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SUMMARY

This paper is a case study of the effectiveness of component-oriented development for enhancing both
productivity and performance for parallel programs. A process for converting monolithic applications into
semantically composable components is described. The supporting software, the P-COM2 compositional
compiler, is briefly described. The componentized version of Sweep3D is described. Productivity is
illustrated by composing different instances of the Sweep3D code through automated composition of
components using P-COM2. These instances, each of which targets improving performance for some
execution environment or problem case, are examples of a family of instances which are composable
from a modest set of components. It is found that customization of componentized codes by component-
level adaptation may yield substantial performance improvement for specific execution environments.
We identify and explain some of the benefits of component-oriented development for high-performance
parallel systems. Copyright c© 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Motivation and goal

Component-oriented software development is one of the most active and significant threads of research
in software engineering [1,2]. Use of component libraries has enabled a reduction in effort of several
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722 Y. YOON ET AL.

orders of magnitude in application areas such as GUI development. However, there has been relatively
little research on component-oriented development in the context of high-performance parallel
programming and almost no detailed case studies comparing the performance of componentized codes
to conventionally structured codes.

There are many motivations for raising the level of abstraction of program composition from
individual statements to components with substantial semantics, and we give examples below.

• It is often the case that there is a family of applications that can be generated from a modest
number of appropriately defined components. Thus, components are reusable.

• Multiple versions of components enable ready adaptation of parallel programs to different
execution environments and application instances with minimal effort.

• Componentization allows the specialization of functionality and optimizations local to each
component to be focused on.

• Programs generated and maintained as compositions of components have an understandable
hierarchical structure and are, thus, readily modifiable and maintainable.

• The clean simple code structure engendered by a componentized structure approach leads to
better performance even for sequential versions of the program.

The goal of this project is to demonstrate these benefits by applying concepts of component-oriented
development to the Sweep3D [3] neutron transport code to enable the automated composition of
applications that perform efficiently with respect to different execution environments and different
cases of input data and structural models.

1.2. Sweep3D

Sweep3D [3] is a three-dimensional (3D) particle transport code that has been identified as an
Accelerated Strategic Computing Initiative (ASCI) benchmark for evaluating high-performance
parallel architectures. In this paper, the Sweep3D ASCI benchmark code is used to demonstrate the
productivity and performance gains obtainable by the application of the compositional approach to the
development of families of parallel and distributed programs. Further details on Sweep3D are given in
Section 2.

1.3. Approach

The Sweep3D benchmark code has been re-factored into a set of components that are then encapsulated
in the P-COM2 [4] component specification language. The P-COM2 compiler [4] composes parallel
programs from components with interfaces in its component specification language. Interfaces
specified in P-COM2 incorporate information on behaviors and implementations of components.
Inclusion of implementation information in the interface enables the compiler to automatically select
components appropriate for specific execution environments or problem cases. Examples of these
(associative) interfaces with descriptions are given in Section 3.2 The P-COM2 compilation system can
generate any of the following as final output: a serial program, an MPI program or a multi-threaded
program for a shared memory multiprocessor.

The development process has two phases: component development and program instance
development. The first phase begins with a domain analysis to identify the components and their
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THE ASCI SWEEP3D APPLICATION 723

attributes and the relationships among the components. Serial code for each component is extracted
by partitioning the original code into logical functional components and then turning these functional
components into self-describing composable components by encapsulating them in the P-COM2

component specification language. In the second phase, the programmer analyzes a particular problem
instance and its execution environment to determine the attributes and attribute values that characterize
them, and constructs an appropriate initial component from which the P-COM2 compiler can generate
the program for the application family instance given an appropriate component library. Section 3
illustrates the interfaces for several components and explains how the interfaces specify component
behaviors and enable automated composition.

1.4. Experimental evaluation

We identify and report on experiments in composing systems that are appropriate for different
execution environments and problem instances, including performance improvements by choosing
components to optimize behavior in terms of performance or stability. The performance of the
componentized code is compared with the original code in terms of speedup, efficiency and scalability.
Detailed descriptions of the experiments are given in Section 4.

1.5. Related research

Section 5 summarizes related research on component-based development in the context of high-
performance computing.

1.6. Conclusions

The experiments in composing instances of Sweep3D targeting different execution environments and
data inputs demonstrate enhanced productivity in that many instances of the code which are efficient
for a given execution environment and/or data input are readily generated with little effort. It is also
found that componentization exposes opportunities for optimization which are difficult to find in the
original monolithic code. Section 6 summarizes what has been demonstrated and learned as a result of
this case study of compositional development from self-describing components.

