
University of Texas at Austin
Department of Computer Science

Algorithms and Complexity
CS 378, Fall 2012

Assignment #5

Greg Plaxton

November 2, 2012

There are two parts to this assignment. The first part, described in Section 1 below,
consists of a programming task that is due by 8pm on Monday, November 12. Students are
allowed to work on the first part with a partner, and are strongly encouraged to do so. Each
team should turn in only one solution for the first part. If you are having trouble finding a
partner, send me an email and I will match you up with someone else in the same situation.

The second part, described in Section 3 below, consists of a number of exercises related
to the lecture material, and is due at the beginning of class on Monday, November 19. Each
student should work on this part separately.

NOTE: The next (and last) assignment will not include a programming task, so you
should feel free to use up all of your remaining slack time (up to a maximum of one week)
on the programming portion of this assignment.

1 Programming & Problem Solving: Mooov Around

In this assignment you will implement a polynomial-time algorithm for the Mooov Around
problem with general preferences. The algorithm that you are to implement is a generaliza-
tion of the algorithm that we developed in Assignments 2 and 3 for the special case of strict
preferences. The input-output format is the same as in Assignment 1.

1.1 Configurations

Recall that we have n students, numbered from 0 to n− 1, and n spaces, numbered from 0
to n− 1.

We define a configuration G = (U, V,E) as a bipartite graph with a set U of vertices
on the “left”, one for each student, a set V of vertices on the “right”, one for each space,
and a set E of directed edges satisfying the following constraints: (1) each edge goes from
a student to a space, or from a space to a student; (2) each space has exactly one outgoing
edge; (3) each student has exactly one incoming edge. The n space-to-student edges encode
an allocation, as follows: If the outgoing edge of space j goes to student i, then space j is
allocated to student i.

1



University of Texas at Austin
Department of Computer Science

Algorithms and Complexity
CS 378, Fall 2012

For any configuration G = (U, V,E) and any space j in V , we define student(G, j) as the
unique student i such that edge (j, i) belongs to E. For any configuration G = (U, V,E) and
any student i in U , we define space(G, i) as the unique space j such that student(G, j) = i.

For any configuration G = (U, V,E), and any student i in U , we define out(G, i) as
{j | (i, j) ∈ E}.

The initial configuration is the configuration G = (U, V,E) in which out(G, i) is empty
for all students i in U , and there is an edge from space i to student i for 0 ≤ i < n. Thus
the allocation associated with the initial configuration is the university allocation.

For any configuration G = (U, V,E), we define satisfied(G) as the set of all students i in
U such that space(G, i) belongs to out(G, i), and we define unsatisfied(G) as U \satisfied(G).

For any configuration G = (U, V,E) and any space j in V , we define distance(G, j) as
the length of a shortest path from j to a student in unsatisfied(G). If there is no such path,
we define distance(G, j) as ∞.

For any configuration G = (U, V,E) and any student i in U , we define next(G, i) as
follows: if distance(G, j) =∞ for all j in out(G, i), then next(G, i) = nil ; otherwise, letting
V ′ denote the set of all spaces j in out(G, i) minimizing distance(G, j), we define next(G, i)
as the minimum space in V ′. (Example: If V ′ consists of spaces 3, 7, and 11, then next(G, i)
is space 3.)

For any configuration G = (U, V,E), we define pruned(G) as the configuration G′ =
(U, V,E \ E ′) where E ′ denotes

{(i, j) ∈ E | i ∈ U ∧ j 6= next(G, i)},

and we define cycles(G) as the set of all directed cycles in pruned(G).
For any configuration G = (U, V,E) and any cycle C in cycles(G), we define trade(G, C)

as the configuration (U, V, (E \ E ′) ∪ E ′′) where E ′ denotes

{(j, i) ∈ V × U | j ∈ C ∧ student(G, j) = i}

and E ′′ denotes
{(j, i) ∈ V × U | i ∈ C ∧ next(G, i) = j}.

For any configuration G, we define exhausted(G) as the set of all students i in unsatisfied(G)
such that next(G, i) = nil .

1.2 Preferences

Let P denote the student preferences, i.e., all of the preference information provided by the
students. We define configs(P ) as the set of all configurations G = (U, V,E) such that for
any student i in U and any space j in out(G, i), student i prefers space j to any space in
V \ out(G, i).

Remark: It is easy to prove that for any student preferences P , configuration G =
(U, V,E) in configs(P ), and any cycle C in cycles(G), the configuration trade(G, C) belongs
to configs(P ). End of Remark.

2



University of Texas at Austin
Department of Computer Science

Algorithms and Complexity
CS 378, Fall 2012

For any student preferences P , any student i in U , and any subset V ′ of V , we define
top(P, i, V ′) as the set of spaces j in V ′ such that student i likes space j at least as well as
any other space in V ′.

For any student preferences P , any configuration G = (U, V,E) in configs(P ), and any
student i in exhausted(G), we define reveal(P, G, i) as the configuration (U, V,E ∪E ′) where

E ′ = {(i, j) | j ∈ top(P, i, V \ out(G, i))}.

Remark: It is easy to prove that for any student preferences P , any configuration G =
(U, V,E) in configs(P ), and any student i in exhausted(G), the configuration reveal(P, G, i)
belongs to configs(P ). End of Remark.

2 Algorithm C

In this assignment you will implement the following nondeterministic algorithm, referred to as
Algorithm C. Like Algorithms A and B (of Assignments 2 and 3, respectively), Algorithm C
starts from the initial configuration, and iteratively updates the current configuration by
performing an arbitrary enabled action until a configuration is reached in which no actions
are enabled. Once the algorithm terminates, the output allocation is defined by the space-
to-student edges in the last configuration.

It remains to define the set of enabled actions in a given configuration. Fix the given
student preferences P , and let G = (U, V,E) be an arbitrary onfiguration in configs(P ). For
any cycle C in cycles(G), a trading action is enabled for C in G, and the effect of performing
this action is to replace G with trade(G, C). For any student i in exhausted(G), a revelation
action is enabled for i in G, and the effect of performing this action is to replace G with
reveal(P, G, i).

Remark: It turns out that Algorithm C enjoys the same confluence property as we estab-
lished for Algorithm B in Assignment 4. Thus all correct implementations of Algorithm C
produce the same output, regardless of how the nondeterminism is resolved. End of Remark.

3 Exercises

1. Let G = (V, E) be a flow network, and let f and f ′ be two maximum flows in G. Let
S (resp., S ′) be the set of vertices that are reachable from the source in the residual
network Gf (resp., Gf ′). Prove that S = S ′.

2. Let G = (V, E) be a flow network, and let (S, T ) and (S ′, T ′) be two minimum-capacity
cuts of G. Prove that (S ∩ S ′, T ∪ T ′) and (S ∪ S ′, T ∩ T ′) are also minimum-capacity
cuts of G.

3. The input to the longest path problem is a connected undirected graph G = (V, E)
with a pair of distinguished vertices s and t. The output is a longest simple path

3



University of Texas at Austin
Department of Computer Science

Algorithms and Complexity
CS 378, Fall 2012

between s and t. The decision version of the longest path problem takes the same
input except that we are also give a positive integer k, and the goal is to determine
whether there is a path between s and t of length at least k. In what follows we refer
to the decision version of the longest path problem as LP.

(a) Prove that LP belongs to NP.

(b) See the description of the Hamiltonian Cycle (HC) problem on page 474 of the
text. The HC problem is known to be NP-complete. Give a polynomial-time
reduction from HC to LP, i.e., prove that HC≤P LP.

4


