High-dimensional Statistical Analysis

Pradeep Ravikumar UT Austin

Outline

- 1. Lasso; High-dimensional Statistical Analysis
- 2. Structure Recovery: Sparsistency
- 3. Parameter Error Bounds

Recall: High-dimensional Statistical Analysis

Typical Statistical Consistency Analysis: Holding model size (p) fixed, as number of samples goes to infinity, estimated parameter $\hat{\theta}$ approaches the true parameter θ^* .

Meaningless in finite sample cases where $p \gg n!$

Need a new breed of modern statistical analysis: both model size p and sample size n go to infinity!

Typical Statistical Guarantees of Interest for an estimate $\hat{\theta}$:

- Structure Recovery e.g. is sparsity pattern of $\hat{\theta}$ same as of θ^* ?
- Parameter Bounds: $\|\widehat{\theta} \theta^*\|$ (e.g. ℓ_2 error bounds)
- Risk (Loss) Bounds: difference in expected loss

Recall: Lasso

Estimator: Lasso program

$$\widehat{\theta} \in \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \theta)^2 + \lambda_n \sum_{j=1}^{p} |\theta_j|$$

Some past work: Tibshirani, 1996; Chen et al., 1998; Donoho/Xuo, 2001; Tropp, 2004; Fuchs, 2004; Meinshausen/Buhlmann, 2005; Candes/Tao, 2005; Donoho, 2005; Haupt & Nowak, 2006; Zhao/Yu, 2006; Wainwright, 2006; Zou, 2006; Koltchinskii, 2007; Meinshausen/Yu, 2007; Tsybakov et al., 2008

Statistical Assumption: (x_i, y_i) from Linear Model: $y_i = x_i^T \theta^* + w_i$, with $w_i \sim N(0, \sigma^2)$.

Sparsistency

Theorem. Suppose the design matrix X satisfies some conditions (to be specified later), and suppose we solve the Lasso problem with regularization penalty

$$\lambda_n > \frac{2}{\gamma} \sqrt{\frac{2\sigma^2 \log p}{n}}.$$

Then for some $c_1 > 0$, the following properties hold with probability at least $1 - 4 \exp(-c_1 n \lambda_n^2) \rightarrow 1$:

- The Lasso problem has unique solution $\hat{\theta}$ with support contained with the true support: $S(\hat{\theta}) \subseteq S(\theta^*)$.
- If $\theta_{\min}^* = \min_{j \in S(\theta^*)} |\theta_j^*| > c_2 \lambda_n$ for some $c_2 > 0$, then $S(\hat{\theta}) = S(\theta^*)$.

(Wainwright 2008; Zhao and Yu, 2006;...)

Sufficient Conditions: Dependency Bound

$$\lambda_{\min}\left(\frac{1}{n}X_S^TX_S\right) \ge C_{\min} > 0.$$

$$\lambda_{\max}\left(\frac{1}{n}X_S^TX_S\right) \le D_{\max} < \infty.$$

Ensures that the relevant covariates are not "too dependent".

Sufficient Conditions: Incoherence

 $|\!|\!| X_{S^c}^T X_S (X_S^T X_S)^{-1} |\!|\!|_{\infty} \leq 1 - \gamma,$

for some $\gamma > 0$.

Equivalent:

 $\max_{j \in S^c} \|X_j^T X_S (X_S^T X_S)^{-1}\|_1 \le 1 - \gamma.$

Weaker form of orthogonality:

LHS equal to zero if all columns are orthogonal (which is not possible when p > n).

Sufficient Conditions: Gaussian Design

Suppose X has *i.i.d* rows, with $X_i \sim N(0, \Sigma)$. Then the sufficient conditions stated earlier are satisfied if:

- $\lambda_{\min}(\Sigma_{SS}) \ge C_{\min} > 0.$ $\lambda_{\max}(\Sigma_{SS}) \le D_{\max} < \infty.$
- $\||\Sigma_{S^cS}(\Sigma_{SS})^{-1}|||_{\infty} \leq 1 \gamma,$ for some $\gamma > 0.$
- Sample Scaling: $n > Ks \log p$, for some K > 0.

Proof: One can show that under sample scaling, population conditons imply the sample conditions.

Stationary Condition:

 $\frac{1}{n}X^T(X\widehat{\theta} - y) + \lambda_n \widehat{z} = 0,$

where $\hat{z} \in \partial \|\hat{\theta}\|_1$ is the sub-gradient of $\|\hat{\theta}\|_1$.