2. SWEEP3D AND DOMAIN ANALYSIS

2.1. Overview of Sweep3D

The Sweep3D application [3] has received considerable attention as an important wavefront
application. The benchmark code, written in Fortran and MPI, represents the heart of a real ASCI
application. It solves a 1-group time-independent discrete ordinates (Sn) 3D Cartesian (XYZ) geometry
neutron transport problem. The XYZ geometry is represented by a 3D rectangular grid of cells indexed
as IJK. The angular dependence is handled by discrete angles with a spherical harmonics treatment for
the scattering source. The solution involves two main steps:

(i) the streaming operator is solved by sweeps for each angle;
(ii) the scattering operator is solved iteratively.
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Figure 1. Example of the wavefront process in a 10 × 10 × 10 data cube. This figure depicts a wavefront,
shaded in gray, that originated from the unseen vertex in the cube, and is about to finish at vertex A. At
the same time, a further wavefront is starting at vertex B and will finish at vertex C. Note that the example
shows the use of a 5 × 5 grid of processors, and in this case each processor holds a total of 2 × 2 × 10

data elements (data set of 10 × 10 × 10).

The Sweep3D problem exploits parallelism through a wavefront process. The data cube is
decomposed so that a set of processors, indexed in a 2D array, hold part of the data in the I and J

dimensions, and all of the data in the K dimension. The sweep processing consists of pipelining the
data flow from each cube vertex in turn to its opposite vertex. It is possible for different sweeps to
be in operation at the same time but on different processors. The sweeps are computed for all octant
directions in each iteration until convergence occurs, which may take many iterations. Figure 1 is a
schematic of the decomposition and the wavefront processing.

2.1.1. Parallelism in Sweep3D

Sweep3D exploits parallelism via a wavefront process. There is a further type of parallelism that can be
exploited in the Sweep3D problem by multitasking the loops in various components in the inner routine
on shared memory processors. Particularly, in the ‘ComputeFlux’ component, multitasking parallelism
can be exploited within each block of work (computational grid block) although this requires a special
ordering of that work. Multitasking parallelism is not exploited in this case study because it requires a
thread-safe MPI that was not available in our principal parallel execution environment.

2.1.2. Pseudo-code for control flow

Figure 2 gives pseudo-code for the control flow of the original parallelized code. Note for future
reference that the loop nest is five deep with another level of single loops inside the five nested
loops.
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Read_input()
Decompose()

Allocate()
Initialize()
Source()
/* SWEEP FLOW */
DO iq=1,8 Octants
DO mo=1,mmo angle pipelining loop

DO kk=1,kb k-plane pipelining loop
RECV E/W Recv block J-inflows
RECV N/S Recv block J-inflows

DO idiag=1,jt+nk-1+mmi-1
DO jkm=1,ndiag

DO i=1,it
IF . NOT.do_fixups

DO i=i0,i1,i2 Sn eqn
ENDDO

ELSEM
DO i=i0,i1,i2 Sn eqn wl fixups Done in
ENDDO Main parallel

ENDIF computation
DO i=1, it Flux (Pn moments)
ENDDO
DO i=1, it DSA face currents
ENDDO

ENDDO
ENDDO

SEND E/W Send block I-outflows
SEND N/S Send block J-outflows

ENDDO
ENDDO

ENDDO
/* END SWEEP FLOW */
flux_err()

gather flux, source, absorption
check for convergence
IF convergence

Print results
End_task

ELSE
Goto source()

ENDIF

↑

↑

↓

↓

Figure 2. Pseudo-code for control flow in a Sweep3D application, depicting the part that can be
parallelized and the main computation.
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2.2. Domain analysis

Domain analysis [5] is the basis for identifying components from which a family of programs can
be constructed and defining properties and behaviors of the components in terms of behavioral and
architectural attributes. We have performed a domain analysis for the Sweep3D problem. There are
three main types of components. The first type covers the initialization, decomposition and allocation
components of the 3D grid and each are typically executed once at the beginning of the program.
The second type of component arises in the main inner loop that includes the flux computation (which
takes most of the computational time). Most of the communication between processors also takes
place among these components. These components include computing source, octant loop, angle block
loop, k-plane loop, receiving inflows from neighboring processes, computing flux and faces, sending
outflows to the neighboring processes and checking for flux convergence. The third category includes
components for gathering computational results, checking for convergence, printing diagnosis results
and terminating the program.

After the domain analysis, we generated components as C functions (by converting the original
Fortran), generated multiple implementations of some of these components and found other
components in existing libraries. The components were then encapsulated in the P-COM2 component
specification language using the attributes identified in the domain analysis to specify associative
interfaces for the components.

2.2.1. Logical components

The main logical components of the Sweep3D code were identified as follows.

