PLDI 95) - O(|E|) per variableα

- Same idea can be used to build sparse dataflow evaluator graphs

 for other dataflow problems

- small value: repeatedly discover that some node
is in transitive closure

- large value: time to compute individual DF sets may be large

Remarks:

- What is best value of Interesting tradeoff?α

- intermediate value may be best!

�

�
�

�
�

−15 −10 −5 0 5 10 15

0

200

400

600
0

0.005

0.01

0.015

0.02

0.025

0.03

Log2(ALPHA)

Node Number

T
im

e
fo

r
ph

i−
fu

nc
tio

n
pl

ac
em

en
t

Repeat−until Loop: Nesting = 200

��

�
�

�
�

−15 −10 −5 0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

log2(ALPHA)

T
im

e
(s

ec
s)

Time for phi−function Placement

��

�
�

�
�

Conclusions

1. APT data structure:

(α+1)

Control Dependence Dataflow Analysis

CONDS (v): optimal

CDEQUIV(v): optimal

CD(e): optimal DFG: O(|E|) per variable

SDEG: O(|E|) per problem

SSA: O(|E|) per variable

2. Key concepts

- exploit structure of control dependence relation

- intelligent caching of information

Query time: * output-size
Preprocessing Space and Time: O(|E| + |V| /)α

��

�
�

�
�

Applications of Technology

� DCPI� Digital Continuous Pro�ling Infrastructure uses control

dependence equivalence algorithm to reduce overhead of

program pro�ling http���www�research�digital�com�SRC�dcpi�

� IBM VLIW Compiler� Ebcioglu et al use Dependence Flow

Graph �DFG� as their IF in VLIW compiler work

http���www�research�ibm�com�vliw�

� Aristotle Analysis System� Ohio State University �� uses weak

control dependence algorithms

� Toby compiler �IBM�� Intel����� use some of the control

dependence algorithms

��

