
1

List Scheduling

Todd C. Mowry
CS745: Optimizing Compilers

Todd C. MowryCS745: Instruction Scheduling -2-

Review: The Ideal Scheduling Outcome

What prevents us from achieving this ideal?

Time

N cycles

Before

1 cycle

After

Todd C. MowryCS745: Instruction Scheduling -3-

Review: Scheduling Constraints

Hardware Resources
• finite set of FUs with instruction type, bandwidth, and

latency constraints
• cache hierarchy also has many constraints

Data Dependences
• can’t consume a result before it is produced
• ambiguous dependences create many challenges

Control Dependences
• impractical to schedule for all possible paths
• choosing an “expected” path may be difficult

• recovery costs can be non-trivial if you are wrong

Todd C. MowryCS745: Instruction Scheduling -4-

…

Scheduling Roadmap

List Scheduling:
• within a basic block

y = c + d

x = a + b

Trace Scheduling:
• across basic blocks

x = a + b

y = c + d

…

Software Pipelining:
• across loop iterations

y = c + d

x = a + b

2

Todd C. MowryCS745: Instruction Scheduling -5-

List Scheduling

The most common technique for scheduling instructions
within a basic block

We don’t need to worry about:
• control flow

We do need to worry about:
• data dependences
• hardware resources

Even without control flow, the problem is still NP-hard

…
y = c + d

x = a + b

Todd C. MowryCS745: Instruction Scheduling -6-

List Scheduling Algorithm:
Inputs and Outputs

Algorithm reproduced from:
• “An Experimental Evaluation of List Scheduling", Keith D. Cooper, Philip J.

Schielke, and Devika Subramanian. Rice University, Department of Computer
Science Technical Report 98-326, September 1998.

Inputs: Output:
Data Precedence

Graph (DPG)
Machine

Parameters Scheduled Code

I0

I3
I10
I7

I2
I1
I8

I9

I4
I6
I11
I5

Cycle

0
1
2
3
4

I0 I2

I6I4

I3 I8

I1

I5

I9

of FUs:
2 INT, 1 FP

Latencies:
add = 1 cycle, …

Pipelining:
1 add/cycle, …

Todd C. MowryCS745: Instruction Scheduling -7-

List Scheduling: The Basic Idea

Maintain a list of instructions that are ready to execute
• data dependence constraints would be preserved
• machine resources are available

Moving cycle-by-cycle through the schedule template:
• choose instructions from the list & schedule them
• update the list for the next cycle

I2 I0

Cycle

0
1
2

Todd C. MowryCS745: Instruction Scheduling -8-

What Makes Life Interesting: Choice

Easy case:
• all ready instructions can be scheduled this cycle

Interesting case:
• we need to pick a subset of the ready instructions

List scheduling makes choices based upon priorities
• assigning priorities correctly is a key challenge

I5 I1 I7

I5 I1 I2 I7I0 ???

3

Todd C. MowryCS745: Instruction Scheduling -9-

Intuition Behind Priorities

Intuitively, what should the priority correspond to?
What factors are used to compute it?
• data dependences?
• machine parameters?

I0 I2

I6I4

I3 I8

I1

I5

I9

of FUs:
2 INT, 1 FP

Latencies:
add = 1 cycle, …

Pipelining:
1 add/cycle, …

Todd C. MowryCS745: Instruction Scheduling -10-

Two different kinds of edges:

Why distinguish them?
• do they affect scheduling differently?

What about output dependences?

Representing Data Dependences:
The Data Precedence Graph (DPG)

I0: x = 1;
I1: y = x;
I2: x = 2;
I3: z = x; I2

I0

I3

I1

DPGCode
true “edges”: E

(read-after-write) e = (I0,I1)

e = (I2,I3)

x
x “anti-edges”: E’

(write-after-read) e’ = (I1,I2)

Todd C. MowryCS745: Instruction Scheduling -11-

Computing Priorities

Let’s start with just true dependences (i.e. “edges” in DPG)
Priority = latency-weighted depth in the DPG

I0 I2

I6I4

I3 I8

I1

I5

I9

Todd C. MowryCS745: Instruction Scheduling -12-

Computing Priorities (Cont.)

