University of Texas at Austin Design and Analysis of Algorithms
Department of Computer Science CS 357, Fall 2011

CS 357 Assignment #4

Greg Plaxton
October 12, 2011

There are two parts to this assignment, which are described in Sections 1 and 2, respec-
tively.

1 Programming & Problem Solving

This part of the assignment consists of a programming task and a collection of related
exercises. The programming task is due by 8pm on Wednesday, October 19, and the solutions
to the related exercises are due at the start of class on Wednesday, October 19. Students are
allowed to work on this part of the assignment with a partner, and are strongly encouraged
to do so. Each team should turn in only one program, and only one set of solutions to the
related exercises. If you are having trouble finding a partner, send me an email and I will
try to match you up with someone else in the same situation.

1.1 Exercises

1. A CBG G = (U,V) is ping-feasible if it admits a matching M such that |M| = |U].
Consider the following computational task. The input consists of a ping-feasible CBG
G, the stable matching of G, and a ping u that does not belong to U. (As established
in Assignment 2, any CBG has a unique stable matching.) The goal is to determine
whether the CBG G’ = (U + u, V) admits a matching of cardinality |U| + 1, and if
so, to compute the stable matching of G’. Describe a polynomial time algorithm to
perform this task.

2. A CBG G = (U,V) is ping-weighted if weight(v) = 0 for all pongs v in V. Use the
framework of the matroid greedy algorithm (described in Assignment 3), together with
the algorithm that you developed in question 1 above, to obtain a polynomial time
algorithm for computing an MWMCM of a ping-weighted CBG G = (U, V).

1.2 Programming Task

Your program will read input from standard input, and write output to standard output. The
first line of the input contains a nonnegative integer k that specifies the number of instances

1

University of Texas at Austin Design and Analysis of Algorithms
Department of Computer Science CS 357, Fall 2011

to follow. The integer k is followed by k& “input blocks”. Your program will produce k
“output blocks”, one for each input block. Each input block specifies a ping-weighted CBG
(G in exactly the same manner as in Assignment 1. The corresponding output block consists
of a single line specifying a particular MWMCM of G, as specified below. The output
matching should be printed in the same format as we used to print out each MWMCM in
Assignment 1.

A ping-weighted CBG can have many MWMCMs. For ease of grading, you are asked
to produce as output a specific MWMCM that we now describe. Let the input CBG G be
(U, V), let k denote the cardinality of an MCM of G, and let U denote the set of all subsets
Uy of U such that Uy is the set of pings matched by some MWMCM of GG. Thus each set
in U has cardinality k. We define a total order over the sets in U as follows. Let Uy and U,
be distinct sets in U. Let g (resp., ag) be the k-tuple consisting of the pings in Uy (resp.,
U;), arranged in nonincreasing order of weight, with ties broken in favor of the lower ping
(i.e., using the total order over pings defined in Assignment 1). Then the inequality Uy < Uy
holds if g lexicographically precedes ay. Let U’ denote the minimum set in U with respect
to the total order just defined. Let G' denote the CBG (U’,V'). Then your program should
produce as output the stable matching of G’, which is guaranteed to match all of the pings
in U’, and hence is an MWMCM of G.

2 Textbook Exercises
This part of the assignment is due at the beginning of class on Wednesday, October 26.

1. Problem 6.6, page 317. Hint: This problem is similar to the segmented least squares
problem discussed in Section 6.3.

2. Problem 6.12, page 323.

3. This question is a modified version of Problem 6.28, page 334. For parts (a) and (b),
consider instead a weighted version of the problem in which each job has a positive in-
teger weight, and the goal is to determine a maximum-weight schedulable set. Here we
add a third part to the question, part (c): Give an O(n?)-time dynamic programming
algorithm for the original unweighted problem.

4. Problem 7.11, page 420.

