Control Dependence, Program Analyses and The Roman Chariots Problem

Keshav Pingali Cornell University

Gianfranco Bilardi

Universita di Padova, Italy

Organization

1. Optimal Representation of Control dependence

- Definition

- Is the control dependence graph (O(|E|*|V|) space/time) optimal?

2. Our approach:

- Reduce problem to ROMAN CHARIOTS PROBLEM
- Build **APT** data structure in O(|E| + |V|) space/time
- => **APT** is an optimal representation of control dependence

3. Other applications of APT:

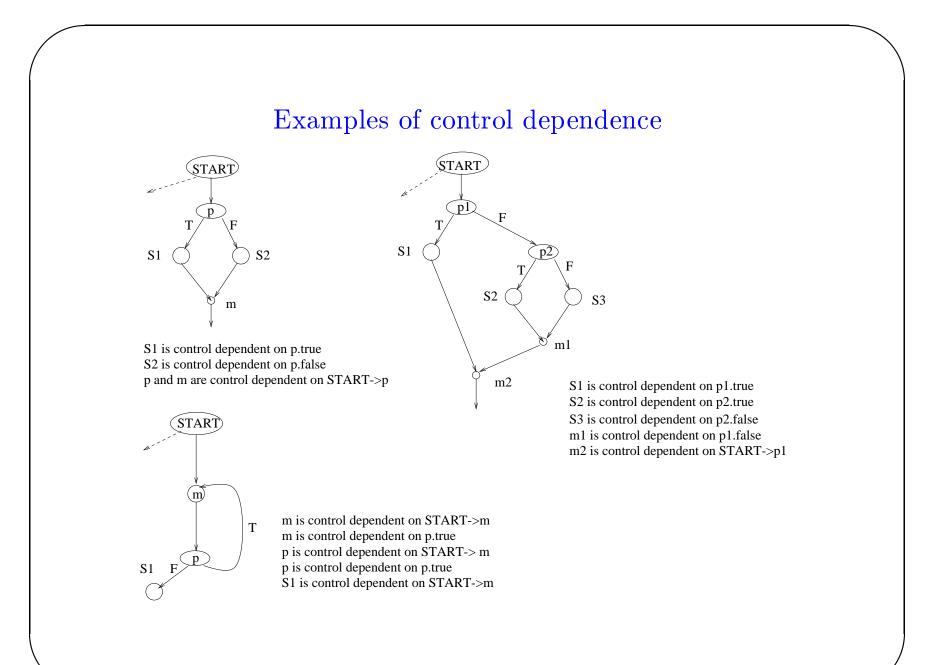
- SSA computation in linear time per variable
- SDEG computation in linear time per problem
- DFG computation in linear time per variable

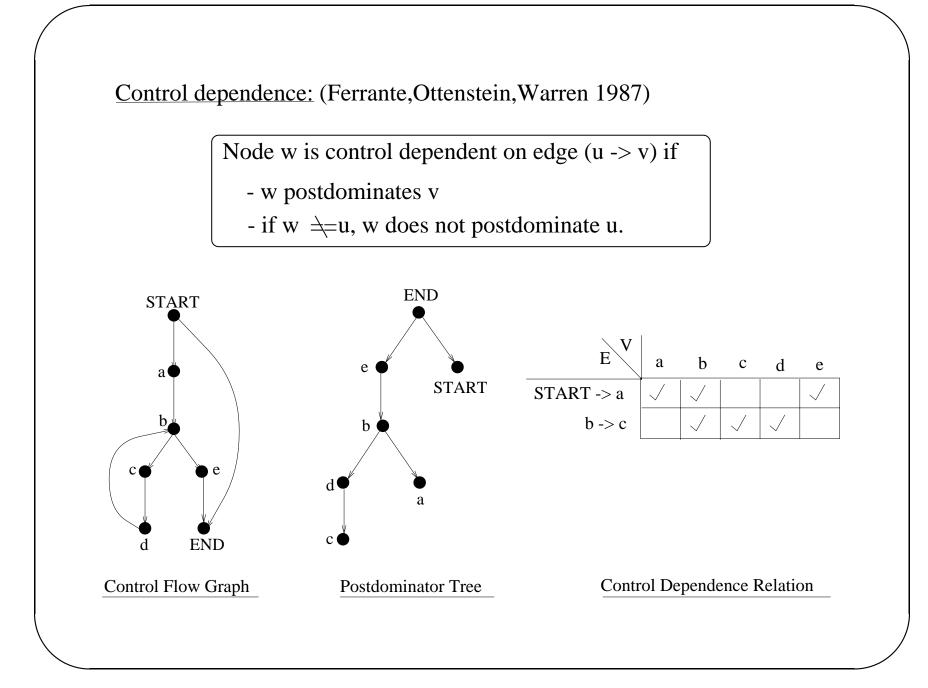
4. Conclusions:

- **APT** is a factored form of the CDG which requires 'filtered search' to answer queries

Part 1:

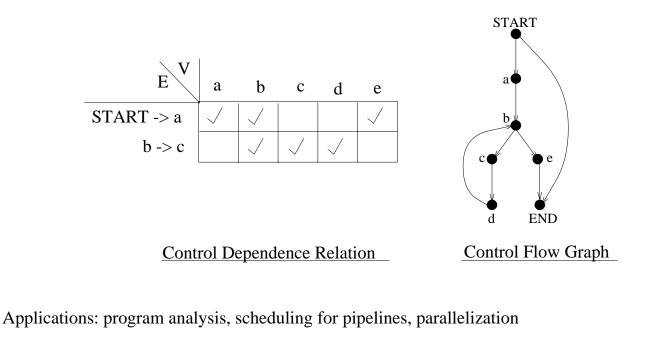
What is an Optimal Representation of Control Dependence?

