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Chapter 1

Introduction

1.1 Planning to Plan

Planning is a term that means different things to different groups of people.
Robotics addresses the automation of mechanical systems that have sensing, actu-
ation, and computation capabilities (similar terms, such as autonomous systems
are also used). A fundamental need in robotics is to have algorithms that convert
high-level specifications of tasks from humans into low-level descriptions of how
to move. The terms motion planning and trajectory planning are often used for
these kinds of problems. A classical version of motion planning is sometimes re-
ferred to as the Piano Mover’s Problem. Imagine giving a precise computer-aided
design (CAD) model of a house and a piano as input to an algorithm. The algo-
rithm must determine how to move the piano from one room to another in the
house without hitting anything. Most of us have encountered similar problems
when moving a sofa or mattress up a set of stairs. Robot motion planning usually
ignores dynamics and other differential constraints and focuses primarily on the
translations and rotations required to move the piano. Recent work, however,
does consider other aspects, such as uncertainties, differential constraints, model-
ing errors, and optimality. Trajectory planning usually refers to the problem of
taking the solution from a robot motion planning algorithm and determining how
to move along the solution in a way that respects the mechanical limitations of
the robot.

Control theory has historically been concerned with designing inputs to phys-
ical systems described by differential equations. These could include mechanical
systems such as cars or aircraft, electrical systems such as noise filters, or even sys-
tems arising in areas as diverse as chemistry, economics, and sociology. Classically,
control theory has developed feedback policies, which enable an adaptive response
during execution, and has focused on stability, which ensures that the dynamics
do not cause the system to become wildly out of control. A large emphasis is also
placed on optimizing criteria to minimize resource consumption, such as energy
or time. In recent control theory literature, motion planning sometimes refers to
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the construction of inputs to a nonlinear dynamical system that drives it from an
initial state to a specified goal state. For example, imagine trying to operate a
remote-controlled hovercraft that glides over the surface of a frozen pond. Sup-
pose we would like the hovercraft to leave its current resting location and come to
rest at another specified location. Can an algorithm be designed that computes
the desired inputs, even in an ideal simulator that neglects uncertainties that arise
from model inaccuracies? It is possible to add other considerations, such as un-
certainties, feedback, and optimality; however, the problem is already challenging
enough without these.

In artificial intelligence, the terms planning and AI planning take on a more
discrete flavor. Instead of moving a piano through a continuous space, as in the
robot motion planning problem, the task might be to solve a puzzle, such as
the Rubik’s cube or a sliding-tile puzzle, or to achieve a task that is modeled
discretely, such as building a stack of blocks. Although such problems could be
modeled with continuous spaces, it seems natural to define a finite set of actions
that can be applied to a discrete set of states and to construct a solution by giving
the appropriate sequence of actions. Historically, planning has been considered
different from problem solving; however, the distinction seems to have faded away
in recent years. In this book, we do not attempt to make a distinction between the
two. Also, substantial effort has been devoted to representation language issues
in planning. Although some of this will be covered, it is mainly outside of our
focus. Many decision-theoretic ideas have recently been incorporated into the AI
planning problem, to model uncertainties, adversarial scenarios, and optimization.
These issues are important and are considered in detail in Part III.

Given the broad range of problems to which the term planning has been ap-
plied in the artificial intelligence, control theory, and robotics communities, you
might wonder whether it has a specific meaning. Otherwise, just about anything
could be considered as an instance of planning. Some common elements for plan-
ning problems will be discussed shortly, but first we consider planning as a branch
of algorithms. Hence, this book is entitled Planning Algorithms. The primary
focus is on algorithmic and computational issues of planning problems that have
arisen in several disciplines. On the other hand, this does not mean that plan-
ning algorithms refers to an existing community of researchers within the general
algorithms community. This book it not limited to combinatorics and asymp-
totic complexity analysis, which is the main focus in pure algorithms. The focus
here includes numerous concepts that are not necessarily algorithmic but aid in
modeling, solving, and analyzing planning problems.

