High-dimensional Statistical Analysis

Pradeep Ravikumar UT Austin

Outline

- 1. Lasso; High-dimensional Statistical Analysis
- 2. Structure Recovery: Sparsistency
- 3. Parameter Error Bounds

Recall: High-dimensional Statistical Analysis

Typical Statistical Consistency Analysis: Holding model size (p) fixed, as number of samples goes to infinity, estimated parameter $\hat{\theta}$ approaches the true parameter θ^* .

Meaningless in finite sample cases where $p \gg n!$

Need a new breed of modern statistical analysis: both model size p and sample size n go to infinity!

Typical Statistical Guarantees of Interest for an estimate $\widehat{\theta}$:

- Structure Recovery e.g. is sparsity pattern of $\hat{\theta}$ same as of θ^* ?
- Parameter Bounds: $\|\widehat{\theta}-\theta^*\|$ (e.g. ℓ_2 error bounds)
- Risk (Loss) Bounds: difference in expected loss

Recall: Lasso

Estimator: Lasso program

$$
\widehat{\theta} \in \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \theta)^2 + \lambda_n \sum_{j=1}^{p} |\theta_j|
$$

Some past work: Tibshirani, 1996; Chen et al., 1998; Donoho/Xuo, 2001; Tropp, 2004; Fuchs, 2004; Meinshausen/Buhlmann, 2005; Candes/Tao, 2005; Donoho, 2005; Haupt & Nowak, 2006; Zhao/Yu, 2006; Wainwright, 2006; Zou, 2006; Koltchinskii, 2007; Meinshausen/Yu, 2007; Tsybakov et al., 2008

Statistical Assumption: (x_i, y_i) from Linear Model: $y_i=x_i^T$ ${}_{i}^{T}\theta^* + w_i$, with $w_i \sim N(0, \sigma^2)$.

Sparsistency

Theorem. Suppose the design matrix X satisfies some conditions (to be specified later), and suppose we solve the Lasso problem with regularization penalty

$$
\lambda_n > \frac{2}{\gamma} \sqrt{\frac{2\sigma^2 \log p}{n}}.
$$

Then for some $c_1 > 0$, the following properties hold with probability at least $1-4\exp(-c_1 n \lambda_n^2) \rightarrow 1$:

- The Lasso problem has unique solution $\widehat{\theta}$ with support contained with the true support: $S(\theta) \subseteq S(\theta^*)$.
- \bullet If $\theta^*_{\min} = \min_{j \in S(\theta^*)} |\theta^*_j| > c_2 \lambda_n$ for some $c_2 > 0$, then $S(\theta) = S(\theta^*).$

(Wainwright 2008; Zhao and Yu, 2006;...)

Sufficient Conditions: Dependency Bound

$$
\lambda_{\min}\left(\frac{1}{n}X_S^TX_S\right) \ge C_{\min} > 0.
$$

$$
\lambda_{\max}\left(\frac{1}{n}X_S^TX_S\right)\leq D_{\max}<\infty.
$$

Ensures that the relevant covariates are not "too dependent".

Sufficient Conditions: Incoherence

 $|||X_{S^c}^T X_S (X_S^T X_S)^{-1}||_{\infty} \leq 1 - \gamma,$

for some $\gamma > 0$.

Equivalent:

 $\textsf{max}_{j\in S^c} \| X_j^T X_S(X_S^T X_S)^{-1} \|_1 \leq 1-\gamma.$

Weaker form of orthogonality:

LHS equal to zero if all columns are orthogonal (which is not possible when $p > n$).

Sufficient Conditions: Gaussian Design

Suppose X has i.i.d rows, with $X_i \sim N(0, \Sigma)$. Then the sufficient conditions stated earlier are satisfied if:

- $\lambda_{\min}(\Sigma_{SS}) \geq C_{\min} > 0$. $\lambda_{\max}(\Sigma_{SS}) \leq D_{\max} < \infty$.
- $\bullet~~\Vert \mathbf{\Sigma}_{S^cS}(\mathbf{\Sigma}_{SS})^{-1}\Vert_{\infty}\leq 1-\gamma,$ for some $\gamma > 0$.
- Sample Scaling: $n > Ks \log p$, for some $K > 0$.

Proof: One can show that under sample scaling, population conditons imply the sample conditions.

Stationary Condition:

1 $\frac{1}{n}X^T(X\hat{\theta}-y)+\lambda_n\hat{z}=0,$

where $\hat{z} \in \partial ||\hat{\theta}||_1$ is the sub-gradient of $||\hat{\theta}||_1$.

