Review: The Ideal Scheduling Outcome
List Scheduling
Before After
T + 1 cycle
i [l EEEE EEE- N N
Time T
N cycles
Todd C. Mowry
€S745: Optimizing Compilers What prevents us from achieving this ideal?
CS745: Instruction Scheduling -2- Todd C. Mowry
Review: Scheduling Constraints Scheduling Roadmap
Hardware Resources
finite set of FUs with instruction type, bandwidth, and \/ Pk \/ """"" . 1
latency constraints w=a b H : a+hb
cache hierarchy also has many constraints y=c+d P e
Data Dependences /\ l

can't consume a result before it is produced

ambiguous dependences create many challenges
Control Dependences List Scheduling: Trace Scheduling: Software Pipelining:
* within a basic block + across basic blocks * across loop iterations

impractical to schedule for all possible paths
choosing an "expected” path may be difficult
recovery costs can be non-trivial if you are wrong

CS745: Instruction Scheduling -3- Todd C. Mowry CS745: Instruction Scheduling -4- Todd C. Mowry

List Scheduling

The most common technique for scheduling instructions
within a basic block

We don't heed to worry about: \/
control flow Xx=a+b
y=c+d

We do need to worry about: /\

data dependences
hardware resources

Even without control flow, the problem is still NP-hard

CS745: Instruction Scheduling -5- Todd C. Mowry

List Scheduling Algorithm:
Inputs and Outputs

Algorithm reproduced from:

"An Experimental Evaluation of List Scheduling”, Keith D. Cooper, Philip J.
Schielke, and Devika Subramanian. Rice University, Department of Computer
Science Technical Report 98-326, September 1998.

Inputs: | Output:
Data Precedence Machine :
Graph (DPG) Parameters Scheduled Code Cycle
® @ @ |#otrus [o]e]—]o
@ @ 2 INT,1FP bl o-—- | I1 | I4 1
Latencies: :
_—— v I3 | I8 | I6 2
add = 1 cycle, .| | 10 THE
@ @ @ Pipelining: I — | I
@ 1 add/cycle, ... P I7] I9 | 15 4

'
€5745: Instruction Scheduling -6- Todd C. Mowry

List Scheduling: The Basic Idea

Maintain a list of instructions that are ready to execute
data dependence constraints would be preserved
machine resources are available

Moving cycle-by-cycle through the schedule template:
choose instructions from the list & schedule them
update the list for the next cycle

Cycle

= o
1

2

CS745: Instruction Scheduling -7- Todd C. Mowry

What Makes Life Interesting: Choice

Easy case:
all ready instructions can be scheduled this cycle

Cwu v > [T]+

Interesting case:
we need to pick a subset of the ready instructions

Cwmuoeoom [1]+
~—F

List scheduling makes choices based upon priorities
assighing priorities correctly is a key challenge

CS745: Instruction Scheduling -8- Todd C. Mowry

Intuition Behind Priorities

Intuitively, what should the priority correspond to?
What factors are used to compute it?

data dependences?

machine parameters?

@ @ @ # of FUs:
@ @ 2INT,1FP

@ @ @ add =1 cycle, ...
Pipelining:
@ 1 add/cycle, ...
CS745: Instruction Scheduling -9- Todd C. Mowry

Representing Data Dependences:
The Data Precedence Graph (DPG)

Two different kinds of edges:

Computing Priorities

Let's start with just true dependences (i.e. “edges” in DPG)
Priority = /atency-weighted depth in the DPG

l

.....

@ @@ @
@ @

@™ @® @
<)

CS745: Instruction Scheduling -11- Todd C. Mowry

Code DPG
10: x = 1; true “edges™ E @
11- y>x; (read-after-write) e = (I0,I1)
12: x iz; “anti-edges": E' , _
13: z =°x; (write-after-read) = (I112)
e=(I213)
Why distinguish them? I3)
do they affect scheduling differently?
What about output dependences?
€5745: Instruction Scheduling -10- Todd C. Mowry
Computing Priorities (Cont.)
Now let's also take anti-dependences into account
i.e. anti-edges in the set E'
latency(x) if x is a leaf
priority(z) = { maz(latency(w) + maz(, yye plpriority(y)),
mam(m.y)eE/(priority(y))) otherwise.

0 @ @
@, @©

& ® ®
®

CS745: Instruction Scheduling -12- Todd C. Mowry

List Scheduling Algorithm

cycle = 0;
ready-list = root nodes in DPG; inflight-list = {};

while ((Jready-list]+]inflight-list] > 0) && an issue slot is available) {
for op = (all nodes in ready-list in descending priority order) {
if (an FU exists for op to start at cycle) {
remove op from ready-list and add to inflight-list;
add op to schedule at time cycle;
if (op has an outgoing anti-edge)
add all targets of op’s anti-edges that are ready to ready-list;
3
b
cycle = cycle + 1;
for op = (all nodes in inflight-list)
if (op finishes at time cycle) {
remove op from inflight-list;
check nodes waiting for op & add to ready-list if all operands available;

Example
10: a=1 Q@
11: £ = +
brl @ 0
13: =9
ostin BOH® ® 2
15: d = 13 3
16: = 19;
ek @OOB®E ;
18: J =d + . 5
I9:Jz:—ly @ 6
110: JWP L1