Natural questions at this point are, What is a plan? How is a plan represented?
How is it computed? What is it supposed to achieve? How is its quality evaluated?
Who or what is going to use it? This chapter provides general answers to these
questions. Regarding the user of the plan, it clearly depends on the application.
In most applications, an algorithm executes the plan; however, the user could even
be a human. Imagine, for example, that the planning algorithm provides you with
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Figure 1.1: The Rubik’s cube (a), sliding-tile puzzle (b), and other related puzzles
are examples of discrete planning problems.

an investment strategy.
In this book, the user of the plan will frequently be referred to as a robot

or a decision maker. In artificial intelligence and related areas, it has become
popular in recent years to use the term agent, possibly with adjectives to yield an
intelligent agent or software agent. Control theory usually refers to the decision
maker as a controller. The plan in this context is sometimes referred to as a
policy or control law. In a game-theoretic context, it might make sense to refer
to decision makers as players. Regardless of the terminology used in a particular
discipline, this book is concerned with planning algorithms that find a strategy
for one or more decision makers. Therefore, remember that terms such as robot,
agent, and controller are interchangeable.

1.2 Motivational Examples and Applications

Planning problems abound. This section surveys several examples and applica-
tions to inspire you to read further.

Why study planning algorithms? There are at least two good reasons. First, it
is fun to try to get machines to solve problems for which even humans have great
difficulty. This involves exciting challenges in modeling planning problems, design-
ing efficient algorithms, and developing robust implementations. Second, planning
algorithms have achieved widespread successes in several industries and academic
disciplines, including robotics, manufacturing, drug design, and aerospace appli-
cations. The rapid growth in recent years indicates that many more fascinating
applications may be on the horizon. These are exciting times to study planning
algorithms and contribute to their development and use.

Discrete puzzles, operations, and scheduling Chapter 2 covers discrete
planning, which can be applied to solve familiar puzzles, such as those shown in
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Figure 1.2: Remember puzzles like this? Imagine trying to solve one with an
algorithm. The goal is to pull the two bars apart. This example is called the Alpha
1.0 Puzzle. It was created by Boris Yamrom and posted as a research benchmark
by Nancy Amato at Texas A&M University. This solution and animation were
made by James Kuffner (see [38] for the full movie).

Figure 1.1. They are also good at games such as chess or bridge [58]. Discrete
planning techniques have been used in space applications, including a rover that
traveled on Mars and the Earth Observing One satellite [11, 23, 57]. When com-
bined with methods for planning in continuous spaces, they can solve complicated
tasks such as determining how to bend sheet metal into complicated objects [25];
see Section 7.5 for the related problem of folding cartons.

A motion planning puzzle The puzzles in Figure 1.1 can be easily discretized
because of the regularity and symmetries involved in moving the parts. Figure 1.2
shows a problem that lacks these properties and requires planning in a continuous
space. Such problems are solved by using the motion planning techniques of
Part II. This puzzle was designed to frustrate both humans and motion planning
algorithms. It can be solved in a few minutes on a standard personal computer
(PC) using the techniques in Section 5.5. Many other puzzles have been developed
as benchmarks for evaluating planning algorithms.

An automotive assembly puzzle Although the problem in Figure 1.2 may
appear to be pure fun and games, similar problems arise in important applications.
For example, Figure 1.3 shows an automotive assembly problem for which software
is needed to determine whether a wiper motor can be inserted (and removed)
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Figure 1.3: An automotive assembly task that involves inserting or removing a
windshield wiper motor from a car body cavity. This problem was solved for clients
using the motion planning software of Kineo CAM (courtesy of Kineo CAM).

from the car body cavity. Traditionally, such a problem is solved by constructing
physical models. This costly and time-consuming part of the design process can
be virtually eliminated in software by directly manipulating the CAD models.

The wiper example is just one of many. The most widespread impact on
industry comes from motion planning software developed at Kineo CAM. It has
been integrated into Robcad (eM-Workplace) from Tecnomatix, which is a leading
tool for designing robotic workcells in numerous factories around the world. Their
software has also been applied to assembly problems by Renault, Ford, Airbus,
Optivus, and many other major corporations. Other companies and institutions
are also heavily involved in developing and delivering motion planning tools for
industry (many are secret projects, which unfortunately cannot be described here).
One of the first instances of motion planning applied to real assembly problems
is documented in [9].

