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Recall: High-dimensional Statistical Analysis

Typical Statistical Consistency Analysis: Holding model
size (p) fixed, as number of samples goes to infinity,
estimated parameter θ̂ approaches the true parameter
θ∗.

Meaningless in finite sample cases where p� n!

Need a new breed of modern statistical analysis: both
model size p and sample size n go to infinity!

Typical Statistical Guarantees of Interest for an estimate
θ̂:

• Structure Recovery e.g. is sparsity pattern of θ̂
same as of θ∗?

• Parameter Bounds: ‖θ̂ − θ∗‖ (e.g. `2 error bounds)

• Risk (Loss) Bounds: difference in expected loss
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Recall: Lasso

Example: Sparse regression

= +n
S

wy X θ∗

Sc

n × p

Set-up: noisy observations y = Xθ∗ + w with sparse θ∗

Estimator: Lasso program

θ̂ ∈ arg min
θ

1

n

n∑

i=1

(yi − xT
i θ)2 + λn

p∑

j=1

|θj |

Some past work: Tibshirani, 1996; Chen et al., 1998; Donoho/Xuo, 2001; Tropp, 2004;

Fuchs, 2004; Meinshausen/Buhlmann, 2005; Candes/Tao, 2005; Donoho, 2005; Haupt &

Nowak, 2006; Zhao/Yu, 2006; Wainwright, 2006; Zou, 2006; Koltchinskii, 2007;

Meinshausen/Yu, 2007; Tsybakov et al., 2008

Statistical Assumption: (xi, yi) from Linear Model:

yi = xTi θ
∗ + wi, with wi ∼ N(0, σ2).
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Sparsistency

Theorem. Suppose the design matrix X satisfies some
conditions (to be specified later), and suppose we solve
the Lasso problem with regularization penalty

λn >
2

γ

√
2σ2 log p

n
.

Then for some c1 > 0, the following properties hold with
probability at least 1− 4 exp(−c1nλ2

n)→ 1:

• The Lasso problem has unique solution θ̂ with sup-
port contained with the true support: S(θ̂) ⊆ S(θ∗).

• If θ∗min = minj∈S(θ∗) |θ∗j | > c2λn for some c2 > 0, then

S(θ̂) = S(θ∗).

(Wainwright 2008; Zhao and Yu, 2006;...)
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Sufficient Conditions: Dependency Bound

λmin

(
1

n
XT
SXS

)
≥ Cmin > 0.

λmax

(
1

n
XT
SXS

)
≤ Dmax <∞.

Ensures that the relevant covariates are not “too de-
pendent”.
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Sufficient Conditions: Incoherence

|||XT
ScXS(XT

SXS)−1|||∞ ≤ 1− γ,

for some γ > 0.

Equivalent:

maxj∈Sc ‖XT
j XS(XT

SXS)−1‖1 ≤ 1− γ.

Weaker form of orthogonality:

LHS equal to zero if all columns are orthogonal (which
is not possible when p > n).

6



Sufficient Conditions: Gaussian Design

Suppose X has i.i.d rows, with Xi ∼ N(0,Σ). Then the
sufficient conditions stated earlier are satisfied if:

• λmin(ΣSS) ≥ Cmin > 0.

λmax(ΣSS) ≤ Dmax <∞.

• |||ΣScS(ΣSS)−1|||∞ ≤ 1− γ,
for some γ > 0.

• Sample Scaling: n > Ks log p, for some K > 0.

Proof: One can show that under sample scaling, popu-
lation conditons imply the sample conditions.
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Proof of Sparsistency

Stationary Condition:

1
n
XT(Xθ̂ − y) + λnẑ = 0,

where ẑ ∈ ∂‖θ̂‖1 is the sub-gradient of ‖θ̂‖1.

Sub-gradient : equal to derivative when the function is
differentiable; otherwise a set.

Definition: For any convex function g, its sub-gradient
at a point x, denoted by ∂g(x) is the set of all points z
such that, for all y 6= x:

g(y)− g(x) ≥ zT(y − x).

For `1 norm: z ∈ ∂‖ θ‖1 if:

zj = sign(θj), if θj 6= 0,

|zj| ≤ 1, if θj = 0.
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Proof of Sparsistency

Stationary Condition:

1
n
XT(Xθ̂ − y) + λnẑ = 0,

where ẑ ∈ ∂‖θ̂‖1 is the sub-gradient of ‖θ̂‖1.