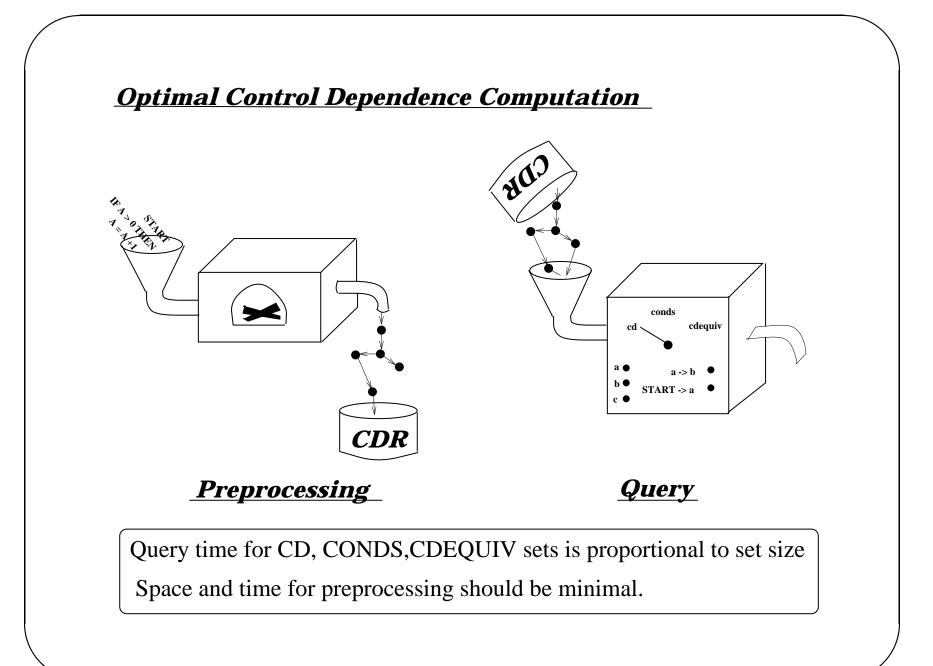


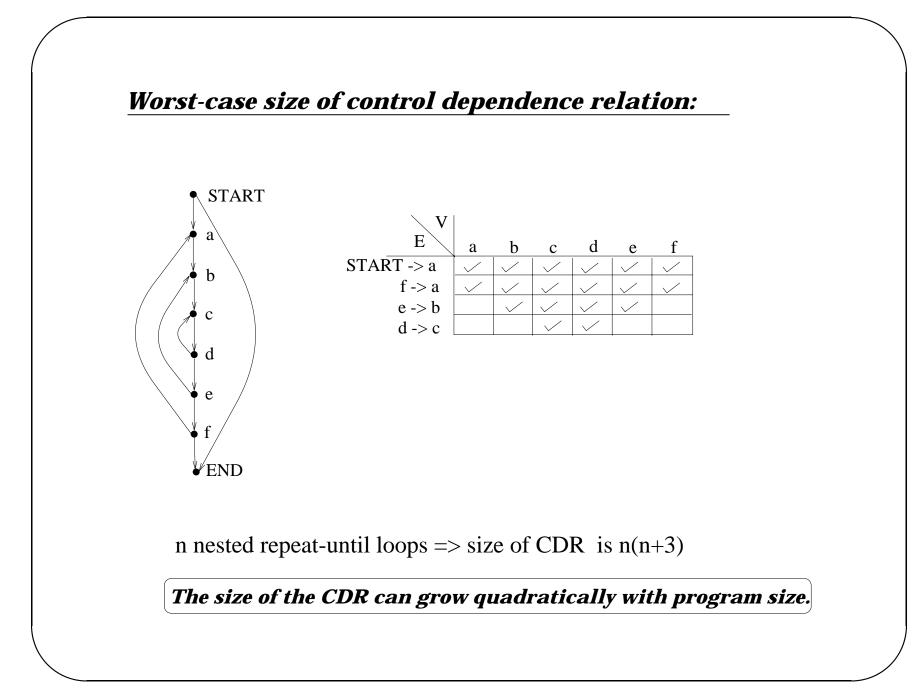


Queries on Control Dependence Relation:

- *cd(e):* set of nodes control dependent on edge e
- *conds(v):* set of control dependences of node v
- *cdequiv(v):* set of nodes with same control dependences as node v (in same equivalence class as v)

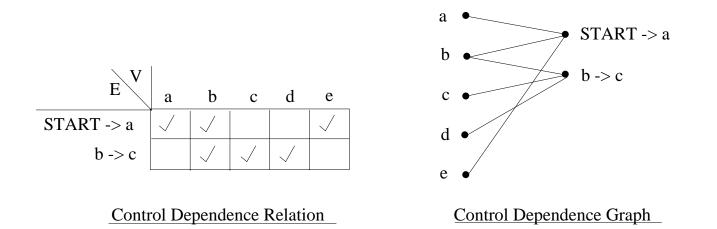






Control Dependence Graph (CDG)

- bipartite graph between edges and nodes
- connect node v to edge e if node v is control dependent on edge e
- connect nodes in same CDEQUIV class into rings (not shown)



Query time: Proportional to size of output Preprocessing : O(|E|*|V|) space and time

There have been many unsuccessful efforts to reduce the size of the CDG.

"We therefore conjecture that to enumerate [conds sets] in time proportional to [the size of the set] requires a data structure of quadratic size."

[Cytron,Ferrante,Sarkar, PLDI 1990]

Part II:

APT

and the

Roman Chariots Problem

Our Solution:

- reduce control dependence computation to a graph problem called *Roman Chariots Problem*
- design a data structure called **APT** (augmented postdominator tree)
 - (a) which can be built in O(|E|) space and time, and
 - (b) which can be used to answer CD,CONDS and CDEQUIV queries in time proportional to output size.

APT is a data structure for

optimal control dependence computation.

Key Idea (I): Exploit structure of relation

Analogy: Postdominator relation

- queries: immediate pdom of node, all pdoms of node
- size of relation is $O(|V|^2|)$
- relation is transitive, so build transitive reduction (pdom tree) in O(|E|) time [Harel,Tarjan]
- query time using pdom tree is optimal

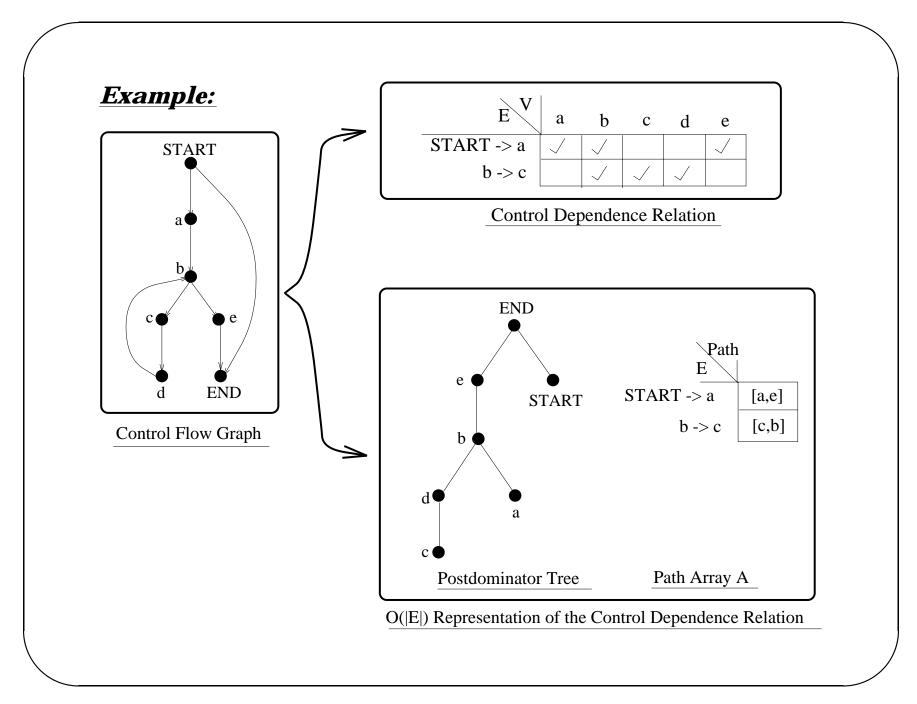
=> There is no point in constructing the entire relation

What structure is there in the control dependence relation?

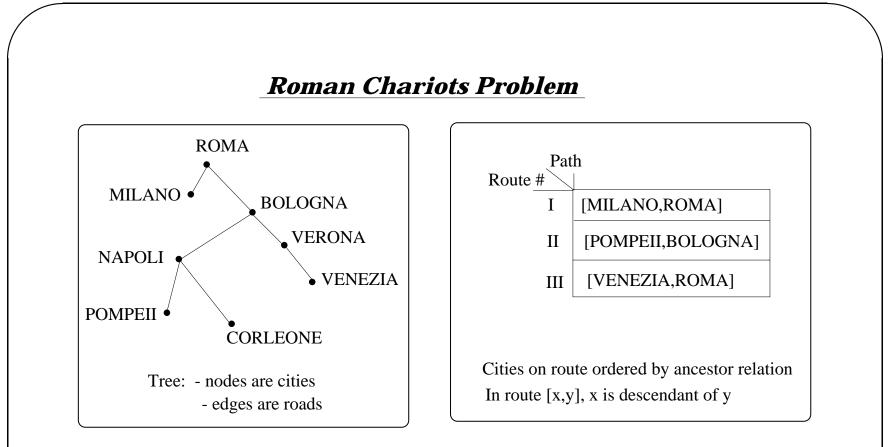
Control dependence relation:

- nodes that are control dependent on an edge e form a simple path in the postdominator tree
- in a tree, a simple path is uniquely specified by its endpoints

Postdominator tree + endpoints of each control dependence path can be built in O(|E|) space and time



How can we use the compact representation of the CDR to answer queries for CD,CONDS and CDEQUIV sets in time proportional to output size?