Sealing cracks in automotive assembly Figure 1.4 shows a simulation of
robots performing sealing at the Volvo Cars assembly plant in Torslanda, Sweden.
Sealing is the process of using robots to spray a sticky substance along the seams
of a car body to prevent dirt and water from entering and causing corrosion. The
entire robot workcell is designed using CAD tools, which automatically provide
the necessary geometric models for motion planning software. The solution shown
in Figure 1.4 is one of many problems solved for Volvo Cars and others using
motion planning software developed by the Fraunhofer Chalmers Centre (FCC).
Using motion planning software, engineers need only specify the high-level task of
performing the sealing, and the robot motions are computed automatically. This
saves enormous time and expense in the manufacturing process.
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Figure 1.4: An application of motion planning to the sealing process in automotive
manufacturing. Planning software developed by the Fraunhofer Chalmers Centre
(FCC) is used at the Volvo Cars plant in Sweden (courtesy of Volvo Cars and
FCC).
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Figure 1.5: Using mobile robots to move a piano [13].

Moving furniture Returning to pure entertainment, the problem shown in
Figure 1.5 involves moving a grand piano across a room using three mobile robots
with manipulation arms mounted on them. The problem is humorously inspired
by the phrase Piano Mover’s Problem. Collisions between robots and with other
pieces of furniture must be avoided. The problem is further complicated because
the robots, piano, and floor form closed kinematic chains, which are covered in
Sections 4.4 and 7.4.

Navigating mobile robots A more common task for mobile robots is to re-
quest them to navigate in an indoor environment, as shown in Figure 1.6a. A
robot might be asked to perform tasks such as building a map of the environ-
ment, determining its precise location within a map, or arriving at a particular
place. Acquiring and manipulating information from sensors is quite challenging
and is covered in Chapters 11 and 12. Most robots operate in spite of large un-
certainties. At one extreme, it may appear that having many sensors is beneficial
because it could allow precise estimation of the environment and the robot po-
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Figure 1.6: (a) Several mobile robots attempt to successfully navigate in an indoor
environment while avoiding collisions with the walls and each other. (b) Imagine
using a lantern to search a cave for missing people.

(a) (b) (c)

(d) (e) (f)

Figure 1.7: A mobile robot can reliably construct a good map of its environ-
ment (here, the Intel Research Lab) while simultaneously localizing itself. This
is accomplished using laser scanning sensors and performing efficient Bayesian
computations on the information space [20].
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sition and orientation. This is the premise of many existing systems, as shown
for the robot system in Figure 1.7, which constructs a map of its environment.
It may alternatively be preferable to develop low-cost and reliable robots that
achieve specific tasks with little or no sensing. These trade-offs are carefully con-
sidered in Chapters 11 and 12. Planning under uncertainty is the focus of Part
III.

If there are multiple robots, then many additional issues arise. How can the
robots communicate? How can their information be integrated? Should their
coordination be centralized or distributed? How can collisions between them
be avoided? Do they each achieve independent tasks, or are they required to
collaborate in some way? If they are competing in some way, then concepts from
game theory may apply. Therefore, some game theory appears in Sections 9.3,
9.4, 10.5, 11.7, and 13.5.

Playing hide and seek One important task for a mobile robot is playing the
game of hide and seek. Imagine entering a cave in complete darkness. You are
given a lantern and asked to search for any people who might be moving about,
as shown in Figure 1.6b. Several questions might come to mind. Does a strategy
even exist that guarantees I will find everyone? If not, then how many other
searchers are needed before this task can be completed? Where should I move
next? Can I keep from exploring the same places multiple times? This scenario
arises in many robotics applications. The robots can be embedded in surveillance
systems that use mobile robots with various types of sensors (motion, thermal,
cameras, etc.). In scenarios that involve multiple robots with little or no com-
munication, the strategy could help one robot locate others. One robot could
even try to locate another that is malfunctioning. Outside of robotics, software
tools can be developed that assist people in systematically searching or covering
complicated environments, for applications such as law enforcement, search and
rescue, toxic cleanup, and in the architectural design of secure buildings. The
problem is extremely difficult because the status of the pursuit must be carefully
computed to avoid unnecessarily allowing the evader to sneak back to places al-
ready searched. The information-space concepts of Chapter 11 become critical in
solving the problem. For an algorithmic solution to the hide-and-seek game, see
Section 12.4.

Making smart video game characters The problem in Figure 1.6b might
remind you of a video game. In the arcade classic Pacman, the ghosts are pro-
grammed to seek the player. Modern video games involve human-like characters
that exhibit much more sophisticated behavior. Planning algorithms can enable
game developers to program character behaviors at a higher level, with the expec-
tation that the character can determine on its own how to move in an intelligent
way.

