
University of Texas at Austin
Department of Computer Science

Algorithms and Complexity
CS 378, Fall 2012

Assignment #2

Greg Plaxton

September 12, 2012

NOTE ADDED 9/12/12: This version of the assignment corrects two errors that existed
in the original version handed out in class. Both of these errors occurred in the paragraph
preceding Section 1.1. Most importantly, the edge set of trade(G, C) was incorrectly defined
in the original version. End of NOTE.

NOTE ADDED 9/18/12: The definition of trade(G, C) referred to in the preceding
paragraph was not right for the case of a cycle of length 2. Fortunately we only care about
this definition for cycles C of length greater than 2. Nevertheless I have repaired the definition
to work for any cycle C. End of NOTE.

There are two parts to this assignment. The first part is described in Section 1 below,
and may be done with a partner. If you are having trouble finding a partner, send me an
email and I will match you up with someone else in the same situation.

The second part, described in Section 2 below, consists of textbook exercises, and is due
at the beginning of class on Friday, September 28. Each student should work on this part
separately.

Any corrections or clarifications related to the assignment will be posted in the Assign-
ments section of the class website.

1 Programming & Problem Solving: Mooov Around

This part of the assignment has two subparts: a paper-and-pencil subpart involving proofs
(see Section 1.2) and a programming subpart (see Section 1.3).

Our goal is to develop a polynomial-time algorithm for the special case of the Mooov
Around problem in which each student has strict preferences : For any student i, and any
spaces j and j′ such that j 6= j′, either i prefers j to j′ or i prefers j′ to j.

As in Assignment 1, we let n denote the number of students/spaces. For any student i,
we define top(i) as i’s most preferred space, and we define bottom(i) as i’s least preferred
space. For any student i and any space j not equal to bottom(i), we define next(i, j), as the
next-most-preferred space of student i after space j.

We define a configuration G = (U, V,E) as a bipartite graph with a set U of vertices
on the “left”, one for each student, a set V of vertices on the “right”, one for each space,
and a set E of directed edges satisfying the following constraints: (1) each edge goes from a

1



University of Texas at Austin
Department of Computer Science

Algorithms and Complexity
CS 378, Fall 2012

student to a space, or from a space to a student; (2) each vertex has exactly one outgoing
edge; (3) each student vertex has exactly one incoming edge. The n space-to-student edges
encode an allocation, as follows: If the outgoing edge of space j goes to student i, then space
j is allocated to student i.

The initial configuration has an edge from each student i to space top(i), and an edge
from each space j to student j. Thus the space-to-student edges in the initial configuration
encode the university allocation.

For any configuration G and student i, we define space(G, i) as the space reached by
following the unique outgoing edge from student i.

For any configuration G, we define exhausted(G) as the set of all students i such that i
does not belong to a cycle of length 2 in G and space(G, i) belongs to a cycle of length 2
in G. (Remark: Throughout this assignment, we use the term “cycle” to refer to a directed
cycle.)

For any student i in exhausted(G) such that the space j = space(G, i) is not equal
to bottom(i), we say that a revelation action is enabled for student i in G. The effect of
performing a revelation action that is enabled for student i in G is to replace the current
configuration G = (U, V,E) with the configuration reveal(G, i) = (U, V,E ′) where E ′ =
E − (i, j) + (i, next(i, j)).

For any cycle C of length 2k in G = (U, V,E), we can partition the edges of C into a
set E0 of k student-to-space edges, and a set E1 of k space-to-student edges. Letting E ′

0

denote the set of k space-to-student edges corresponding to the reversals of the edges in E0,
we define trade(G, C) as the configuration G′ = (U, V, (E \ E1) ∪ E ′

0). For any cycle C of
length greater than 2 in G, we say that a trading action is enabled for C in G. The effect of
performing a trading action that is enabled for C in G is to replace the current configuration
G with trade(G, C).

1.1 Algorithm A

In this assignment we study the following nondeterministic algorithm, referred to as Al-
gorithm A, that starts from the initial configuration, and iteratively updates the current
configuration by performing an arbitrary enabled action until a configuration is reached in
which no actions are enabled. Once the algorithm terminates, the output allocation is defined
by the space-to-student edges in the final configuration.

1.2 Proofs

In this subpart of the assignment you will prove a subset of the eight lemmas stated below.
When proving a given lemma, you are allowed to make use of any lower-numbered lemma,
but you are not allowed to make use of a higher-numbered lemma.

Each team is required to turn in proofs for any two of Lemmas 1, 2, 6, and 7 (these
lemmas are relatively easy to prove), and any two of Lemmas 3, 4, and 5 (these lemmas are

2



University of Texas at Austin
Department of Computer Science

Algorithms and Complexity
CS 378, Fall 2012

a bit harder). Lemma 8 is somewhat more challenging, and will be graded as an optional
bonus problem.

Your solutions to this subpart are due at the beginning of class on Friday, September 21.
Lemma 1: If Algorithm A reaches a configuration containing a cycle C of length 2, then

all subsequent configurations reached by Algorithm A contain C.
Lemma 2: If Algorithm A reaches a configuration G containing an edge from student i

to space j, and j′ is a space that i prefers to j, then j′ belongs to a cycle of length 2 in G.
Lemma 3: Assume that Algorithm A reaches a configuration G containing edge (i, bottom(i))

for some student i. Then no actions are enabled in G and every vertex belongs to a cycle of
length 2.

Lemma 4: Algorithm A terminates after performing O(n2) revelation actions and O(n)
trading actions.

Lemma 5: If G is a configuration such that some vertex does not belong to a cycle of
length 2, then at least one action is enabled in G.

Lemma 6: If Algorithm A terminates in configuration G, then every vertex belongs to a
cycle of length 2 in G.

Lemma 7: The output allocation produced by Algorithm A is individually rational.
Lemma 8: The output allocation produced by Algorithm A is strictly Pareto-efficient.

1.3 Programming Task

Implement Algorithm A. Your implementation is required to have polynomial worst-case
time complexity. Use the same input-output format as in Assignment 1, bearing in mind
that you will only be asked to process inputs with strict preferences.

Your program is due by 8pm on Friday, September 21.

2 Textbook Exercises

1. Problem 1.3, page 22.

2. Problem 1.8, page 27.

3. Problem 3.10, page 110.

4. Problem 3.12, page 112.

3