• ReadInput: reads input given by the user.
• Allocate: allocates all of the arrays which represent the computational data needed by each

process during its computation.
• Initialize: performs all of the initialization required before the start of the main outer iteration

loop. In particular, it initializes cross sections, source, Sn directions and geometry. It also
decomposes the problem grid onto the 2D processor grid.

• Source: computes the source moments in the beginning of each inner iteration. It also zeroes out
the flux for the next iteration and saves the flux of the previous iteration to compute flux error.

• Octant: initializes data before beginning the sweep of angles for an octant. It coordinates sweep
direction parameters and angle weights for an octant.

• AngleBlock: manages the angle blocks pipelined through the 2D processor array.
• K-planeBlock: manages the k-plane blocks pipelined through the 2D processor array.
• ReceiveInflows: receives flux inflow(s) from the neighboring processor(s) depending on the

direction of the sweep.
• ComputeFlux: computes scattering of flux and is responsible for 70–80% of computational cost

of Sweep3D problem.
• SendOutflows: sends flux outflow(s) to the neighboring processors depending on the direction

of the sweep.
• FluxError: computes the flux error between the scalar flux computations of the previous and

current iteration. Different algorithms can be used to compute flux error, e.g., relative max, least
squares, etc. Checks convergence of the flux.
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• GatherData: gathers results from each processor at the end of each iteration. It accumulates and
prints results including flux error.

Each component represents a logical function. For example, communication is localized to the
‘ReceiveInflows’ and ‘SendOutflow’ components. This partitioning of functionality enables easy
adaptation of the program’s parallel structure.

2.2.2. Attributes and properties

Space limitations preclude a comprehensive specification and description of all of the attributes used
to specify the behaviors and properties of Sweep3D components. Each component has a type attribute
originating in the component analysis, a function within the type and one or more properties describing
its behavior and implementation. For example, components involved in complex communication have
an attribute ‘communication mode’ with the two values ‘synchronous’ or ‘asynchronous’. The use of
attributes and examples of interfaces are given and discussed in Section 4.2.

2.2.3. Program structure and parallelism

An important part of this procedure is to formulate parallelism in the componentized code. The data
flow graph (dependence graph among the components) for the componentized Sweep3D code is shown
in Figure 3. As discussed in Section 2.1.1, there are two types of parallelism possible in the Sweep3D
program: (1) parallelism via domain decomposition and (2) parallelism via diagonal multitasking.
The former is the main source of parallelism, scales well across distributed memory systems and,
as mentioned previously, is the only form of parallelism used in this study. The system must be load-
balanced to ensure optimum parallel processor utilization. The compositional approach allows us to
implement different schemes for the mapping of components to processors to obtain load-balance.
Most of the allocation of data and mapping of components is isolated to the ‘Allocate’ component, but
can be dynamically modified. The memory requirement for the program and the various components
depends on the size of the problem instance. Most of the computation in the program takes place in the
‘ComputeFlux’ component, which computes flux for a pipelined block of data; therefore, it becomes
the main focus of optimizations local to components for different problem data sets and systems.
The ‘SendOutflows’ and ‘RcvInflows’ components handle all of the communication in the iterative
loop of the program, and are crucial to parallel performance. Localization of communication operations
facilitates modification and thus optimization of the communication operations. The ‘K-planeBlock’
and ‘AngleBlock’ components handle the pipelining of blocks of work. Pipelining is crucial to parallel
efficiency and the specialization of pipelining in a separate component allows a flexible and adaptable
pipelining scheme for different cases. These components can utilize specific algorithms that are time-
or space-efficient.

The degree of parallelism (number of component replicas) for a given single process multiple data
(SPMD) component is specified via an index parameter in P-COM2. The mapping in the code is done
in a way so that all of the components on the same replication line (a replication line is a sequence
of SPMD components where the replica for each component in the vertical direction is mapped to the
same processor; see Figure 3, the data flow graph) are mapped to the same processor which ensures
that communication between components on the same replication line are function calls and do not
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Figure 3. Data flow graph for the componentized Sweep3D application.
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add to the communication cost. Most of the communication takes place between different processors
during the sweep routine while receiving inflows/sending outflows from/to adjacent processors in the
grid.

Communication can be overlapped with certain computations which can be moved outside the
main diagonal loop, but this requires making copies of data and adding several loop nests which also
increases code complexity. There is a space–computation tradeoff involved in this, but when memory
is scarce, adding extra buffers might decrease performance due to increased memory traffic. Therefore,
the system needs to be balanced with respect to the characteristics of the execution environment to give
optimum performance.

2.3. Component adaptations and optimizations

There are a number of space–computation tradeoffs which can be applied to optimize the code for a
given execution environment and problem specification. Some of them include the following.