At present there is a large separation between the planning-algorithm and
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Figure 1.8: Across the top, a motion computed by a planning algorithm, for a
digital actor to reach into a refrigerator [32]. In the lower left, a digital actor plays
chess with a virtual robot [35]. In the lower right, a planning algorithm computes
the motions of 100 digital actors moving across terrain with obstacles [41].

video-game communities. Some developers of planning algorithms are recently
considering more of the particular concerns that are important in video games.
Video-game developers have to invest too much energy at present to adapt ex-
isting techniques to their problems. For recent books that are geared for game
developers, see [6, 21].

Virtual humans and humanoid robots Beyond video games, there is broader
interest in developing virtual humans. See Figure 1.8. In the field of computer
graphics, computer-generated animations are a primary focus. Animators would
like to develop digital actors that maintain many elusive style characteristics of
human actors while at the same time being able to design motions for them from
high-level descriptions. It is extremely tedious and time consuming to specify all
motions frame-by-frame. The development of planning algorithms in this context
is rapidly expanding.

Why stop at virtual humans? The Japanese robotics community has inspired
the world with its development of advanced humanoid robots. In 1997, Honda
shocked the world by unveiling an impressive humanoid that could walk up stairs
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Figure 1.9: (a) This is a picture of the H7 humanoid robot and one of its de-
velopers, S. Kagami. It was developed in the JSK Laboratory at the University
of Tokyo. (b) Bringing virtual reality and physical reality together. A planning
algorithm computes stable motions for a humanoid to grab an obstructed object
on the floor [39].

and recover from lost balance. Since that time, numerous corporations and in-
stitutions have improved humanoid designs. Although most of the mechanical
issues have been worked out, two principle difficulties that remain are sensing and
planning. What good is a humanoid robot if it cannot be programmed to accept
high-level commands and execute them autonomously? Figure 1.9 shows work
from the University of Tokyo for which a plan computed in simulation for a hu-
manoid robot is actually applied on a real humanoid. Figure 1.10 shows humanoid
projects from the Japanese automotive industry.

Parking cars and trailers The planning problems discussed so far have not
involved differential constraints, which are the main focus in Part IV. Consider the
problem of parking slow-moving vehicles, as shown in Figure 1.11. Most people
have a little difficulty with parallel parking a car and much greater difficulty
parking a truck with a trailer. Imagine the difficulty of parallel parking an airport
baggage train! See Chapter 13 for many related examples. What makes these
problems so challenging? A car is constrained to move in the direction that the
rear wheels are pointing. Maneuvering the car around obstacles therefore becomes
challenging. If all four wheels could turn to any orientation, this problem would
vanish. The term nonholonomic planning encompasses parking problems and
many others. Figure 1.12a shows a humorous driving problem. Figure 1.12b shows
an extremely complicated vehicle for which nonholonomic planning algorithms
were developed and applied in industry.
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(a) (b)

Figure 1.10: Humanoid robots from the Japanese automotive industry: (a) The
latest Asimo robot from Honda can run at 3 km/hr (courtesy of Honda); (b)
planning is incorporated with vision in the Toyota humanoid so that it plans to
grasp objects [27].

“Wreckless” driving Now consider driving the car at high speeds. As the
speed increases, the car must be treated as a dynamical system due to momen-
tum. The car is no longer able to instantaneously start and stop, which was
reasonable for parking problems. Although there exist planning algorithms that
address such issues, there are still many unsolved research problems. The impact
on industry has not yet reached the level achieved by ordinary motion planning, as
shown in Figures 1.3 and 1.4. By considering dynamics in the design process, per-
formance and safety evaluations can be performed before constructing the vehicle.
Figure 1.13 shows a solution computed by a planning algorithm that determines
how to steer a car at high speeds through a town while avoiding collisions with
buildings. A planning algorithm could even be used to assess whether a sports
utility vehicle tumbles sideways when stopping too quickly. Tremendous time and
costs can be spared by determining design flaws early in the development process
via simulations and planning. One related problem is verification, in which a me-
chanical system design must be thoroughly tested to make sure that it performs
as expected in spite of all possible problems that could go wrong during its use.
Planning algorithms can also help in this process. For example, the algorithm
can try to violently crash a vehicle, thereby establishing that a better design is
needed.