Sub-gradient : equal to derivative when the function is differentiable; otherwise a set.

Definition: For any convex function g, its sub-gradient at a point x, denoted by $\partial g(x)$ is the set of all points z such that, for all $y \neq x$:

 $g(y) - g(x) \ge z^T(y - x).$

For ℓ_1 norm: $z \in \partial || \theta ||_1$ if: $z_j = \operatorname{sign}(\theta_j)$, if $\theta_j \neq 0$, $|z_j| \leq 1$, if $\theta_j = 0$.

Stationary Condition:

 $\frac{1}{n}X^T(X\widehat{\theta}-y)+\lambda_n\widehat{z}=0,$

where $\hat{z} \in \partial \|\hat{\theta}\|_1$ is the sub-gradient of $\|\hat{\theta}\|_1$.

Have to show: $\hat{\theta}_{S^c} = 0!$

Easier to show inequalities (can bound terms), than equalities! Way out: "Witness" proof technique.

We will explicitly construct a $(\tilde{\theta}, \tilde{z})$ which satisfy the stationary condition, and for which $\tilde{\theta}_{S^c} = 0!$

Catch: Have to show $\tilde{z} \in \partial \|\tilde{\theta}\|_1$ (which we will show holds with high-probability).

Set $\tilde{\theta}$ as the solution of an "oracle" problem:

 $\tilde{\theta} = \arg\min_{\{\theta: \theta_{S^c}=0\}} \left\{ \frac{1}{n} \|y - X\theta\|_2^2 + \lambda_n \|\theta\|_1 \right\}.$

Set $\tilde{z}_S = \partial \| \tilde{\theta}_S \|_1$.

Set $\tilde{z}_{S^c} = -\frac{1}{\lambda_n} \left\{ \frac{1}{n} X_{S^c}^T (X_S \tilde{\theta}_S - y) \right\}.$

 $(\tilde{\theta}, \tilde{z})$ satisfies stationary condition of original problem:

Stationary Condition of Oracle Problem: $\frac{1}{n}X_S^T(X_S\tilde{\theta}_S - y) + \lambda_n\tilde{z}_S = 0.$

Construction: $\frac{1}{n}X_{S^c}^T(X_S\tilde{\theta}_S - y) + \lambda_n\tilde{z}_{S^c} = 0.$

Remains to show that $\tilde{z} \in \partial \|\tilde{\theta}\|_1!$

Construction: $\tilde{z}_S \in \partial \|\tilde{\theta}_S\|_1$.

Have to show: $ilde{z}_{S^c} \in \partial \| ilde{ heta}_{S^c}\|_1$.

By construction: $\tilde{ heta}_{S^c} = 0$. So have to show: $|z_j| \leq 1$, for all $j \in S^c$.

Equivalently: $||z_{S^c}||_{\infty} \leq 1$.

Notation: $\Delta = \tilde{\theta} - \theta^*$; $W = y - X\theta^*$. Stationary Condition: $\frac{1}{n}X_S^T(X_S\tilde{\theta}_S - y) + \lambda_n\tilde{z}_S = 0$. Rewritten: $(\frac{1}{n}X_S^TX_S)\Delta_S + \frac{1}{n}X_S^TW + \lambda\tilde{z}_S = 0$. Hence: $\Delta_S = (\frac{1}{n}X_S^TX_S)^{-1}[-\lambda\tilde{z}_S - \frac{1}{n}X_S^TW]$. Construction:

$$\begin{split} \lambda_n \tilde{z}_{S^c} &= -\frac{1}{n} X_{S^c}^T X_S \Delta_S - \frac{1}{n} X_{S^c}^T W \\ &= \left(\frac{1}{n} X_{S^c}^T X_S\right) \left(\frac{1}{n} X_S^T X_S\right)^{-1} \left[-\lambda \tilde{z}_S - \frac{1}{n} X_S^T W\right] - \frac{1}{n} X_{S^c}^T W. \end{split}$$

Let $c_n = \|X^T W\|_{\infty}$. Recall: $\|X_{S^c}^T X_S (X_S^T X_S)^{-1}\|_{\infty} \leq 1 - \gamma$. Then $\lambda_n \|\tilde{z}_{S^c}\|_{\infty} \leq (1 - \gamma)(\lambda_n + c_n) + c_n \leq (2 - \gamma)c_n + (1 - \gamma)\lambda_n < \lambda_n$,

provided $c_n < \gamma/(2-\gamma)\lambda_n$: we show this holds with high probability.