Sub-gradient : equal to derivative when the function is differentiable; otherwise a set.

Definition: For any convex function q , its sub-gradient at a point x, denoted by $\partial g(x)$ is the set of all points z such that, for all $y \neq x$:

 $g(y) - g(x) \geq z^T(y - x).$

For ℓ_1 norm: $z \in \partial \|\theta\|_1$ if: $z_i = \text{sign}(\theta_i)$, if $\theta_i \neq 0$, $|z_i| \leq 1$, if $\theta_i = 0$.

Stationary Condition:

1 $\frac{1}{n}X^T(X\widehat{\theta}-y)+\lambda_n\widehat{z}=0,$

where $\hat{z} \in \partial ||\hat{\theta}||_1$ is the sub-gradient of $||\hat{\theta}||_1$.

Have to show: $\hat{\theta}_{S^c} = 0!$

Easier to show inequalities (can bound terms), than equalities! Way out: "Witness" proof technique.

We will explicitly construct a $(\tilde{\theta}, \tilde{z})$ which satisfy the stationary condition, and for which $\tilde{\theta}_{S^c} = 0!$

Catch: Have to show $\tilde{z} \in \partial \|\tilde{\theta}\|_1$ (which we will show holds with high-probability).

Set $\tilde{\theta}$ as the solution of an "oracle" problem:

 $\tilde{\theta}=\mathsf{arg\,min}_{\{\theta:\ \theta_{S^c}=0\}}\left\{\frac{1}{n}\right.$ $\frac{1}{n} \|y - X\theta\|_2^2 + \lambda_n \|\theta\|_1 \}$.

Set $\tilde{z}_S = \partial ||\tilde{\theta}_S||_1$.

Set $\tilde{z}_{S^c}=-\frac{1}{\lambda_n}$ $\sqrt{1}$ $\frac{1}{n}X_{S^c}^T(X_S\widetilde{\theta}_S - y)\big\}.$

 $(\tilde{\theta}, \tilde{z})$ satisfies stationary condition of original problem:

Stationary Condition of Oracle Problem: 1 $\frac{1}{n}X_S^T(X_S\tilde{\theta}_S - y) + \lambda_n \tilde{z}_S = 0.$

Construction: $\frac{1}{n} X_{S^c}^T (X_S \tilde{\theta}_S - y) + \lambda_n \tilde{z}_{S^c} = 0.$

Remains to show that $\tilde{z} \in \partial \|\tilde{\theta}\|_1!$

Construction: $\tilde{z}_S \in \partial ||\tilde{\theta}_S||_1$.

Have to show: $\tilde{z}_{S^c} \in \partial \| \tilde{\theta}_{S^c} \|_1$.

By construction: $\tilde{\theta}_{S^c} = 0$. So have to show: $|z_j| \leq 1$, for all $j \in S^c$.

Equivalently: $||z_{S^c}||_{\infty} \leq 1$.

Notation: $\Delta = \tilde{\theta} - \theta^*$; $W = y - X\theta^*$. Stationary Condition: $\frac{1}{n} X_S^T (X_S \tilde{\theta}_S - y) + \lambda_n \tilde{z}_S = 0$. Rewritten: $\left(\frac{1}{n}\right)$ $\frac{1}{n}X_S^T X_S$) $\Delta_S + \frac{1}{n}X_S^T W + \lambda \tilde{z}_S = 0.$ Hence: $\Delta_S = \left(\frac{1}{n}\right)$ $\frac{1}{n}X_S^T X_S\big)^{-1}\left[-\lambda \tilde{z}_S - \frac{1}{n}X_S^T W\right].$ Construction:

$$
\lambda_n \tilde{z}_{S^c} = -\frac{1}{n} X_{S^c}^T X_S \Delta_S - \frac{1}{n} X_{S^c}^T W
$$

= $\left(\frac{1}{n} X_{S^c}^T X_S\right) \left(\frac{1}{n} X_S^T X_S\right)^{-1} [-\lambda \tilde{z}_S - \frac{1}{n} X_S^T W] - \frac{1}{n} X_{S^c}^T W.$

Let $c_n = ||X^T W||_{\infty}$. Recall: $||X_{S^c}^T X_S (X_S^T X_S)^{-1}||_{\infty} \leq 1 - \gamma$. Then $\lambda_n || \tilde{z}_{S^c} ||_{\infty} \leq (1 - \gamma)(\lambda_n + c_n) + c_n \leq (2 - \gamma)c_n + (1 - \gamma)c_n$ $\gamma\lambda_n<\lambda_n,$

provided $c_n < \gamma/(2-\gamma)\lambda_n$: we show this holds with high probability.