Have to show: θ̂Sc = 0!

Easier to show inequalities (can bound terms), than
equalities! Way out: “Witness” proof technique.

We will explicitly construct a (θ̃, z̃) which satisfy the
stationary condition, and for which θ̃Sc = 0!

Catch: Have to show z̃ ∈ ∂‖θ̃‖1 (which we will show
holds with high-probability).
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Proof of Sparsistency

Set θ̃ as the solution of an “oracle” problem:

θ̃ = arg min{θ: θSc=0}
{

1
n
‖y −Xθ‖2

2 + λn‖θ‖1
}
.

Set z̃S = ∂‖θ̃S‖1.

Set z̃Sc = − 1
λn

{
1
n
XT
Sc(XSθ̃S − y)

}
.

(θ̃, z̃) satisfies stationary condition of original problem:

Stationary Condition of Oracle Problem:
1
n
XT
S (XSθ̃S − y) + λnz̃S = 0.

Construction: 1
n
XT
Sc(XSθ̃S − y) + λnz̃Sc = 0.

10



Proof of Sparsistency

Remains to show that z̃ ∈ ∂‖θ̃‖1!

Construction: z̃S ∈ ∂‖θ̃S‖1.

Have to show: z̃Sc ∈ ∂‖θ̃Sc‖1.

By construction: θ̃Sc = 0. So have to show: |zj| ≤ 1, for
all j ∈ Sc.

Equivalently: ‖zSc‖∞ ≤ 1.
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Proof of Sparsistency

Notation: ∆ = θ̃ − θ∗; W = y −Xθ∗.

Stationary Condition: 1
n
XT
S (XSθ̃S − y) + λnz̃S = 0.

Rewritten:
(

1
n
XT
SXS

)
∆S + 1

n
XT
SW + λz̃S = 0.

Hence: ∆S =
(

1
n
XT
SXS

)−1
[−λz̃S − 1

n
XT
SW ].

Construction:

λnz̃Sc = −1

n
XT
ScXS∆S −

1

n
XT
ScW

=

(
1

n
XT
ScXS

)(
1

n
XT
SXS

)−1

[−λz̃S −
1

n
XT
SW ]− 1

n
XT
ScW.

Let cn = ‖XTW‖∞. Recall: |||XT
ScXS(XT

SXS)−1|||∞ ≤ 1− γ.

Then λn‖z̃Sc‖∞ ≤ (1− γ)(λn + cn) + cn ≤ (2− γ)cn + (1−
γ)λn < λn,

provided cn < γ/(2− γ)λn: we show this holds with high
probability.

Whence: ‖z̃Sc‖∞ < 1, as required, with high probability.
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Proof of Sparsistency

Gaussian Tail Bounds: If Wi ∼ N(0, σ2), then:

P[|XT
j W | > α] ≤ exp(−cnα2).

Then, by an application of the union bound:

P[
p

sup
j=1
|XT

j W | > α] ≤ p exp(−cnα2) = exp(−cnα2 + log p).

Thus, for λn = c1

√
log p
n

,

‖XTW‖∞ = suppj=1 |XT
j W | ≤ c2λn with probability at

least 1− exp(−c′nλ2
n).
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Parameter Error Bounds

Restricted Eigenvalue:

Let C = {∆ : ‖∆Sc‖1 ≤ 3‖∆S‖1}:

Then for all ∆ ∈ C:

‖X∆‖2
2 ≥ κ‖∆‖2

2, for some κ > 0.

Theorem: Suppose the design matrix X satisfies the
restricted eigenvalue condition. Then the Lasso solution
θ̂ satisfies:

‖θ̂ − θ∗‖2 ≤ c
√

s log p
n

.
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Parameter Error Bounds

Lemma: The solution to the Lasso problem θ̂ = θ∗+∆
satisfies the following cone condition: ‖∆Sc‖1 ≤ 3‖∆S‖1.

r(∆B⊥)

r(∆B)

r(∆B⊥)

r(∆B)

(a) (b)

Figure 1. Illustration of the set C(A, B; θ∗) in the special case ∆ = (∆1, ∆2, ∆3) ∈ R3 and regularizer
r(∆) = ‖∆‖1, relevant for sparse vectors (Example 1). This picture shows the case S = {3}, so that
the model subspace is A(S) = B(S) = {∆ ∈ R3 | ∆1 = ∆2 = 0}, and its orthogonal complement
is given by A⊥(S) = B⊥(S) = {∆ ∈ R3 | ∆3 = 0}. (a) In the special case when θ∗ ∈ A(S) so that
r(ΠA⊥ (θ∗)) = 0, the set C(A, B; θ∗) is a cone. (b) When θ∗ does not belong to A(S), the set
C(A, B; θ∗) is enlarged in the co-ordinates (∆1, ∆2) that span B⊥(S). It is no longer a cone, but is
still a star-shaped set.