• Double buffering the send/receive arrays for asynchronous communication.
• Overlapping communication with certain computations that can be moved outside the main

diagonal loop, requiring multiple copies of data, thus more memory.
• Loop restructuring within each component for more efficient memory access.
• Duplicate invariant data as a local state in components or communicate through transactions

between components.
• Size of angle blocking factor mmi and k-plane blocking factor mk.
• Use of specialized algorithms that are time- or space-efficient.
• Use of alternative caching mechanisms depending on available memory.

The deeply nested loop structure in the original program makes manual construction of optimized
loop structures complex while parameterization for adaptation to execution environments and problem
instances may lead to a complex code structure. Building specialized components and automating
the composition of parallel programs by letting the compiler select efficient components for specific
execution environments and problem instances is not only an effort-efficient approach, but also gives
significant performance gains and scalability, as we will see in Section 4. Moreover, having specialized
components allows for better management of the program. The compositional approach targets ready
generation of many program instances and many execution environments.

3. COMPONENTS AND COMPOSITION

3.1. The P-COM2 interface definition language and components

The P-COM2 [4] component specification language incorporates information on behaviors and
implementations of components to enable automated qualification of components for effectiveness
in specific application instances and execution environments. A component is a serial program that is
encapsulated by an associative interface that specifies the properties of the component. (Composition
is recursive: composed components can be composed into larger components.) The composition
implemented by the compiler is based on the matching of component specifications. (Section 3.2.2
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gives examples of component specifications (associative interfaces) and a formal specification can be
found in [4].) The interfaces and composition are illustrated in Section 3.2. The compiler can generate
as output a program in the CODE [6] data flow graph format which can be mapped to any of the
following: a serial code, an MPI code or a multi-threaded code for a shared memory multiprocessor.

3.2. Example components

3.2.1. Example 1: accepts and requests interface

A component specification consists of an accepts interface and a requests interface.
An accepts interface specifies the set of interactions in which a component is willing to participate.
It incorporates a profile which describes the properties and behaviors of the component including the
differences between implementations of a given functionality, signatures for the set of transactions
(functions) which it implements and a state machine to sequence the receipt of messages and initiation
of interactions. A requests interface specifies the set of interactions that a component must initiate
if it is to complete the interactions it has agreed to accept. It incorporates a set of selectors defining
the profiles and transactions (function signatures) for the components it requires and may incorporate
a state machine for sequencing the interactions.

Figures 4 and 5 show the interfaces implemented in ‘RcvInflows’ and ‘SndOutflows’ components.
The profile in the rcv inflows accept clause specifies: that this component instance belongs to
the subdomain sweep3d inner sweep, that it implements the function rcv inflows and that
its communication with other components is synchronous. The transaction section specifies that this
component implements three functions, get data, get EW flux and get NS flux, and will
accept invocations of these functions in any order. The first selector in the requests interface of
rcv inflows specifies that it requires a component implementing the function compute flux in
the subdomain of sweep3d inner sweep which does not implement multitasking. The transaction
get data will be invoked only when the condition on the local state variable state, ‘state==3’,
is true. The second and third selectors of rcv inflows are composed with instances of
snd outflows whose profiles satisfy the selectors as shown in Figure 5.

3.2.2. Example 2: state machine implementation

There are often precedence or sequencing relationships between (1) transactions implemented
(or accepted) by the component and (2) transactions requested by the component. Sequencing
relationships among messages can make the correct implementation of asynchronous communication
complex and difficult. The component structure where communication is isolated in a few interacting
components simplifies the formulation of asynchronous communication.

Sequencing relationships among transactions accepted by the component are implemented through
coding an implicit state machine by combining guards (expressions in propositional logic over
attributes and state variables) on transactions with a precedence operator ‘>’.

Figure 6 shows the synchronous communication between rcv inflows and snd outflows in
the inner sweep computation, where sequencing control is required. snd outflows waits for an
acknowledgement from rcv inflows after every iteration so that coordination among the processes
is maintained. The numbers on the arcs of Figure 6 are carried forward from Figure 3 (the data
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computation node rec_inflows {
profile:

string domain = "sweep3d_inner_sweep";
string function = "rcv_inflows";
string comm_pattern = "synchronous";

transaction:
int get_data ( in int_array data1, . . . );
||
int get_EW_flux (in real_array phiib, in int sync);
||
int get_NS_flux (in real_array phijb, in int sync);

var {
}
initial {
}
comp{
}
{selector:

string domain == "sweep3d_inner_sweep";
string function == "compute_flux";
string multi_tasking == "false";

transaction:
%{ state == 3}%

int get_data (out int_array data1);
}index [pid pid]

{selector:
string domain == "sweep3d_inner_sweep";
string function == "snd_outflows";
string comm_pattern == "synchronous";

transaction:
%{ state == 3, ns_rcv ! = -1}%

int get_sync (out int sync);
}index [ns_rcv ns_rcv]

