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There are two parts to this assignment. The first part, described in Section 1 below,
consists of a programming task that is due by 8pm on Wednesday, August 31. Students are
allowed to work on the first part with a partner, and are strongly encouraged to do so. Each
team should turn in only one solution for the first part. If you are having trouble finding a
partner, send me an email and I will match you up with someone else in the same situation.
Please be sure to read the document entitled “Guidelines for Programming Tasks”, which
may be found in the Assignments section of the class website. This document includes a
description of the slack time policy for programming tasks.

The second part, described in Section 2 below, consists of textbook exercises, and is due
at the beginning of class on Wednesday, September 7. Each student should work on this
part separately.

1 Programming & Problem Solving

A matching of a (undirected) graph G = (V,E) is a subset M of E such that exactly 2|M |
vertices in V are incident on (i.e., an endpoint of) some edge of M .

A maximum-cardinalty matching (MCM) of a graph G is a matching M of G such that
|M | ≥ |M ′| for all matchings M ′ of G.

The weight of a matching M of an edge-weighted graph is defined as the sum of the
weights of the edges in M . A classic problem in combinatorial optimization is to determine
a maximum-weight matching of a given edge-weighted graph.

The weight of a matching M of a vertex-weighted graph is defined as the sum of the
weights of the 2|M | vertices that are incident on some edge of M . Remark: We can view a
vertex-weighted graph G = (V,E) as inducing a weight for each edge (u, v) in E that is equal
to the sum of the weights of vertices u and v. Under this view, our definition of the weight
of a matching M in a vertex-weighted graph conforms with our definition of the weight of
M in the induced edge-weighted graph. End of remark.

A maximum-weight MCM (MWMCM) of an edge-weighted or vertex-weighted graph G
is an MCM of G with weight at least as high as that of any other MCM of G.

A graph G = (V,E) is bipartite if the set of vertices V can be partitioned into two sets V0

and V1 such that every edge in E has one endpoint in V0 and one endpoint in V1. Bipartite
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graphs arise in numerous practical applications, and many efficient algorithms have been
developed that exploit their special structure.

In most applications involving bipartite graphs, the bipartition of the vertices is explicitly
specified as part of the input. In such cases, we generally prefer to view a bipartite graph as
a triple (U, V,E) where U denotes the vertices on the “left” side, V denote the vertices on
the “right” side, and every edge in E has one endpoint in U and one endpoint in V .

A bipartite graph G = (U, V,E) is convex if it is possible to define a total order over the
vertices of V such that the following condition holds: For any vertex u in U , and any vertices
v, v′, and v′′ in V such that (u, v) belongs to E, (u, v′) belongs to E, and v < v′′ < v′, the
edge (u, v′′) belongs to E.

In the Programming & Problem Solving component of this course, we will develop efficient
matching algorithms for vertex-weighted convex bipartite graphs. We adopt the following
notation for working with convex bipartite graphs, or CBGs.

We refer to each “left” vertex of a CBG as a ping. Formally, a ping is a four-tuple of
integers. For a ping u = (i, a, b, w), we define id(u) as i, min(u) as a, max(u) as b, and
weight(u) as w.

We refer to each “right” vertex of a CBG as a pong. Formally, a pong is an ordered pair
of integers. For a pong v = (i, w), we define id(v) as i and weight(v) as w.

We represent a CBG as a pair (U, V ) where U is a set of pings, no two of which share
the same first component, and V is a set of pongs, no two of which share the same first
component.

Given a CBG (U, V ) we define the following total order over U : For any pings u and u′

in U , the inequality u < u′ holds if either (1) max(u) < max(u′) or (2) max(u) = max(u′)
and id(u) < id(u′).

Given a CBG (U, V ) we define the following total order over V : For any pongs v and v′

in V , the inequality v < v′ holds if id(v) < id(v′).
The edge set of a CBG (U, V ) is represented implicitly: There is an edge between ping u

in U and pong v in V if min(u) ≤ id(v) ≤ max(u).
Given a CBG G = (U, V ), we define the following total order over the set of edges of G:

For any two edges (u, v) and (u′, v′) in G, the inequality (u, v) < (u′, v′) holds if either (1)
v < v′ or (2) v = v′ and u < u′.

Given a CBG G = (U, V ), we define a total order over the set of all MCMs of G as
follows. Let M and M ′ be MCMs of G. Let α be the |M |-tuple consisting of the edges of M ,
arranged in ascending order. Let α′ be the |M |-tuple consisting of the edges of M ′, arranged
in ascending order. Then the inequality M < M ′ holds if α lexicographically precedes α′.

For any matching M of a CBG G, we define weight(M) as the sum, over all edges (u, v)
in M , of weight(u) + weight(v).

1.1 Your Task

Your program will read input from standard input, and write output to standard output. The
first line of the input contains a nonnegative integer k that specifies the number of instances
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to follow. The integer k is followed by k “input blocks”. Your program will produce k
“output blocks”, one for each input block. Each input block specifies a CBG G, and the
corresponding output block lists all of the MWMCMs of G.

For this assignment, it is recommended that you implement a “brute force” algorithm
to compute the MWMCMs of a given CBG. Doing so should make it easy to ensure that
the input-output behavior of your program is correct. You do not need to worry about the
scalability of your algorithm, as we will only test it on input CBGs with a small number of
vertices (at most ten, say).

1.1.1 Format of an Input Block

Each input block specifies a CBG G = (U, V ). The first line of an input block contains two
integers m and n that specify |U | and |V |, respectively. Each of the next m lines contains
four integers specifying the four components of a ping in U . After these m lines, each of the
next n lines contains two integers specifying the two components of a pong in V .

1.1.2 Format of an Output Block

We now describe the output block corresponding to an input block that encodes CBG G.
Let ` denote the number of MWMCMs of G. Then the output block consists of `+ 1 lines.
The value of ` is printed on the first line. The ` MWMCMs of G are printed in ascending
order on the next ` lines, one MWMCM per line. Each MWMCM M should be printed
as follows. The edges of M are printed in ascending order, with a single blank separating
successive edges. To print an edge (u, v) of M , print id(u), followed by a colon, followed by
id(v).

2 Textbook Exercises

1. Exercise 2.4, page 67.

2. Exercise 2.8, page 69.
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