Given a tree T, and an array A of chariot routes specified by endpoints, design a data structure to answer the following queries in optimal time.

(a) CD(n): Which cities are served by chariot n?
(b) CONDS(w): Which chariots serve city w?
(c) CDEQUIV(w): Which cities are served by the same chariots that serve w?

CD(n): Which cities are served by chariot n?

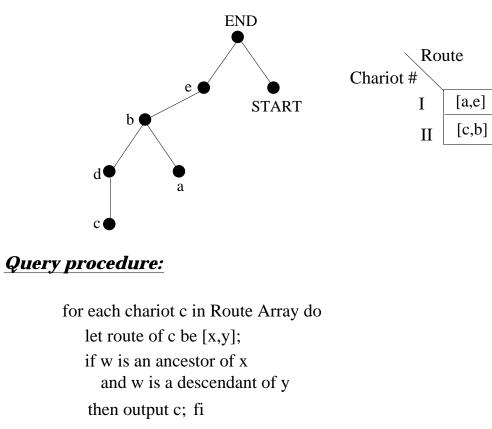
Query procedure: (similar to FOW 87)

- Look up entry for chariot n in Route Array (say it is [x,y])
- Traverse nodes in tree T, starting at x and ending at y
- Output all nodes encountered in traversal

(cf. CDG: many routes can share tree nodes/edges)

CD query time is proportional to output size.

CONDS(w): Which chariots serve city w?

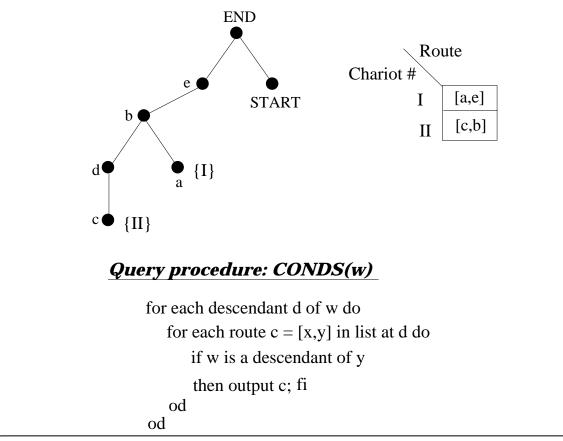


od

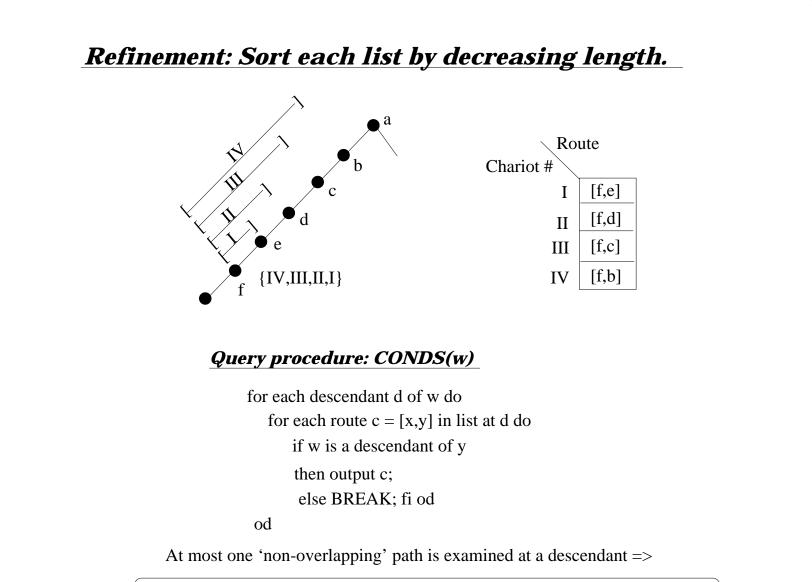
Can we avoid examining all routes in Route Array?

Key Idea (II): Cache route information in tree

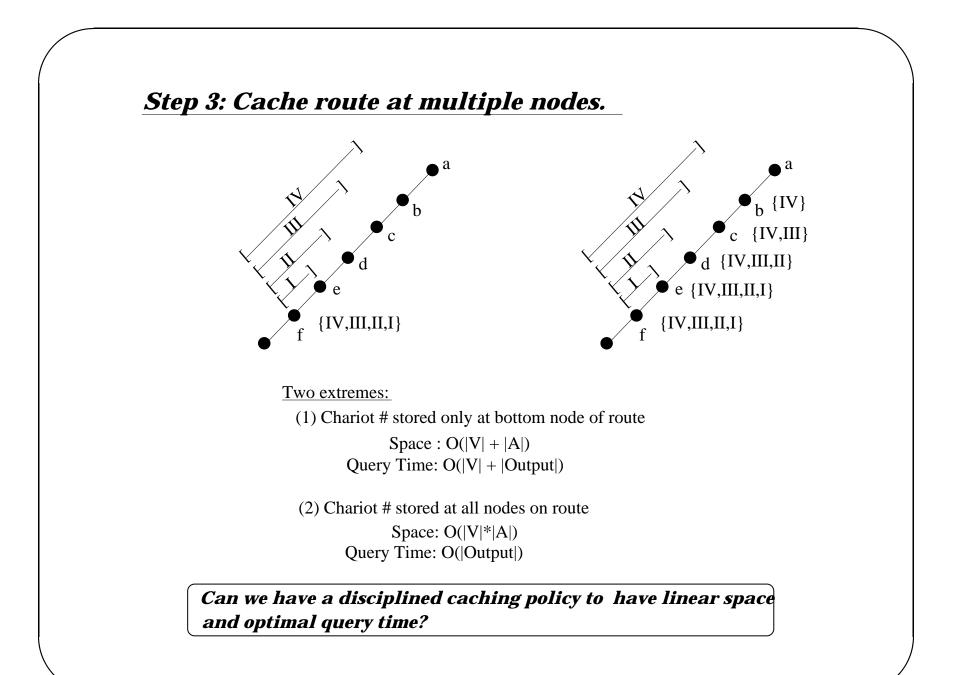
At each node n in the tree, keep a list of chariot # s whose bottom node is n.



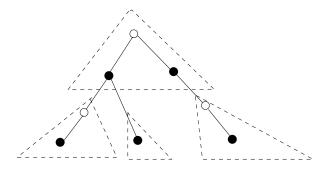
Query time is proportional to # of descendants + size of all lists at descendants



Query time is proportional to size of output + # of descendants



Key idea (III): Cache a route at multiple nodes



Divide tree into ZONES

Query procedure: Visit only nodes below query node

and in the same zone as query node

Zone construction: For all nodes v, $|Z_v| \leq \alpha |A_v| + 1$

=> Query time $|A_{V} + |Z_{V}|$ ($\alpha + 1$) $|A_{V}|$

Caching Rule:

- Nodes are partitioned into
 - boundary nodes: lowest nodes in zone
 - interior nodes: all other nodes
- Caching rule:
 - boundary node: store all chariots serving node
 - interior node: store all chariots whose bottom node is that node
- Our algorithm: bottom-up, greedy zone construction

=> space requirements $\leq |A| + |V| / \alpha$

How do we construct zones?