{selector:
string domain == "sweep3d_inner_sweep";
string function == "snd_outflows";
string comm_pattern == "synchronous";

transaction:
%{ state == 3, ew_rcv != =1}%

int get_sync (out int sync);
}index [ew_rcv ew_rcv]
}

Accept Interface

Request Interface

Figure 4. Example code for the accepts and requests interface of the rcv inflows component.
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computation node snd_outflows {
profile:

string domain = "sweep3d_inner_sweep";
string function = "snd_outflows";
string comm_pattern == "synchronous";

transaction:
int get_data (in int_array data1, . . .);
||
int get_sync (in int sync);

.

.

.

Accept Interface

Figure 5. Example code for the accepts interface of the snd outflows component.

Figure 6. Synchronous communication in the inner sweep process.

flow graph). This synchronization ensures that all ‘ComputeFlux’ components remain in the lock step
with respect to the iteration count (the iteration count is equal to the computation level in Figure 6).

On the other hand, if communication is asynchronous, SndOutflows may continue to another
iteration in the flux computation and deadlocks can occur if messages are received out of order.
Message ordering under asynchronous communication can be readily specified and enforced with
a simple P-COM2 state machine specification as shown in Figure 7. This state machine is for an
asynchronous RcvInflows component that is to first receive data from the K-planePipeline component
and then to receive two messages from east/west and north/west directions in sequential order. Figure 8
gives the implementation of this state machine in the asynchronous RcvInflows component in the
P-COM2 component specification language.
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Figure 7. State machine to set the precedence of transactions and avoid deadlock.

computation node rcv_inflows {
profile:

string domain = "sweep3d_inner_sweep";
string function = "rcv_inflows";
string comm_pattern = "asynchronous";

transaction: enabling condition

%{state == 0}% int get_data (in int_array data1, . . .);

||

%{state > 0, ew_rcv != -1}% int get_EW_flux (in real_array phiib);

{% ew_rcv = -1; %} actual transaction
||
%{state > 0, ns_rcv != -1}% int get_NS_flux(in real_array phijb);

{%ns_rcv = -1; %}
action after transaction

Figure 8. State machine in Figure 7 implemented in the accept interface of the rcv inflows component.

4. ADAPTATIONS AND OPTIMIZATIONS

4.1. Overview

This case study focuses primarily on optimizations that became readily visible when the code was
componentized. Componentization provided the unexpected benefit of enabling ready identification of
a number of serial code optimizations which were difficult to identify in the original code which has a
six-deep loop structure and quite complex index computations. Each component has no more than two
deep loop nests (the other loops become arcs in the data flow graph) so that the loop structures, index
expressions and access patterns are easy to identify. This visibility of loop behavior enables ready
adaptation and optimization of components. Obviously these optimizations could have been readily
identified in the original code if it had been developed with a well-partitioned structure. However, it
is sometimes the case that high-performance codes are not componentized because of a belief that the
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extra overhead imposed by structures with separate address spaces leads to inefficient code. The results
obtained here suggest that well-partitioned structures may lead to better performance.

Efficiency in computation

• Moving loop invariant computations outside the loops. These cases turned out to be easier to
identify in the componentized code.

• Replacing complicated expressions with simple and cheaper expressions (or operators). These
cases were also more readily identified in the componentized code where the loop structures are
simple.

• Beneficial loop transformations are more readily identified in the simple loop structures of the
components.

Efficiency in memory use

• Keeping frequently used items together in cache to exploit the spatial and temporal locality of
reference. Locality is much easier to identify in simple loops with simple indexes.

• Marching forward instead of backward while accessing memory. Many systems have caches of
predictive type that tend to read in successive cache lines.

• Column-major accessing with minimum stride length. Rewriting access patterns is simpler when
the loops are simpler and the access patterns are simpler.

Efficiency in communication

• Sending/receiving the minimum amount of data since communication is the largest overhead.
Thus, avoid sending constants or change variables infrequently.

• Using asynchronous communication by double buffering send/receive messages. Given the
complexity of the communication patterns and the sequencing relations among messages,
implementing asynchronous communication would have been difficult for the original code but
was simple for the componentized code.

Basic loop restructuring as shown in Figure 9 has a substantial impact on the performance of the
compute bound components (primarily ComputeFlux) since most of the computation and memory
accesses in Sweep3D take place inside multi-dimensional loops in these components. Some of the
optimizations are execution environment specific; in such cases, we can have separate implementations
of the same component for different execution environments. The different implementations of a given
functionality are differentiated in terms of the attributes defined in the domain analyses.