2 identical fully-pipelined FUs
adds take 2 cycles; all other insts take 1 cycle

CS745: Instruction Scheduling -14-

Todd C. Mowry

¥

3
3
CS745: Instruction Scheduling -13- Todd C. Mowry
Example
10 a=1 Cycle
I1: f=a+x 0
120 b - 7 @ I0 | 12
13: ¢ =9 I1 I3 1
ig=f+b @O @© 5 |19 | 2
15: d = 13 14 17 3
16: e = 19;
17: h=Ff+c ®@z®®® I8 I6 4
18: Jj=d+vy — . 5
19: z = -1 @ T10 6
110: JVWP L1

2 identical fully-pipelined FUs

adds take 2 cycles; all other insts take 1 cycle
CS745: Instruction Scheduling -15- Todd C. Mowry

What if We Break Ties Differently?

(9}

+
X

N
Ne 0 QQ 0 T =
Q=P P =-HoOo~NY P
+
o

-1

O‘Lﬂ-waHOF
I\

110: JMP L1

2 identical fully-pipelined FUs
adds take 2 cycles; all other insts take 1 cycle

CS745: Instruction Scheduling -16-

Todd C. Mowry

What if We Break Ties Differently?

10: a =1 Cycle
S S|
L @00 ® @a):
oot ®®@®® o]
A &9 my e
110: JVWP L1

2 identical fully-pipelined FUs
adds take 2 cycles; all other insts take 1 cycle

CS745: Instruction Scheduling -17- Todd C. Mowry

Contrasting the Two Schedules

Breaking ties arbitrarily may not be the best approach

Cycle Cycle

10 |12 | O 0 |12]| 0
1|13 | 1 L@ !
15 | 19 | 2 65) 2
4 |17 | 3 4 f17 | 3
8 |16 | 4 6 | 4
— | 1] 5 110 5
I10 6

€5745: Instruction Scheduling -18- Todd C. Mowry

Backward List Scheduling

Modify the algorithm as follows:
reverse the direction of all edges in the DPG
schedule the finish times of each operation
start times must still be used to ensure FU availability

Impact of scheduling backwards:
clusters operations near the end (vs. the beginning)
may be either better or worse than forward scheduling

CS745: Instruction Scheduling -19- Todd C. Mowry

Backward List Scheduling Example:
Let's Schedule it Forward First

INT INT MEM
LDIa [LSL ----
LDIb [LDIc ----
LDId [ADDa | ----
ADDb [ADDc | ----
ADDd | ADDI| STa
CMP e STb
o - STc
o - STd
e e STe
| BR - -

Hardware parameters:

2 INT units: ADDs take 2 cycles; others take 1 cycle
1 MEM unit: stores (ST) take 4 cycles

(9
:5\om\10~m.z>wmqu
©

12

CS745: Instruction Scheduling -20- Todd C. Mowry

Now Let's Try Scheduling Backward

INT MEM Cycle

= 0
[e
olc | — | 2
[DId | 57e | 3
LDIa STd 4
---- STc 5
STb | 6
o STa 7
— | 8
— 1 9
—— | 10
—— |1
Hardware parameters:
2 INT units: ADDs take 2 cycles; others take 1 cycle
1 MEM unit: stores (ST) take 4 cycles
CS745: Instruction Scheduling -21- Todd C. Mowry

Contrasting Forward vs. Backward
List Scheduling

Forward Backward

INT INT MEM Cycle INT INT MEM Cycle
[DTa [LSC ——] 0 [DIa | —— e
D6 | [bIc | — | 1 ADDT | LSC | 1
[DId | ADDa | — | 2 ADDd | IDIc | — | 2
ADDb | ADDC | — | 3 ADDc | LDId | S7e | 3
ADDd | ADDIL | STa | 4 ADDb | LDIa | S7d | 4
CMP_ | STb | 5 ADDa | ---- STc | 5
[[STc 6 - e STb 6
STd | 7 STa | 7
- oo STe 8 - - - 8
— 1 9 — 1 9
— | 10 cmMp_| — | 10
N BR] 11
[BR - | 12

backward scheduling clusters work near the end
backward is better in this case, but this is not always true

€S745: Instruction Scheduling -22- Todd C. Mowry

Evaluation of List Scheduling

Cooper et al_propose "RBF" scheduling:
schedule each block M times forward & backward
break any priority ties randomly

For real programs:
regular list scheduling works very well
For synthetic blocks:
RBF wins when “available parallelism” (AP) is ~2.5
for smaller AP, scheduling is too constrained
for larger AP, any decision tends to work well

CS745: Instruction Scheduling -23- Todd C. Mowry

List Scheduling Wrap-Up

The priority function can be arbitrarily sophisticated
e.g., filling branch delay slots in early RISC processors

List scheduling is widely used, and it works fairly well

It is limited, however, by basic block boundaries

CS745: Instruction Scheduling -24- Todd C. Mowry

Scheduling Roadmap

\/

X=a+b
y;c+d

7\

List Scheduling: Trace Scheduling:

a+b

y”c+d

Software Pipelining:

+ within a basic block -+ across basic blocks

CS745: Instruction Scheduling

_25-

* across loop iterations

Todd C. Mowry