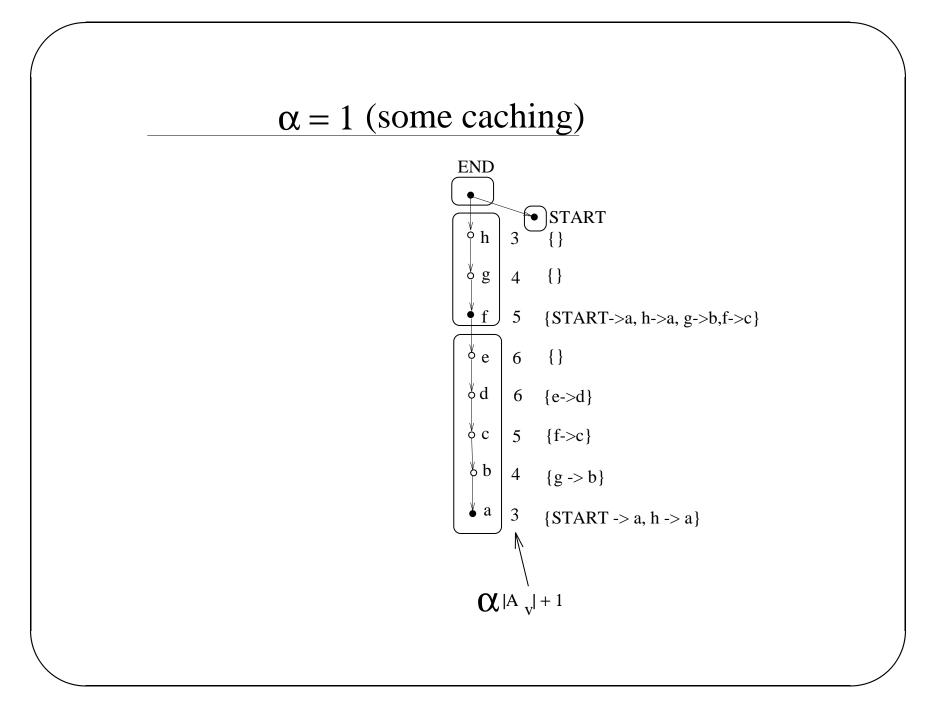
Invariant: For any node v, $|Z_v| \le \alpha |A_v| + 1$ where α is a design parameter.

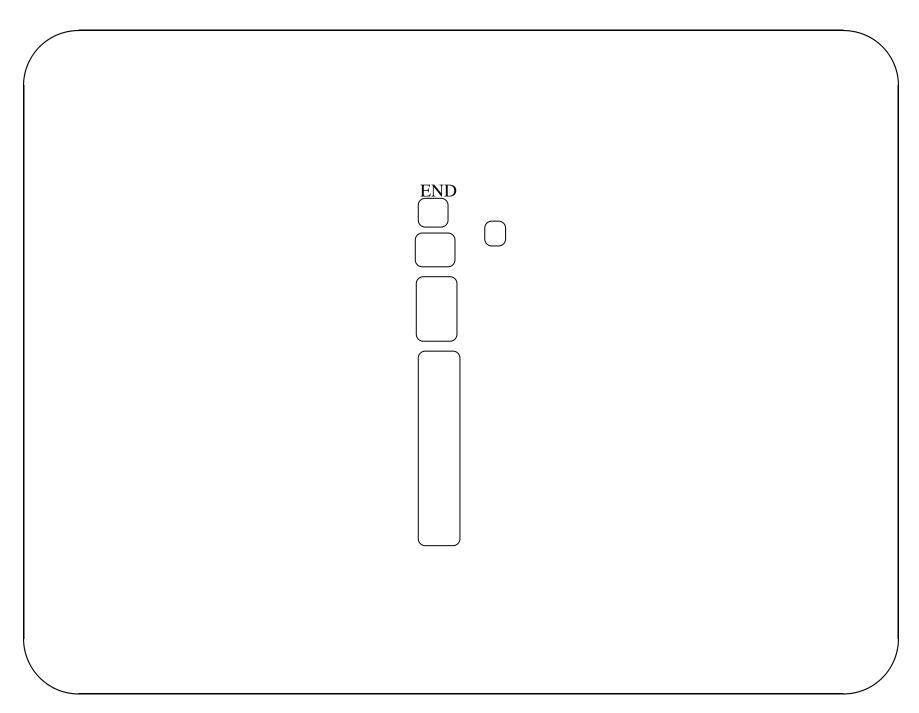
Query time for CONDS(v) = O(
$$|A_{V}| + |Z_{V}|$$
)
= O((α +1)| $A_{V}|$ + 1)
= O($|A_{V}|$)

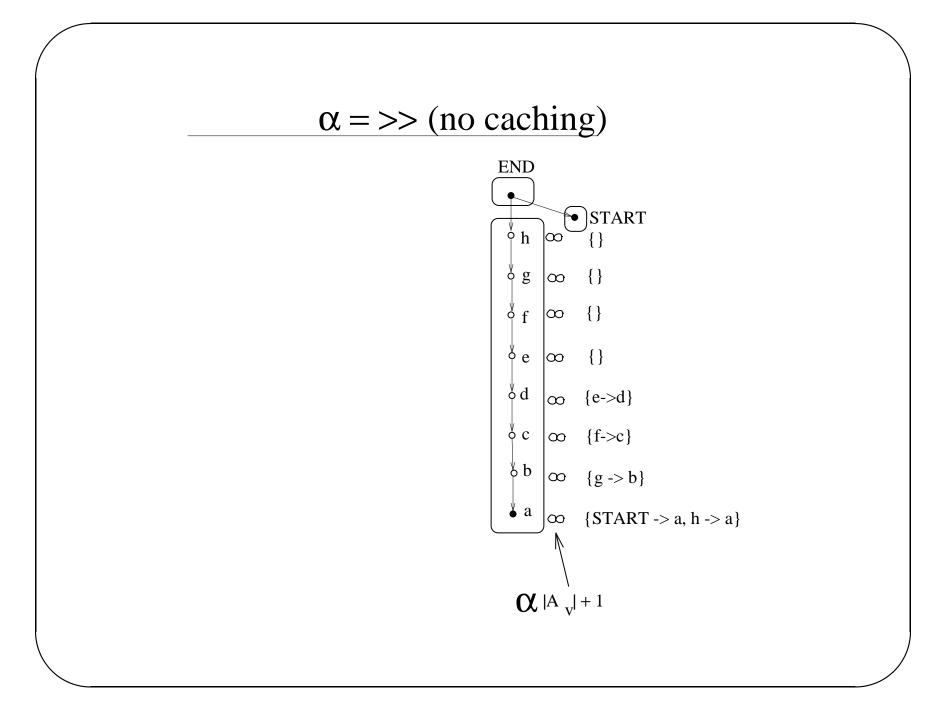
 (\mathbf{I})

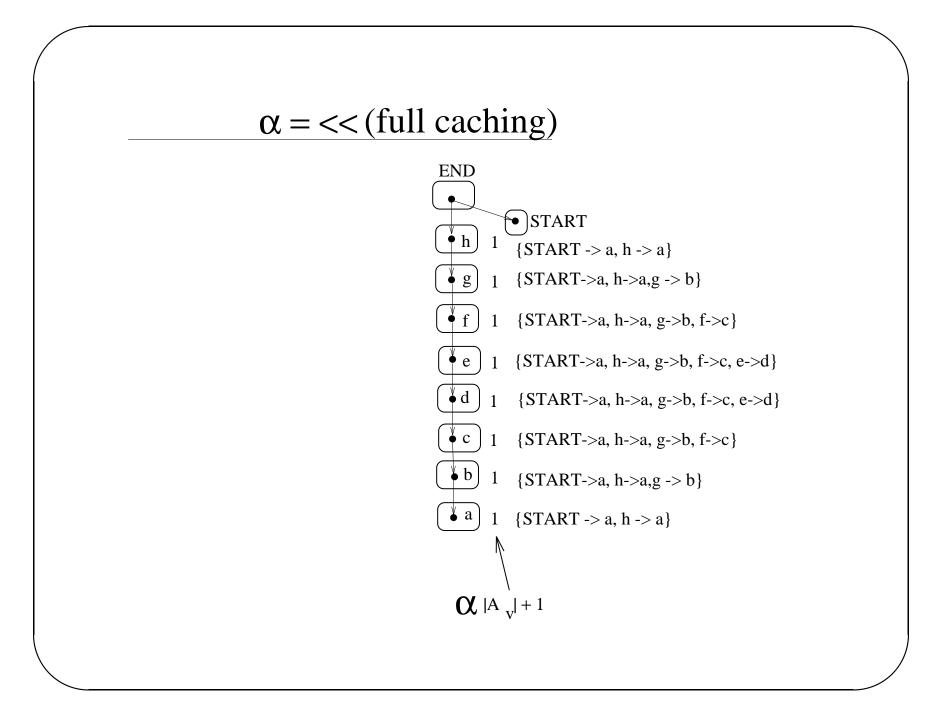
Build zones bottom-up, making them as large as possible w/o violating invariant

v is a leaf node => make v a boundary node v is an interior node => if $(1 + \sum_{\substack{u \in children(v)}} |Z_u|) > \alpha |A_v| + 1$ then make v a boundary node else make v an interior node