One of the main goals of the project was to demonstrate the performance obtainable from the
compositional approach. Our performance analysis can be classified into two main sections:

• performance comparisons between the componentized Sweep3D and the original Sweep3D;
• performance improvements obtainable by replacing components with components tailored for

some specific execution environment.
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for (n = 2; n <= i_5; ++n) {
i_6 = *it;
for (i_ = 1; i_ <= i_6; ++i_) {

phi [i_] += pn[m + (n + iq * pn_dim2) *
pn_dim1] * src[i_ + (j + (k + n *
src_dim3) * src_dim2) * src_dim1];

}
}
for (n = 2; n <= i_5; ++n) {

_i = (j + (k + n * src_dim3) * src_dim2) * src_dim1;
val = pn[m + (n + iq * pn_dim2) * pn_dim1];
i_6 = *it;
for (i_ = 1; i_ <= i_6; ++i_) {

phi [i_] += val * src [i_ + _i];
}

}

A

B

Figure 9. Example of a simple loop restructuring for serial optimization. A is before
optimization and B is after optimization.

Most performance experiments were conducted on the Lonestar [7] cluster of Intel Xeon 3.06 GHz
dual processors, each with 2 GB memory, 512 kB cache and 4.2 GB/s bus, at the Texas Advanced
Computing Center (TACC). One set of experiment was conducted on the Optimonster system in
the Computer Science Department which has AMD OpteronTM [8] processors with better cache
performance that the Intel processors of Lonestar.

4.2. Components-level serial optimizations

The original and componentized Sweep3D codes (using synchronous communication) are compared
for serial and parallel performance. Table I gives the execution time and the parallel speedup for
100 × 100 × 100 and 200 × 200 × 200 problem sizes. Note that the speedups are computed by
dividing the parallel execution times in the serial execution time for each version, not by the usual
definition of dividing the parallel execution time into the best sequential execution time which in
this case is the sequential execution time for the componentized code. If we had used the sequential
execution time from the componentized code to compute the speedup of the original code, then the
original code would have showed a slowdown for the two-processor case which did not seem fair.
The serial version of the componentized Sweep3D program ran much faster than the original Sweep3D
because of optimizations local to components, mostly basic loop restructurings. This improvement in
serial performance is obtained despite the introduction of thousands of procedure invocations due to
the componentizations. The parallel component-based code outperformed the original code for two
and four processors for a 100 × 100 × 100 problem size. However, as the number of processors is
increased, the overhead from the increased number of procedure calls becomes significant as the
amount of computation done by a component becomes small and the overhead from procedure calls is
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Table I. Performance comparison between synchronous original code and synchronous componentized code on a
fixed problem size of 100 × 100 × 100 and 200 × 200 × 200.

Runtime (s) Speedup

100 × 100 × 100 200 × 200 × 200 100 × 100 × 100 200 × 200 × 200
Number of
Processors Original Componentized Original Componentized Original Componentized Original Componentized

1 162.99 114.22 1712.00 817.00 N/A N/A N/A N/A
2 80.55 61.69 927.74 485.30 2.02 1.85 1.85 1.68
4 34.37 34.36 352.72 257.20 4.73 3.32 4.85 3.18
8 18.70 20.30 179.50 130.70 8.11 5.69 9.54 6.25

16 8.70 12.85 94.52 87.90 18.70 8.89 18.11 9.29
32 5.40 10.30 40.31 46.00 30.13 10.98 42.47 17.76

larger than the saving in computational efficiency. This accounts for the inversion in performance as a
fixed amount of computation is spread over more processors. Note that the componentized code retains
its advantage for a larger number of processors for the larger 200 × 200 × 200 problem. The larger the
problem the more scalable the componentized code becomes.

4.2.1. Synchronous versus asynchronous communication

Synchronous communication can impose a significant execution time overhead, especially if there is a
difference in the performance of the processors or if the system is not well load-balanced. For such a
situation, asynchronous (non-blocking) communications can be used to an advantage. In this project,
we built separate components for asynchronous communications using a simple scheme. We overlap
the pair of sends and the pair of receives and overlap communication for the next block with the work on
the current block by double buffering the send/receive arrays. Table II shows performance comparisons
and overheads between the two communication patterns for 100 × 100 × 100 and 200 × 200 × 200
problem sizes. Note that with asynchronous communication the component-based code is faster than
the original code for all of the cases of the 200 × 200 × 200. Table III gives the performance of the
asynchronous componentized code on a difference processor configuration, a set of two four-processor
clusters with AMD Opteron processors where the two clusters are connected by 100 MB Ethernet.
Table IV has the additional memory requirements for the double buffering for the implementation of
asynchronous communication.