Now let’s also take anti-dependences into account
• i.e. anti-edges in the set E’

I0 I2

I6I4

I3 I8

I1

I5

I9

e’e’

4

Todd C. MowryCS745: Instruction Scheduling -13-

List Scheduling Algorithm

cycle = 0;
ready-list = root nodes in DPG; inflight-list = {};

while ((|ready-list|+|inflight-list| > 0) && an issue slot is available) {
for op = (all nodes in ready-list in descending priority order) {

if (an FU exists for op to start at cycle) {
remove op from ready-list and add to inflight-list;
add op to schedule at time cycle;
if (op has an outgoing anti-edge)

add all targets of op’s anti-edges that are ready to ready-list;
}

}
cycle = cycle + 1;
for op = (all nodes in inflight-list)

if (op finishes at time cycle) {
remove op from inflight-list;
check nodes waiting for op & add to ready-list if all operands available;

}
}

}

Todd C. MowryCS745: Instruction Scheduling -14-

Example

2 identical fully-pipelined FUs
adds take 2 cycles; all other insts take 1 cycle

I0: a = 1
I1: f = a + x
I2: b = 7
I3: c = 9
I4: g = f + b
I5: d = 13
I6: e = 19;
I7: h = f + c
I8: j = d + y
I9: z = -1
I10: JMP L1

I1

I8

I5

I6I4 I7

I3

I10

I9

I2

I0

Cycle

0
1
2
3
4
5
6

Todd C. MowryCS745: Instruction Scheduling -15-

Example

2 identical fully-pipelined FUs
adds take 2 cycles; all other insts take 1 cycle

I0: a = 1
I1: f = a + x
I2: b = 7
I3: c = 9
I4: g = f + b
I5: d = 13
I6: e = 19;
I7: h = f + c
I8: j = d + y
I9: z = -1
I10: JMP L1

I1

I8

I5

I6I4 I7

I3

I10

I9

I2

I0

Cycle

0
1
2
3
4
5
6

I0 I2
I1 I3
I5 I9
I4 I7
I8 I6
--- ---
I10

Todd C. MowryCS745: Instruction Scheduling -16-

What if We Break Ties Differently?

2 identical fully-pipelined FUs
adds take 2 cycles; all other insts take 1 cycle

I0: a = 1
I1: f = a + x
I2: b = 7
I3: c = 9
I4: g = f + b
I5: d = 13
I6: e = 19;
I7: h = f + c
I8: j = d + y
I9: z = -1
I10: JMP L1

I1

I8

I5

I6I4 I7

I3

I10

I9

I2

I0

Cycle

0
1
2
3
4
5
6

1

2 3 3 2 3

444 5

6

5

Todd C. MowryCS745: Instruction Scheduling -17-

What if We Break Ties Differently?

2 identical fully-pipelined FUs
adds take 2 cycles; all other insts take 1 cycle

I0: a = 1
I1: f = a + x
I2: b = 7
I3: c = 9
I4: g = f + b
I5: d = 13
I6: e = 19;
I7: h = f + c
I8: j = d + y
I9: z = -1
I10: JMP L1

I1

I8

I5

I6I4 I7

I3

I10

I9

I2

I0

Cycle

0
1
2
3
4
5
6

I0 I2
I1 I5
I3 I8
I4 I7
I9 I6
I10

Todd C. MowryCS745: Instruction Scheduling -18-

Contrasting the Two Schedules

Breaking ties arbitrarily may not be the best approach

I1

I8

I5

I6I4 I7

I3

I10

I9

I2

I0

Cycle

0
1
2
3
4
5
6

I0 I2
I1 I3
I5 I9
I4 I7
I8 I6
--- ---
I10

Cycle

0
1
2
3
4
5

I0 I2
I1 I5
I3 I8
I4 I7
I9 I6
I101

2 3 3 2 3

444 5

6

Todd C. MowryCS745: Instruction Scheduling -19-

Backward List Scheduling

Modify the algorithm as follows:
• reverse the direction of all edges in the DPG
• schedule the finish times of each operation