Whence: $\|\tilde{z}_{S^c}\|_{\infty} < 1$, as required, with high probability.

Gaussian Tail Bounds: If $W_i \sim N(0, \sigma^2)$, then:

$$\mathbb{P}[|X_j^T W| > \alpha] \le \exp(-cn\alpha^2).$$

Then, by an application of the union bound: $\mathbb{P}[\sup_{j=1}^{p} |X_{j}^{T}W| > \alpha] \le p \exp(-cn\alpha^{2}) = \exp(-cn\alpha^{2} + \log p).$

Thus, for $\lambda_n = c_1 \sqrt{\frac{\log p}{n}}$,

 $||X^TW||_{\infty} = \sup_{j=1}^p |X_j^TW| \le c_2\lambda_n$ with probability at least $1 - \exp(-c'n\lambda_n^2)$.

Restricted Eigenvalue:

Let $C = \{\Delta : \|\Delta_{S^c}\|_1 \leq 3\|\Delta_S\|_1\}$:

Then for all $\Delta \in \mathcal{C}$:

 $||X\Delta||_2^2 \ge \kappa ||\Delta||_2^2$, for some $\kappa > 0$.

Theorem: Suppose the design matrix X satisfies the restricted eigenvalue condition. Then the Lasso solution $\hat{\theta}$ satisfies:

 $\|\widehat{\theta} - \theta^*\|_2 \le c\sqrt{\frac{s\log p}{n}}.$

Lemma: The solution to the Lasso problem $\hat{\theta} = \theta^* + \Delta$ satisfies the following cone condition: $\|\Delta_{S^c}\|_1 \leq 3\|\Delta_S\|_1$.

Here: $S = 3; S^c = 1, 2.$

Let $L(\theta) = \frac{1}{n} ||X\theta - y||_2^2$.

Then, by optimality of Lasso solution $\hat{\theta}$:

 $L(\hat{\theta}) + \lambda \|\hat{\theta}\|_1 \le L(\theta^*) + \lambda \|\theta^*\|_1.$

Convexity:

$$L(\hat{\theta}) \ge L(\theta^*) + \nabla L(\theta^*) \cdot \Delta \ge L(\theta^*) - \|\nabla L(\theta^*)\|_{\infty} \|\Delta\|_1.$$

If we set $\lambda \geq 2 \|\nabla L(\theta^*)\|_{\infty} = 2 \|X^T W\|_{\infty}$, then:

 $-\frac{\lambda}{2} \|\Delta\|_1 + \lambda \|\widehat{\theta}\|_1 \le \lambda \|\theta^*\|_1.$

Noting that

$$egin{aligned} \|\widehat{ heta}\|_1 &= \| heta^*_S + \Delta_S \|_1 \ &= \|\Delta_{S^c}\|_1 + \| heta^*_S + \Delta_S\|_1 \ &\geq \|\Delta_{S^c}\|_1 + \| heta^*_S\|_1 - \|\Delta_S\|_1, \end{aligned}$$

and rearranging terms, we get:

 $\|\Delta_{S^c}\|_1 \leq 3\|\Delta_S\|_1.$

Again, by optimality of Lasso solution $\hat{\theta}$:

 $L(\hat{\theta}) + \lambda \|\hat{\theta}\|_1 \leq L(\theta^*) + \lambda \|\theta^*\|_1.$

Suppose, over the restricted set $\{\Delta : \|\Delta_{S^c}\|_1 \leq 3\|\Delta_S\|_1\}$:

 $L(\theta) \ge L(\theta^*) + \nabla L(\theta^*) \cdot \Delta + \kappa \|\Delta\|_2^2.$

Then, by re-arranging terms as earlier, we get:

 $\kappa \|\Delta\|_2^2 \leq 3\lambda \|\Delta_S\|_1 \leq 3\sqrt{s} \|\Delta_S\|_2 \leq 3\lambda \sqrt{s} \|\Delta\|_2.$

Hence:

 $\|\Delta\|_2 \leq \frac{3}{\kappa}\lambda\sqrt{s}.$

Thus, $\|\Delta\|_2 \leq c\sqrt{\frac{s\log p}{n}}$.