Assignment #5

Greg Plaxton

November 2, 2012

There are two parts to this assignment. The first part, described in Section 1 below, consists of a programming task that is due by 8pm on Monday, November 12. Students are allowed to work on the first part with a partner, and are strongly encouraged to do so. Each team should turn in only one solution for the first part. If you are having trouble finding a partner, send me an email and I will match you up with someone else in the same situation.

The second part, described in Section 3 below, consists of a number of exercises related to the lecture material, and is due at the beginning of class on Monday, November 19. Each student should work on this part separately.

NOTE: The next (and last) assignment will not include a programming task, so you should feel free to use up all of your remaining slack time (up to a maximum of one week) on the programming portion of this assignment.

1 Programming & Problem Solving: Mooov Around

In this assignment you will implement a polynomial-time algorithm for the Mooov Around problem with general preferences. The algorithm that you are to implement is a generalization of the algorithm that we developed in Assignments 2 and 3 for the special case of strict preferences. The input-output format is the same as in Assignment 1.

1.1 Configurations

Recall that we have n students, numbered from 0 to $n-1$, and n spaces, numbered from 0 to $n-1$.

We define a *configuration* $G = (U, V, E)$ as a bipartite graph with a set U of vertices on the "left", one for each student, a set V of vertices on the "right", one for each space, and a set E of directed edges satisfying the following constraints: (1) each edge goes from a student to a space, or from a space to a student; (2) each space has exactly one outgoing edge; (3) each student has exactly one incoming edge. The *n* space-to-student edges encode an allocation, as follows: If the outgoing edge of space i goes to student i, then space is allocated to student i.

For any configuration $G = (U, V, E)$ and any space j in V, we define student (G, j) as the unique student i such that edge (i, i) belongs to E. For any configuration $G = (U, V, E)$ and any student i in U, we define $space(G, i)$ as the unique space j such that $student(G, j) = i$.

For any configuration $G = (U, V, E)$, and any student i in U, we define $out(G, i)$ as $\{j \mid (i, j) \in E\}.$

The *initial configuration* is the configuration $G = (U, V, E)$ in which out (G, i) is empty for all students i in U, and there is an edge from space i to student i for $0 \leq i \leq n$. Thus the allocation associated with the initial configuration is the university allocation.

For any configuration $G = (U, V, E)$, we define satisfied (G) as the set of all students i in U such that $space(G, i)$ belongs to $out(G, i)$, and we define unsatisfied(G) as $U \setminus satisfied(G)$.

For any configuration $G = (U, V, E)$ and any space j in V, we define $distance(G, j)$ as the length of a shortest path from j to a student in unsatisfied(G). If there is no such path, we define $distance(G, j)$ as ∞ .

For any configuration $G = (U, V, E)$ and any student i in U, we define $next(G, i)$ as follows: if $distance(G, j) = \infty$ for all j in $out(G, i)$, then $next(G, i) = nil$; otherwise, letting V' denote the set of all spaces j in $out(G, i)$ minimizing $distance(G, j)$, we define $next(G, i)$ as the minimum space in V'. (Example: If V' consists of spaces 3, 7, and 11, then $next(G, i)$ is space 3.)

For any configuration $G = (U, V, E)$, we define pruned(G) as the configuration $G' =$ $(U, V, E \setminus E')$ where E' denotes

$$
\{(i,j) \in E \mid i \in U \ \land \ j \neq next(G,i)\},\
$$

and we define $cycles(G)$ as the set of all directed cycles in $pruned(G)$.

For any configuration $G = (U, V, E)$ and any cycle C in cycles(G), we define trade(G, C) as the configuration $(U, V, (E \setminus E') \cup E'')$ where E' denotes

 $\{(j,i) \in V \times U \mid j \in C \land student(G,j) = i\}$

and E'' denotes

 $\{(j,i) \in V \times U \mid i \in C \land next(G,i) = j\}.$

For any configuration G, we define $\mathit{exhausted}(G)$ as the set of all students i in unsatisfied(G) such that $next(G, i) = nil$.

1.2 Preferences

Let P denote the student preferences, i.e., all of the preference information provided by the students. We define $configs(P)$ as the set of all configurations $G = (U, V, E)$ such that for any student i in U and any space j in $out(G, i)$, student i prefers space j to any space in $V \setminus out(G, i).$

Remark: It is easy to prove that for any student preferences P , configuration $G =$ (U, V, E) in configs(P), and any cycle C in cycles(G), the configuration trade(G, C) belongs to $configs(P)$. End of Remark.

For any student preferences P , any student i in U , and any subset V' of V , we define $top(P, i, V')$ as the set of spaces j in V' such that student i likes space j at least as well as any other space in V' .

For any student preferences P, any configuration $G = (U, V, E)$ in configs(P), and any student *i* in *exhausted*(*G*), we define reveal(*P*, *G*, *i*) as the configuration $(U, V, E \cup E')$ where

$$
E' = \{(i, j) \mid j \in top(P, i, V \setminus out(G, i))\}.
$$

Remark: It is easy to prove that for any student preferences P , any configuration $G =$ (U, V, E) in configs(P), and any student i in exhausted(G), the configuration reveal(P, G, i) belongs to $configs(P)$. End of Remark.

2 Algorithm C

In this assignment you will implement the following nondeterministic algorithm, referred to as Algorithm C. Like Algorithms A and B (of Assignments 2 and 3, respectively), Algorithm C starts from the initial configuration, and iteratively updates the current configuration by performing an arbitrary enabled action until a configuration is reached in which no actions are enabled. Once the algorithm terminates, the output allocation is defined by the spaceto-student edges in the last configuration.

It remains to define the set of enabled actions in a given configuration. Fix the given student preferences P, and let $G = (U, V, E)$ be an arbitrary onfiguration in *configs*(P). For any cycle C in $cycles(G)$, a trading action is enabled for C in G, and the effect of performing this action is to replace G with $trade(G, C)$. For any student i in exhausted(G), a revelation action is enabled for i in G , and the effect of performing this action is to replace G with $reveal(P, G, i).$

Remark: It turns out that Algorithm C enjoys the same confluence property as we established for Algorithm B in Assignment 4. Thus all correct implementations of Algorithm C produce the same output, regardless of how the nondeterminism is resolved. End of Remark.

3 Exercises

- 1. Let $G = (V, E)$ be a flow network, and let f and f' be two maximum flows in G. Let S (resp., S') be the set of vertices that are reachable from the source in the residual network G_f (resp., $G_{f'}$). Prove that $S = S'$.
- 2. Let $G = (V, E)$ be a flow network, and let (S, T) and (S', T') be two minimum-capacity cuts of G. Prove that $(S \cap S', T \cup T')$ and $(S \cup S', T \cap T')$ are also minimum-capacity cuts of G.
- 3. The input to the longest path problem is a connected undirected graph $G = (V, E)$ with a pair of distinguished vertices s and t. The output is a longest simple path

between s and t. The decision version of the longest path problem takes the same input except that we are also give a positive integer k , and the goal is to determine whether there is a path between s and t of length at least k . In what follows we refer to the decision version of the longest path problem as LP.

- (a) Prove that LP belongs to NP.
- (b) See the description of the Hamiltonian Cycle (HC) problem on page 474 of the text. The HC problem is known to be NP-complete. Give a polynomial-time reduction from HC to LP, i.e., prove that $HC \leq_{P} LP$.