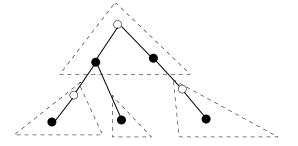








Summary of CONDS Approach:



Query Time: $(\alpha + 1) |A_v|$ Space : $|A| + |V| / \alpha$

- Parameter α is used to partition tree into zones

- $\alpha \ll$: lower query time, increased space requirements
- $\alpha >>$: higher query time, lower space requirements
- Nodes are partitioned into
 - boundary nodes: lowest nodes in zone
 - interior nodes: all other nodes
- Caching rule:
 - boundary node: store all chariots serving node
 - interior node: store all chariots whose bottom node is that node
- Query procedure:

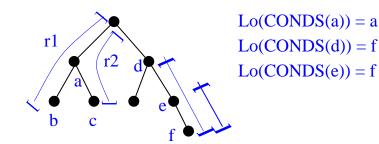
Visit only nodes below query node and in the same zone as query node

CDEQUIV(v): Which cities are served by same chariots that serve v?

- Ferrante, Ottenstein, Warren 87: $O(|E|^{-3})$ using hashing for set equality
- Cytron, Ferrante, Sarkar 90: $O(|E|^{-2})$
- Ball 92: O(|E|) for structured programs
- Podgurski 93: O(|E|) for forward control dependence in general graphs
- Johnson, Pearson, Pingali 94: O(|E|) for general graphs (optimal)

CDEQUIV for Roman Chariots Problem

- cleaned-up version of JPP94 algorithm
- compute two finger prints for CONDS sets
 - . size of CONDS set
 - . Lo:lowest node contained in all routes of CONDS set



Two CONDS sets are equal iff they have the same finger-prints. Can compute finger-prints in O(|V| + |A|) space and time

<u>APT</u>

1. Postdominator tree with bidirectional edges

2. dfs-number[v]: integer

- used for ancestorship determination in CONDS query

3. boundary?[v]: boolean

- true if v is a boundary node, false otherwise

- used in CONDS query

4. L[v]: list of chariots #'s/control dependences

- boundary node: all chariots serving v (all control dependences of v)

- interior node: all chariots whose bottom node is v (all immediate control dependences of v)

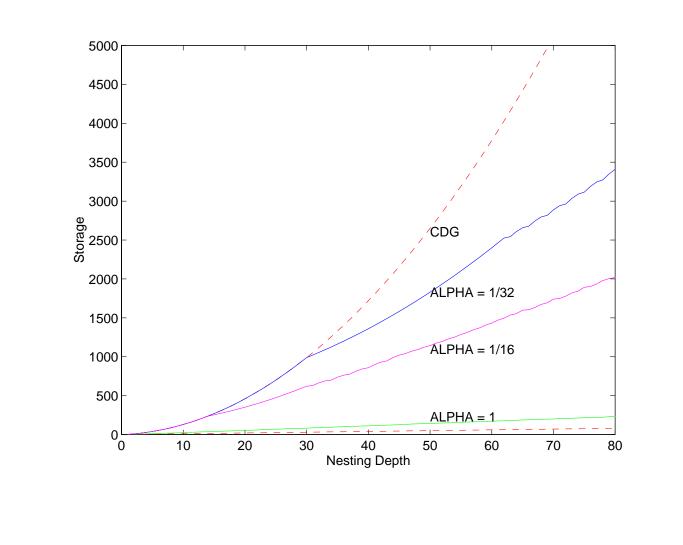
- used in CONDS query

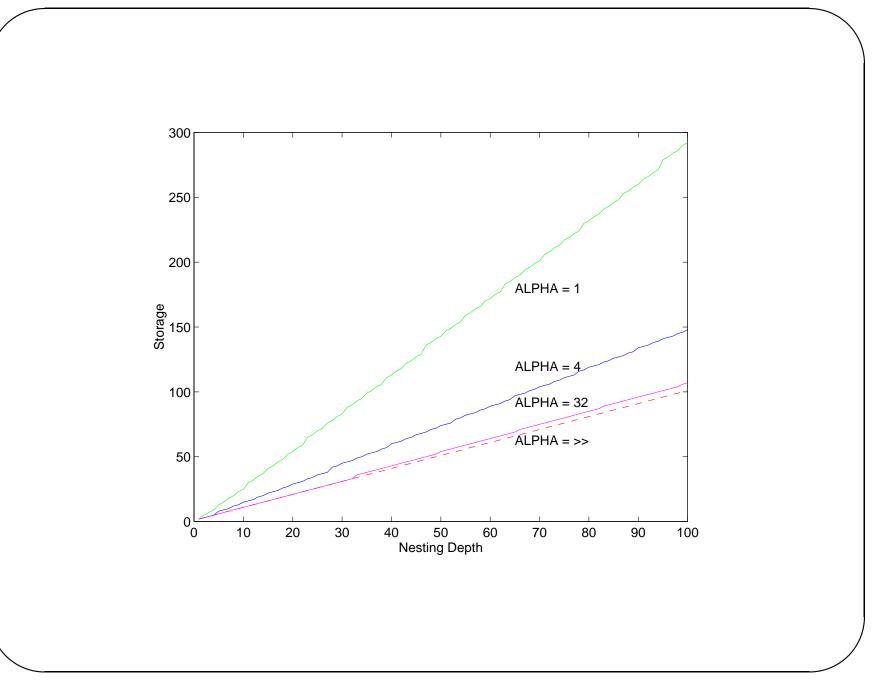
5. R[v]: pointer to CDEQUIV equivalence class