4.2.2. Memory versus communication tradeoff

A fraction of the data in the program remain constant or change infrequently. In a conventional MPI
implementation, all data defined in a main program are automatically instantiated in all processes
on all processors. The default approach in a component-oriented architecture is that only the data
specifically needed in the component are instantiated in the component. This means that in a parallel
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Table II. Performance comparison between synchronous componentized code and asynchronous componentized
code on a fixed problem size of 100 × 100 × 100 and 200 × 200 × 200.

Runtime (s) Speedup

100 × 100 × 100 200 × 200 × 200 100 × 100 × 100 200 × 200 × 200
Number of
Processors Synchronous Asynchronous Synchronous Asynchronous Synchronous Asynchronous Synchronous Asynchronous

1 114.22 114.22 817.00 817.00 N/A N/A N/A N/A
2 61.69 53.00 485.30 457.47 1.85 2.15 1.68 1.78
4 34.36 28.76 257.20 226.04 3.32 3.97 3.18 3.61
8 20.30 13.20 130.70 119.36 5.69 8.65 6.25 6.84

16 12.85 10.80 87.90 63.04 8.89 10.58 9.29 12.96
32 10.40 7.16 46.00 36.55 10.98 15.95 17.76 22.35

Table III. Performance of synchronous and asynchronous componentized code on AMD Opteron processors
with larger cache size (1024 kB).

Runtime (s) Speedup

100 × 100 × 100 200 × 200 × 200 100 × 100 × 100 200 × 200 × 200Number of
Processors Synchronous Asynchronous Synchronous Asynchronous Synchronous Asynchronous Synchronous Asynchronous

1 97.09 97.09 686.28 686.28 N/A N/A N/A N/A
2 51.82 42.98 402.80 375.13 1.87 2.25 1.70 1.83
4 28.87 22.43 205.60 174.05 3.36 4.33 3.34 3.94
8 16.85 10.56 100.1 95.49 5.76 9.19 6.86 7.19

Table IV. Additional memory required theoretically with increasing problem size for asynchronous
communication due to double buffering.

Problem Grid size

50 × 50 × 50 100 × 100 × 100 200 × 200 × 200 300 × 300 × 300

Number of processors 1 2 4 6
Additional memory (kB) 50 200 1200 3150

implementation, data may need to be communicated across several components before being used. It is,
however, straightforward to instantiate some or all of the invariant data as local state in components.
Thus, the component-oriented approach enables consideration of space–time trade-offs with respect to
storing or communicating invariant data.

Storing the data as a state in the components across multiple replications requires that we save
multiple arrays in each of the communicating components but transfer them only once during
initialization. If we have enough memory for a given problem instance, storing invariants as state
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Table V. Performance comparison on a fixed problem (100 × 100 × 100):
messaging invariants versus keeping invariants as local variables in each

component.

Runtime (s) Speedup

Number of Messaging Invariants as Messaging Invariants as
processors invariants a local state invariants a local state

1 114.22 114.22 N/A N/A
2 61.69 55.79 1.85 2.04
4 34.36 30.88 3.32 3.69
8 20.30 18.34 5.69 6.23

16 12.85 11.81 8.89 9.67
32 10.40 8.10 10.98 14.10

Table VI. Per processor additional memory required by keeping the invariants as local variables in each
component.

Problem Grid size

50 × 50 × 50 100 × 100 × 100 200 × 200 × 200 300 × 300 × 300

Number of processors 1 2 4 6
Additional memory (kB) 110 270 1400 5500

data can significantly reduce the communication cost, thereby improving overall performance. On the
other hand, the memory required to keep all invariants as a state in components may be significant and
for Sweep3D the memory requirement increases at an exponential rate as the problem size increases.
We will also have to save data in each of the components involved in communication with other
processors. As with synchronous versus asynchronous communication, instantiation of invariant data
is a space–time tradeoff and we have to balance between communication delay and memory overhead
for a given problem instance and execution environment.

Problem size and memory system properties determine the optimum trade-off between keeping
invariants as a state in components and sending invariants in communication messages between
components.

Table V shows some performance data for a problem size of 100 × 100 × 100 that is small and
does not impose a large memory overhead. Therefore, for such a small problem set, we can always
use the approach of saving the invariants as a state in communicating components and benefit from
less communication and, hence, improved performance. However, for larger problem sets, replicating
invariant data may not possible and a more balanced approach may be needed. Table VI shows the
increase in memory requirements with an increase in problem size.
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5. RELATED RESEARCH

There has been relatively little research on component-based programming in the context of
parallel and distributed programs and almost no systematic comparison between the performance of
componentized and conventionally structured codes.

Darwin [9] is a composition and configuration language for parallel and distributed programs.
Darwin uses a programmer-generated configuration script to compose programs from components.
In our approach, P-COM2 generates an initialization component and the compiler can choose the
required components automatically.