Whence: $\|\tilde{z}_{S^c}\|_{\infty} < 1$, as required, with high probability.

Gaussian Tail Bounds: If $W_i \sim N(0, \sigma^2)$, then:

$$
\mathbb{P}[|X_j^TW| > \alpha] \le \exp(-cn\alpha^2).
$$

Then, by an application of the union bound: $\mathbb{P} [$ p sűp $\sup_{j=1}^p |X_j^TW| > \alpha] \leq p \exp(-cn\alpha^2) = \exp(-cn\alpha^2 + \log p).$

Thus, for $\lambda_n = c_1$ $\sqrt{\log p}$ $\frac{q p}{n}$, $\|X^TW\|_{\infty} = \sup_{j=1}^p |X_j^TW| \leq c_2\lambda_n$ with probability at least $1 - \exp(-c' n \lambda_n^2)$.

Restricted Eigenvalue:

Let $C = {\Delta : ||\Delta_{S^c}||_1 \leq 3||\Delta_S||_1}$:

Then for all $\Delta \in \mathcal{C}$:

 $||X\Delta||_2^2 \ge \kappa ||\Delta||_2^2$ 2^2 , for some $\kappa > 0$.

Theorem: Suppose the design matrix X satisfies the restricted eigenvalue condition. Then the Lasso solution $\hat{\theta}$ satisfies:

 $\|\hat{\theta} - \theta^*\|_2 \leq c$ $\sqrt{s \log p}$ $\frac{\log p}{n}$.

Lemma: The solution to the Lasso problem $\hat{\theta} = \theta^* + \Delta$ satisfies the following cone condition: $\|\Delta_{S^c}\|_1 \leq 3\|\Delta_S\|_1$.

 \tilde{f} is the set \tilde{f} in the special case \tilde{f} in the special case \tilde{f} reduce $S = 3; S^c = 1, 2.$ Here: $S = 3; S^c = 1, 2$.

Let $L(\theta) = \frac{1}{n} \|X\theta - y\|_2^2$ 2 .

Then, by optimality of Lasso solution $\hat{\theta}$:

 $L(\widehat{\theta}) + \lambda \|\widehat{\theta}\|_1 \leq L(\theta^*) + \lambda \|\theta^*\|_1.$

Convexity:

$$
L(\widehat{\theta}) \geq L(\theta^*) + \nabla L(\theta^*) \cdot \Delta \geq L(\theta^*) - \|\nabla L(\theta^*)\|_{\infty} \|\Delta\|_1.
$$

If we set $\lambda \geq 2\|\nabla L(\theta^*)\|_{\infty} = 2\|X^TW\|_{\infty}$, then:

 $-\frac{\lambda}{2} \|\Delta\|_1 + \lambda \|\hat{\theta}\|_1 \leq \lambda \|\theta^*\|_1.$

Noting that

$$
\|\hat{\theta}\|_{1} = \|\theta^{*} + \Delta\|_{1} = \|\theta_{S}^{*} + \Delta_{S} + \Delta_{S^{c}}\|_{1}
$$

= $\|\Delta_{S^{c}}\|_{1} + \|\theta_{S}^{*} + \Delta_{S}\|_{1}$
 $\geq \|\Delta_{S^{c}}\|_{1} + \|\theta_{S}^{*}\|_{1} - \|\Delta_{S}\|_{1},$

and rearranging terms, we get:

 $\|\Delta_{S^c}\|_1 \leq 3\|\Delta_S\|_1.$

Again, by optimality of Lasso solution $\hat{\theta}$:

 $L(\widehat{\theta}) + \lambda \|\widehat{\theta}\|_1 \leq L(\theta^*) + \lambda \|\theta^*\|_1.$

Suppose, over the restricted set $\{\Delta: \|\Delta_{S^c}\|_1 \leq 3\|\Delta_S\|_1\}$:

 $L(\theta) \geq L(\theta^*) + \nabla L(\theta^*) \cdot \Delta + \kappa \|\Delta\|_2^2$ 2 .

Then, by re-arranging terms as earlier, we get:

 $\kappa \|\Delta\|_2^2 \leq 3\lambda \|\Delta_S\|_1 \leq 3\sqrt{s} \|\Delta_S\|_2 \leq 3\lambda \sqrt{s} \|\Delta\|_2.$

Hence:

 $\|\Delta\|_2 \leq \frac{3}{\kappa} \lambda \sqrt{s}.$

Thus, $\|\Delta\|_2 \leq c$ $\sqrt{s \log p}$ $\frac{\log p}{n}$.