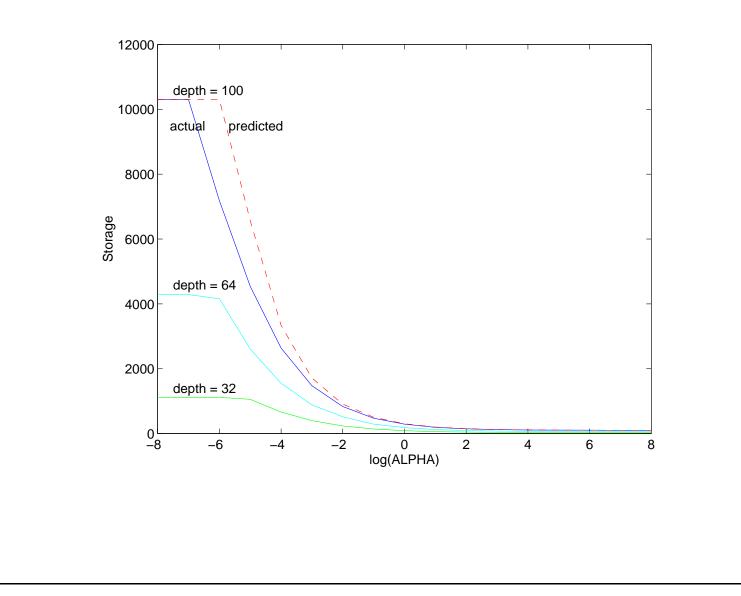
- used in CDEQUIV query

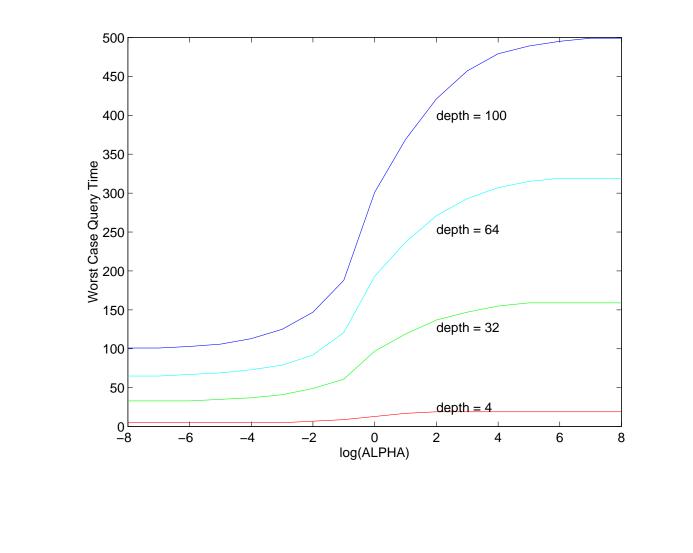
Query time: $(\alpha+1)$ * output-size Space: $|E| + |V| / \alpha$