H2O [10] is a component-oriented framework for the composition of distributed programs based on
Web services. Triana [11] is a graphical development environment for composing distributed programs
from components targeting peer-to-peer execution environments. G2 [12] composes distributed parallel
programs from Web services through Microsoft .Net. Armada [13] composes distributed parallel
programs specialized to data movement and filtering.

The Common Component Architecture (CCA) project [14] is a major research and development
project focused on the composition of parallel programs from components. However, the goals of CCA
are rather different from the goals of this project. The primary goal of CCA is to enable composition of
programs from components written in multiple languages. CCA uses the BABEL interface definition
language [15] to specify mapping across language specific data formats. CCA has developed interface
standards. There are several frameworks including Ccaffeine [16], XCAT [17], SCIRun2 [18] and
DCA [19] implementing the CCA interface specification system. The different implementations target
different architectures and adopt different programming models. For example, Ccaffeine targets parallel
architectures and adopts an SPMD model, XCAT targets distributed architectures and adopts the
Grid model, SCIRun2 and DCA targets both distributed and parallel architectures and implement
both SPMD and multiple processes multiple data (MPMD) models. Component composition is
either graphical or through scripts and make-files. CCA components interact through two types
of port. The first type of port is the provides port. It is an interface specifying the services
components provide to other components. The second type of port is the uses port. It is an interface
through which components specify other components that they require. These port types exhibit some
similarities to the accepts and requests transaction specifications. However, the details and
implementations are quite different, as we have focused on incorporation of the information necessary
to enable composition by compilation. Users are responsible for implementing communication between
replicated components that is not handled by the framework of CCA. Also, communication among
SPMD components is not defined in the CCA standard.

ArchJava [20] annotates ports with provides and requires methods which help the programmer to
better understand the dependency relations among components by exposing them to the programmer.
The accepts and requests interfaces of a P-COM2 component incorporate signatures as do
ArchJava provides and requires. The accepts and requests in P-COM2 interfaces also include
profiles and precedence specifications carrying semantic information and enabling automatic program
composition.

ASSIST [21,22] is probably the previously implemented programming system that is most similar
to P-COM2 in terms of the program structures it generates. ASSIST has a programming model in
which program structures are defined as programmer specified directed graphs where the nodes can
be sequential or parallel programs. Nodes may have an internal state. The semantics of arcs are
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defined in terms of streams. Later extensions of ASSIST [23,24] have utilized Grid middleware for
implementation. It also incorporates a runtime system that supports QoS contracts. P-COM2 supplies
a capability for predicting the performance of a given parallel program instance on a given architecture
through performance modeling based on the unification of concrete and simulated execution.

SBASCO [25,26] is a parallel program development environment that integrates skeleton-based
and component-oriented technologies. SBASCO has a fixed set of parallel skeletons that can be
combined in a program. The goal of SBASCO is to enable the development of parallel programs
that combine portability with performance. The central concept is incorporation of both application
program concerns (composition) and implementation and configuration information in the Interface
Definition Language (IDL). In addition, the SBASCO IDL includes an execution cost model that can
be used to guide the degrees of parallelism in the skeleton constructs. The IDL compiler and its runtime
system use this cost information to determine an effective execution structure. The SBASCO IDL,
like P-COM2, is based on domain analysis. The program structure and the component relationships
are explicitly defined by the programmer while in P-COM2, the compiler automatically generates the
program structure.

PARDIS [27] enables composite SPMD parallel structures of CORBA-defined objects. The CORBA
IDL is extended to include SPMD data arguments for objects. The PARDIS compiler translates the
extended IDL to generate master–slave parallel program structures through the CORBA request broker.

6. CONCLUSIONS AND FUTURE RESEARCH

This report demonstrates the effectiveness of component-oriented development supported by
automated tools in developing efficient implementations of instances of families of components.
The significant observations include the following.

• Dozens of instances of a family of codes implementing the Sweep3D functionality were
implemented from a modest set of components in a matter of months by two undergraduate
students working part-time.

• Performance of the Sweep3D codes were generally improved by componentization.
• Customization to different execution environments can be accomplished by local changes to one

or at most a few small components.
• Componentization enables ready identification of optimizations which are difficult to identify in

conventionally structured applications.

The obvious conclusion is that componentization supported by automated tools is one of the most
important sources for increased productivity for the development of families of codes for high-
performance parallel computation.

Future research will include the following areas.

• Employ multi-thread safe MPI to enable implementation and evaluation of diagonal
multitasking.

• Consider implementation of compiler transformations to enable coalescing of components after
qualification, selection and composition have been completed and the resulting code structure
permits.
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• Extending the case studies to include a detailed study of runtime adaptation which is also
supported by the P-COM2 system.
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