We prove this result in Appendix A.1. It has the following important consequence: for any decom-
posable regularizer and an appropriate choice (13) of regularization parameter, we are guaranteed
that the error vector ∆̂ belongs to a very specific set, depending on the unknown vector θ∗. As
illustrated in Figure 1, the geometry of the set C depends on the relation between θ∗ and the model
subspace A. When θ∗ ∈ A, then we are guaranteed that r(ΠA⊥(θ∗)) = 0. In this case, the con-
straint (14) reduces to r(ΠB⊥(∆)) ≤ 3r(ΠB(∆)), so that C is a cone, as illustrated in panel (a).
In the more general case when θ∗ /∈ A and r(ΠA⊥(θ∗)) $= 0, the set C is not a cone, but rather a
star-shaped set excluding a small ball centered at the origin (panel (b)). As will be clarified in the
sequel, this difference (between θ∗ ∈ A and θ∗ /∈ A) plays an important role in bounding the error.

2.4 Restricted strong convexity

We now turn to an important requirement of the loss function, and its interaction with the statis-
tical model. Recall that ∆̂ = θ̂λn − θ∗ is the difference between an optimal solution θ̂λn and the
true parameter, and consider the loss difference L(θ̂λn ;Zn

1 ) − L(θ∗;Zn
1 ). To simplify notation, we

frequently write L(θ̂λn) − L(θ∗) when the underlying data Zn
1 is clear from context. In the classical

setting, under fairly mild conditions, one expects that that the loss difference should converge to
zero as the sample size n increases. It is important to note, however, that such convergence on its
own is not sufficient to guarantee that θ̂λn and θ∗ are close, or equivalently that ∆̂ is small. Rather,
the closeness depends on the curvature of the loss function, as illustrated in Figure 2. In a desirable
setting (panel (a)), the loss function is sharply curved around its optimum θ̂λn , so that having a

8

Here: S = 3;Sc = 1,2.
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Parameter Error Bounds

Let L(θ) = 1
n
‖Xθ − y‖2

2.

Then, by optimality of Lasso solution θ̂:

L(θ̂) + λ‖θ̂‖1 ≤ L(θ∗) + λ‖θ∗‖1.

Convexity:

L(θ̂) ≥ L(θ∗) +∇L(θ∗) ·∆ ≥ L(θ∗)− ‖∇L(θ∗)‖∞‖∆‖1.

If we set λ ≥ 2‖∇L(θ∗)‖∞ = 2‖XTW‖∞, then:

−λ
2
‖∆‖1 + λ‖θ̂‖1 ≤ λ‖θ∗‖1.

Noting that

‖θ̂‖1 = ‖θ∗ + ∆‖1 = ‖θ∗S + ∆S + ∆Sc‖1

= ‖∆Sc‖1 + ‖θ∗S + ∆S‖1

≥ ‖∆Sc‖1 + ‖θ∗S‖1 − ‖∆S‖1,

and rearranging terms, we get:

‖∆Sc‖1 ≤ 3‖∆S‖1.
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Parameter Error Bounds

Again, by optimality of Lasso solution θ̂:

L(θ̂) + λ‖θ̂‖1 ≤ L(θ∗) + λ‖θ∗‖1.

Suppose, over the restricted set {∆ : ‖∆Sc‖1 ≤ 3‖∆S‖1}:

L(θ) ≥ L(θ∗) +∇L(θ∗) ·∆ + κ‖∆‖2
2.

Then, by re-arranging terms as earlier, we get:

κ‖∆‖2
2 ≤ 3λ‖∆S‖1 ≤ 3

√
s‖∆S‖2 ≤ 3λ

√
s‖∆‖2.

Hence:

‖∆‖2 ≤ 3
κ
λ
√
s.

Thus, ‖∆‖2 ≤ c
√

s log p
n

.
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