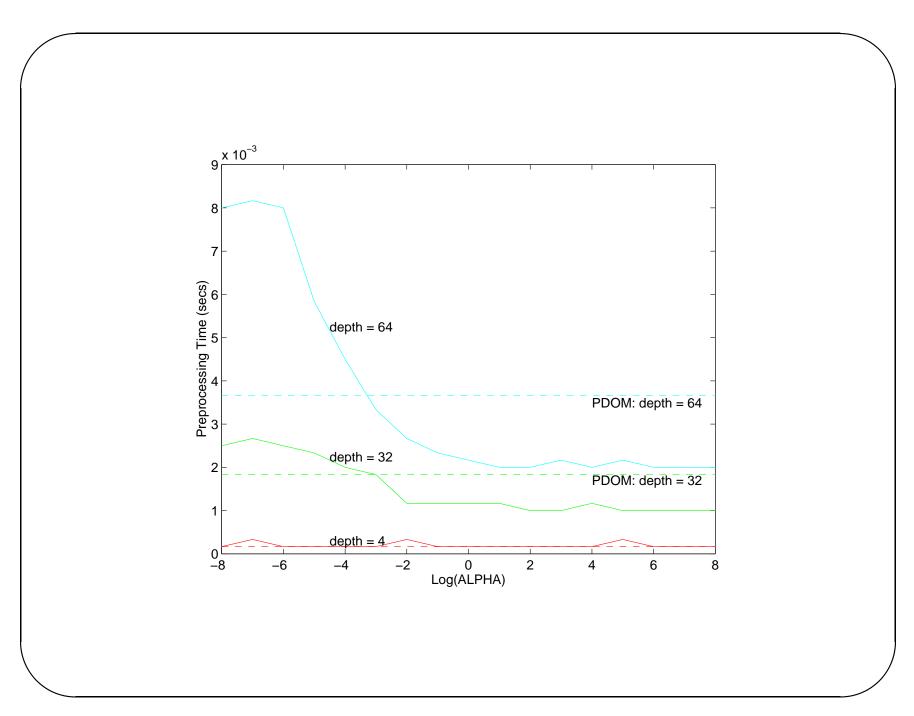
Experimental Results

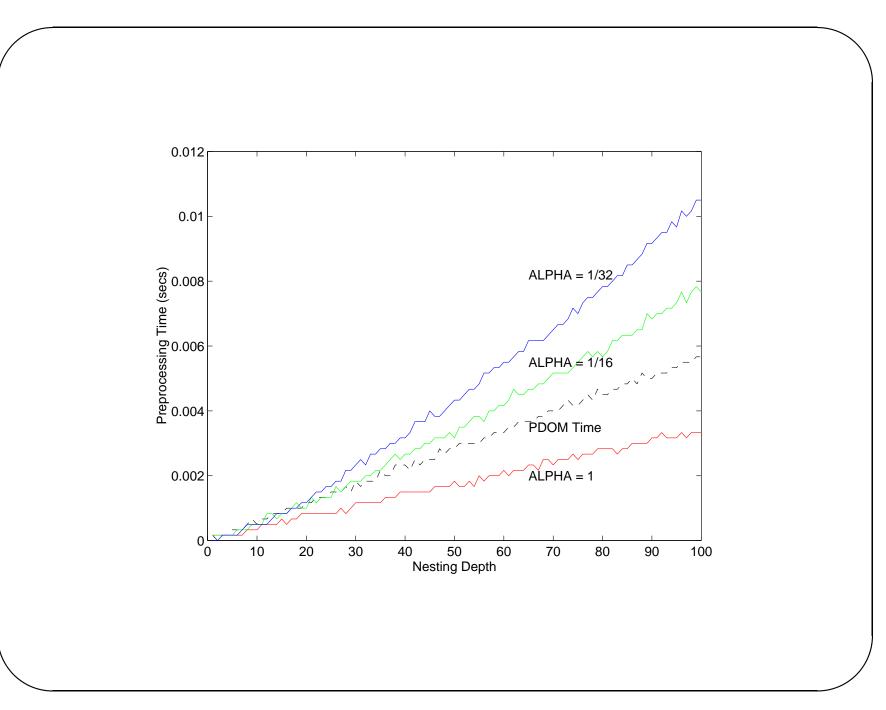


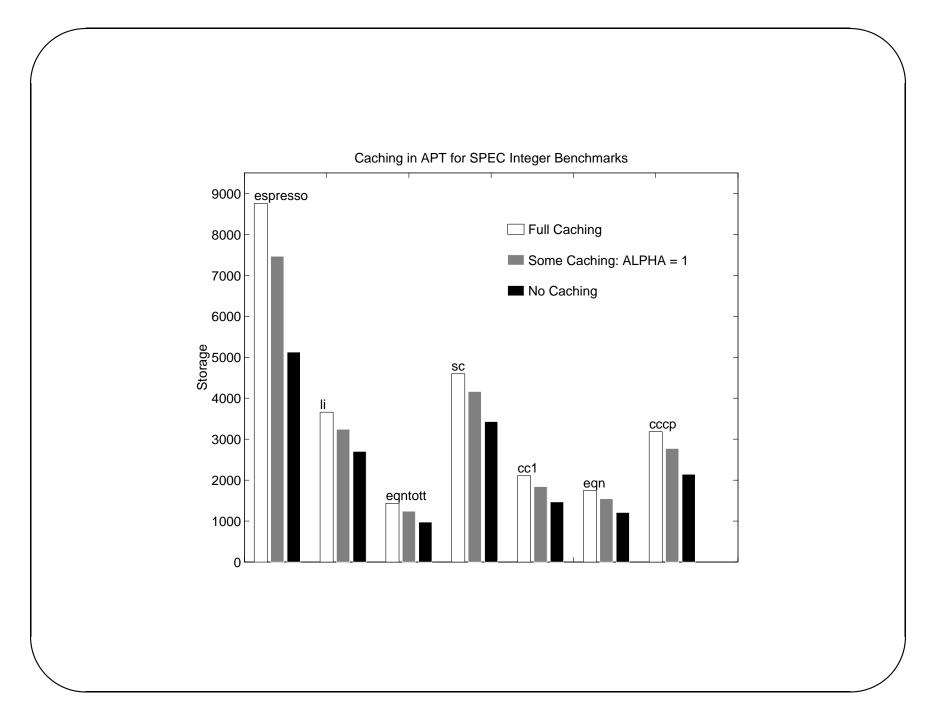


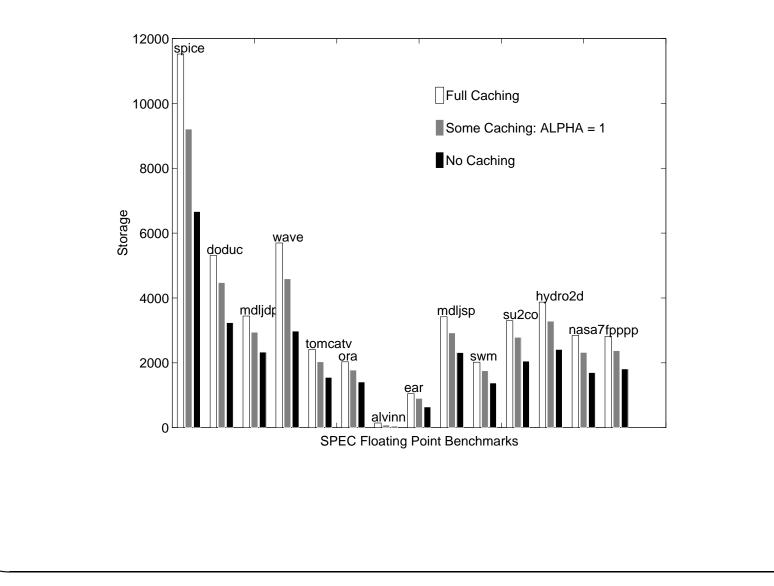


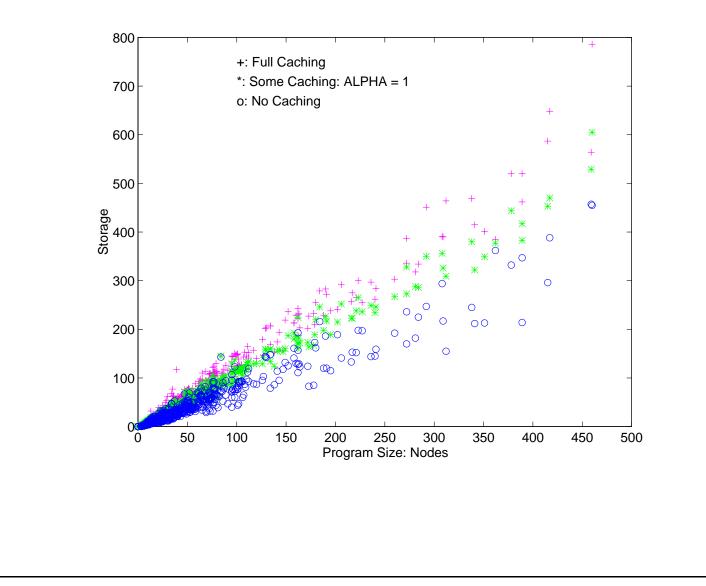


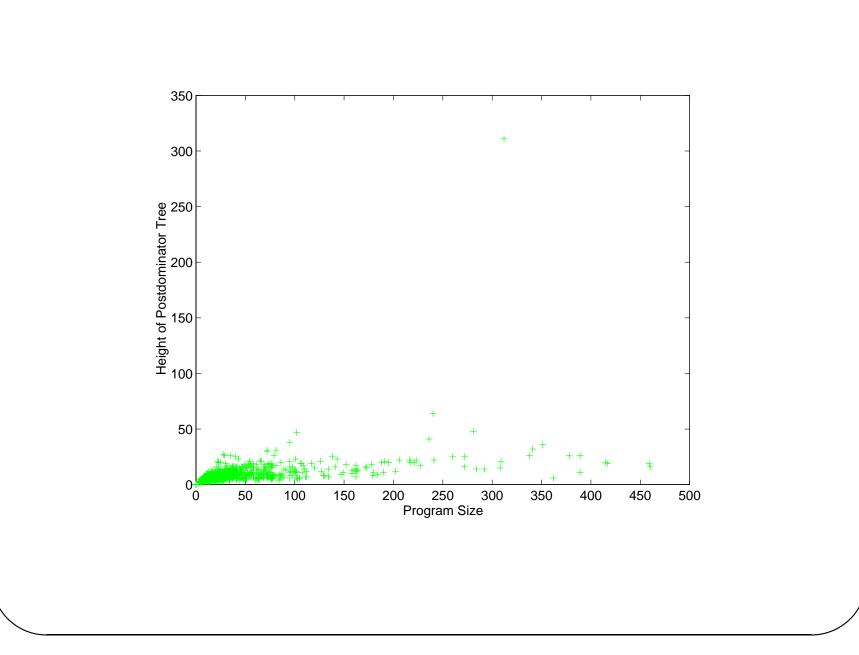






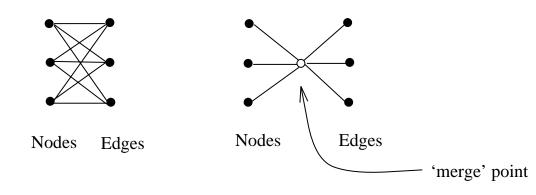




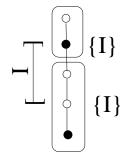


<u>Comparison with factoring:</u>

- Factoring attempts to reduce size of CDG by making nodes 'share' control dependences in the representation (CFS 90)



- Our caching approach can be viewed as factoring in which 'filtered search' is used to answer queries (Chazelle)



Other Applications of APT

Control Dependence		Dataflow Analysis
CONDS CDEQUIV	iterate > iterate >	SSA,GSA DFG,PDW,VDG,
CD		

ADT : augmented dominator tree (APT on reverse CFG)

ADT and APT

- can be used to build SSA form in $O(E)$ per variable
- subsumes algorithm of Cytron et al ($\alpha \ll$)
- subsumes algorithm of Sreedhar and Gao ($\alpha >>)$
 - can be used to build DFG in O(E) time per variable - SESE determination in O(E) time - see Johnson, Pearson, Pingali (PLDI 94) Johnson's thesis at Cornell

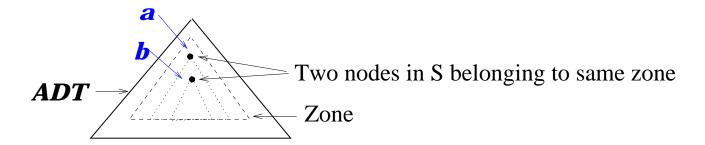
SSA Computation

- phi-placement = iterated dominance frontier computation
- exploit the fact that conds relation is same as edge dominance frontier relation in reverse graph

Solution: Use APT on reverse graph = ADT on CFG

- First, look at DF(S) where S is given offline

Algorithm: Sort S by level, and query in bottom-up order



- to compute DF(b), visit sub-zone below b

- after this, to compute DF(a), no need to visit subzone below a !

Algorithm:

- Sort nodes in S by level.
- Remove nodes from sorted list by decreasing level order, and query in *ADT*
- After a node is queried, mark it in **ADT** so further queries that reach v do not look below v.

Time = O(|V| + |A|) (O|E|) in CFG terms

What if set for querying is given online?

- We can use same strategy provided nodes are presented for querying in bottom-up order.

- Happily, if n is in DF(m), then level(n) <= level(m) !!