• start times must still be used to ensure FU availability

Impact of scheduling backwards:
• clusters operations near the end (vs. the beginning)
• may be either better or worse than forward scheduling

Todd C. MowryCS745: Instruction Scheduling -20-

Backward List Scheduling Example:
Let’s Schedule it Forward First

Hardware parameters:
• 2 INT units: ADDs take 2 cycles; others take 1 cycle
• 1 MEM unit: stores (ST) take 4 cycles

Cycle
0
1
2
3
4
5
6
7
8
9
10
11
12

INT INT MEMLDIa LSL LDIb LDIc LDId

ADDa ADDb ADDc ADDd ADDI

STa STb STc STd STeCMP

BR

LDIa LSL ----
LDIb LDIc ----
LDId ADDa ----
ADDb ADDc ----
ADDd ADDI STa
CMP ---- STb
---- ---- STc
---- ---- STd
---- ---- STe
---- ---- ----
---- ---- ----
---- ---- ----
BR ---- ----

6

Todd C. MowryCS745: Instruction Scheduling -21-

Now Let’s Try Scheduling Backward

Hardware parameters:
• 2 INT units: ADDs take 2 cycles; others take 1 cycle
• 1 MEM unit: stores (ST) take 4 cycles

Cycle
0
1
2
3
4
5
6
7
8
9
10
11

INT INT MEMLDIa LSL LDIb LDIc LDId

ADDa ADDb ADDc ADDd ADDI

STa STb STc STd STeCMP

BR

LDIa ---- ----
ADDI LSL ----
ADDd LDIc ----
ADDc LDId STe
ADDb LDIa STd
ADDa ---- STc
---- ---- STb
---- ---- STa
---- ---- ----
---- ---- ----
CMP ---- ----
BR ---- ----

1

888

7

52 5 5 5 5

7 7 7 7

8 8

Todd C. MowryCS745: Instruction Scheduling -22-

Contrasting Forward vs. Backward
List Scheduling

Cycle
0
1
2
3
4
5
6
7
8
9
10
11

INT INT MEM
LDIa ---- ----
ADDI LSL ----
ADDd LDIc ----
ADDc LDId STe
ADDb LDIa STd
ADDa ---- STc
---- ---- STb
---- ---- STa
---- ---- ----
---- ---- ----
CMP ---- ----
BR ---- ----

Cycle
0
1
2
3
4
5
6
7
8
9
10
11
12

INT INT MEM
LDIa LSL ----
LDIb LDIc ----
LDId ADDa ----
ADDb ADDc ----
ADDd ADDI STa
CMP ---- STb
---- ---- STc
---- ---- STd
---- ---- STe
---- ---- ----
---- ---- ----
---- ---- ----
BR ---- ----

backward scheduling clusters work near the end
backward is better in this case, but this is not always true

Forward Backward

Todd C. MowryCS745: Instruction Scheduling -23-

Evaluation of List Scheduling

Cooper et al. propose “RBF” scheduling:
• schedule each block M times forward & backward
• break any priority ties randomly

For real programs:
• regular list scheduling works very well

For synthetic blocks:
• RBF wins when “available parallelism” (AP) is ~2.5
• for smaller AP, scheduling is too constrained
• for larger AP, any decision tends to work well

Todd C. MowryCS745: Instruction Scheduling -24-

List Scheduling Wrap-Up

The priority function can be arbitrarily sophisticated
• e.g., filling branch delay slots in early RISC processors

List scheduling is widely used, and it works fairly well

It is limited, however, by basic block boundaries

7

Todd C. MowryCS745: Instruction Scheduling -25-

…

Scheduling Roadmap

List Scheduling:
• within a basic block

y = c + d

x = a + b

Trace Scheduling:
• across basic blocks

x = a + b

y = c + d

…

Software Pipelining:
• across loop iterations

y = c + d

x = a + b