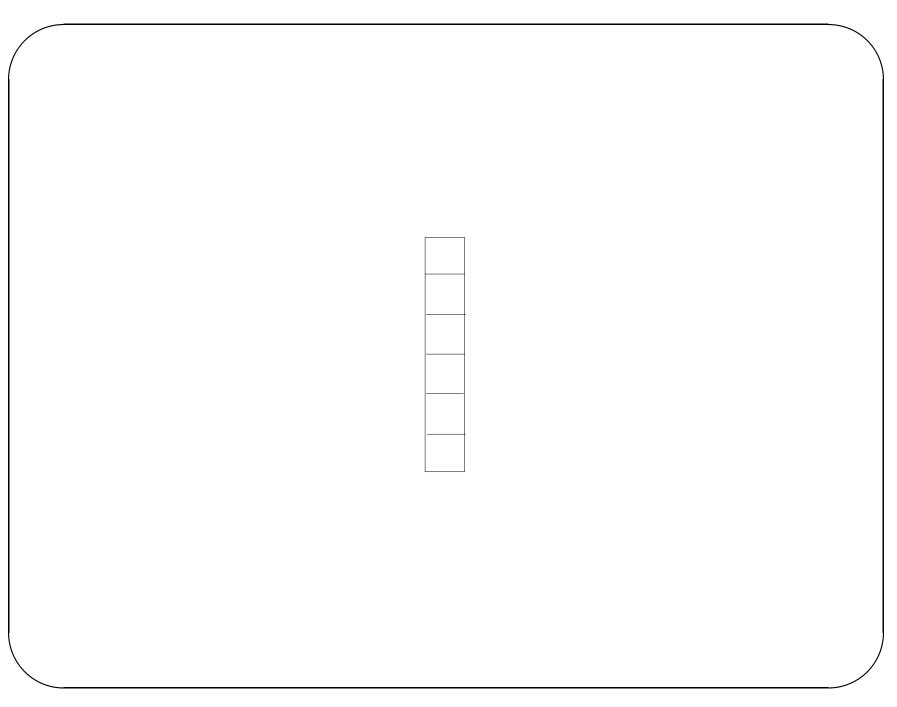
=> use a priority queue for 'dynamic sorting'

- Priority queue implementation: (k = # of keys = height of ADT)

- van Emde Boas: O(log(log(k))) per insertion and deletion

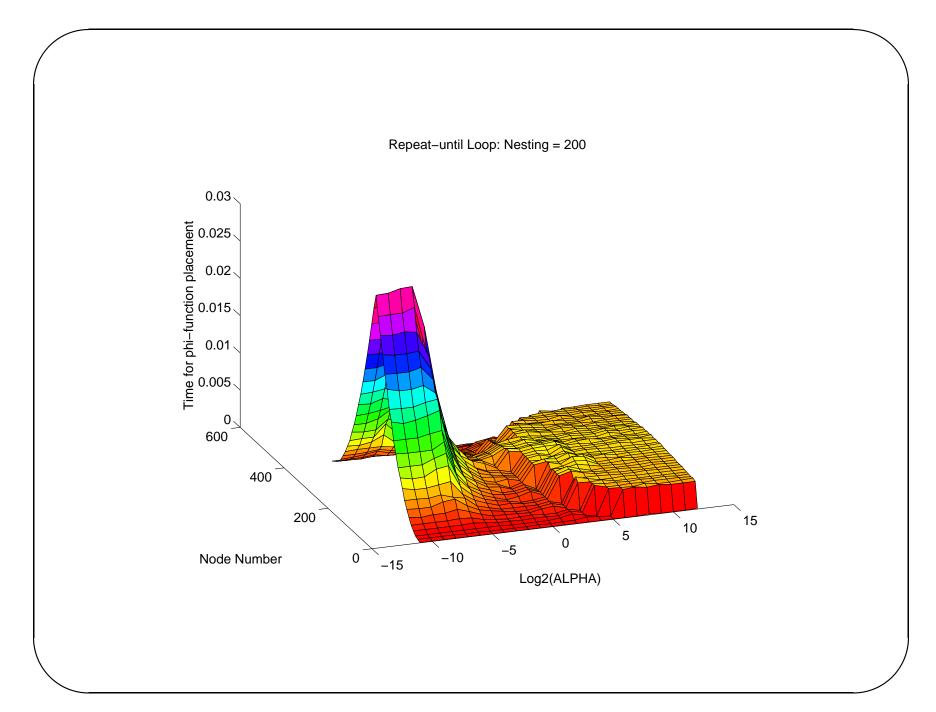
- Sreedhar and Gao: use an array of size k

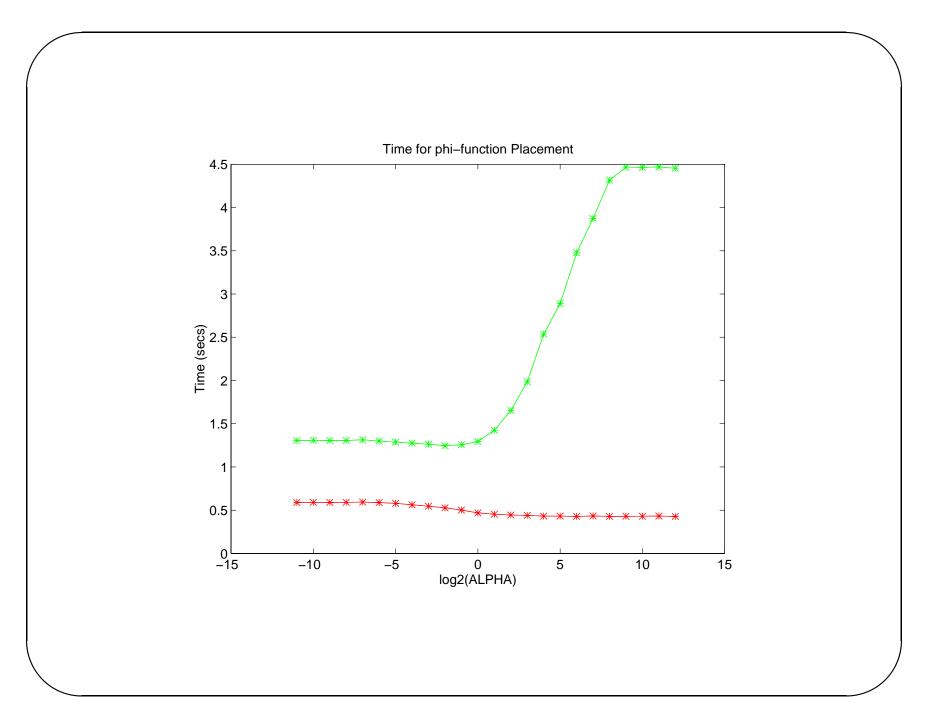




Remarks:

- Time to build SSA form: O(|E|) per variable
- Subsumes algorithms of Cytron etal and Sreedhar and Gao
 - $\alpha \iff$ Cytron et al [91] O(|E|*|V|) per variable
 - $\alpha >>$: Sreedhar and Gao (PLDI 95) O(|E|) per variable
- Same idea can be used to build sparse dataflow evaluator graphs for other dataflow problems
- What is best value of α ? Interesting tradeoff
 - small value: repeatedly discover that some node is in transitive closure
 - large value: time to compute individual DF sets may be large
 - intermediate value may be best!





<u>Conclusions</u>

1. APT data structure:

Query time: $(\alpha+1)$ * output-size Preprocessing Space and Time: $O(|E| + |V| / \alpha)$

Control Dependence

CONDS (v): optimal CDEQUIV(v): optimal CD(e): optimal Dataflow Analysis

SSA: O(|E|) per variable SDEG: O(|E|) per problem DFG: O(|E|) per variable

2. Key concepts

- exploit structure of control dependence relation
- intelligent caching of information

Applications of Technology

- DCPI: Digital Continuous Profiling Infrastructure uses control dependence equivalence algorithm to reduce overhead of program profiling http://www.research.digital.com/SRC/dcpi/
- *IBM VLIW Compiler*: Ebcioglu et al use Dependence Flow Graph (DFG) as their IF in VLIW compiler work http://www.research.ibm.com/vliw/
- Aristotle Analysis System: Ohio State University // uses weak control dependence algorithms
- Toby compiler (IBM), Intel,...: use some of the control dependence algorithms