Aside from aiding in the design process, planning algorithms that consider
dynamics can be directly embedded into robotic systems. Figure 1.13b shows an
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Figure 1.11: Some parking illustrations from government manuals for driver test-
ing: (a) parking a car (from the 2005 Missouri Driver Guide); (b) parking a
tractor trailer (published by the Pennsylvania Division of Motor Vehicles). Both
humans and planning algorithms can solve these problems.

application that involves a difficult combination of most of the issues mentioned
so far. Driving across rugged, unknown terrain at high speeds involves dynam-
ics, uncertainties, and obstacle avoidance. Numerous unsolved research problems
remain in this context.

Flying Through the Air or in Space Driving naturally leads to flying. Plan-
ning algorithms can help to navigate autonomous helicopters through obstacles.
They can also compute thrusts for a spacecraft so that collisions are avoided
around a complicated structure, such as a space station. In Section 14.1.3, the
problem of designing entry trajectories for a reusable spacecraft is described. Mis-
sion planning for interplanetary spacecraft, including solar sails, can even be per-
formed using planning algorithms [26].

Designing better drugs Planning algorithms are even impacting fields as far
away from robotics as computational biology. Two major problems are protein
folding and drug design. In both cases, scientists attempt to explain behaviors
in organisms by the way large organic molecules interact. Such molecules are
generally flexible. Drug molecules are small (see Figure 1.14), and proteins usually
have thousands of atoms. The docking problem involves determining whether a
flexible molecule can insert itself into a protein cavity, as shown in Figure 1.14,
while satisfying other constraints, such as maintaining low energy. Once geometric
models are applied to molecules, the problem looks very similar to the assembly
problem in Figure 1.3 and can be solved by motion planning algorithms. See
Section 7.5 and the literature at the end of Chapter 7.

Perspective Planning algorithms have been applied to many more problems
than those shown here. In some cases, the work has progressed from modeling,
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Figure 1.12: (a) Having a little fun with differential constraints. An obstacle-
avoiding path is shown for a car that must move forward and can only turn left.
Could you have found such a solution on your own? This is an easy problem for
several planning algorithms. (b) This gigantic truck was designed to transport
portions of the Airbus A380 across France. Kineo CAM developed nonholonomic
planning software that plans routes through villages that avoid obstacles and
satisfy differential constraints imposed by 20 steering axles. Jean-Paul Laumond,
a pioneer of nonholonomic planning, is also pictured.

(a) (b)

Figure 1.13: Reckless driving: (a) Using a planning algorithm to drive a car quickly
through an obstacle course [10]. (b) A contender developed by the Red Team
from Carnegie Mellon University in the DARPA Grand Challenge for autonomous
vehicles driving at high speeds over rugged terrain (courtesy of the Red Team).
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Figure 1.14: On the left, several familiar drugs are pictured as ball-and-stick
models (courtesy of the New York University MathMol Library [44]). On the
right, 3D models of protein-ligand docking are shown from the AutoDock software
package (courtesy of the Scripps Research Institute).

to theoretical algorithms, to practical software that is used in industry. In other
cases, substantial research remains to bring planning methods to their full poten-
tial. The future holds tremendous excitement for those who participate in the
development and application of planning algorithms.

1.3 Basic Ingredients of Planning

Although the subject of this book spans a broad class of models and problems,
there are several basic ingredients that arise throughout virtually all of the topics
covered as part of planning.

State Planning problems involve a state space that captures all possible situa-
tions that could arise. The state could, for example, represent the position and
orientation of a robot, the locations of tiles in a puzzle, or the position and ve-
locity of a helicopter. Both discrete (finite, or countably infinite) and continuous
(uncountably infinite) state spaces will be allowed. One recurring theme is that
the state space is usually represented implicitly by a planning algorithm. In most
applications, the size of the state space (in terms of number of states or combi-
natorial complexity) is much too large to be explicitly represented. Nevertheless,
the definition of the state space is an important component in the formulation of
a planning problem and in the design and analysis of algorithms that solve it.
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Time All planning problems involve a sequence of decisions that must be applied
over time. Time might be explicitly modeled, as in a problem such as driving a
car as quickly as possible through an obstacle course. Alternatively, time may be
implicit, by simply reflecting the fact that actions must follow in succession, as
in the case of solving the Rubik’s cube. The particular time is unimportant, but
the proper sequence must be maintained. Another example of implicit time is a
solution to the Piano Mover’s Problem; the solution to moving the piano may be
converted into an animation over time, but the particular speed is not specified in
the plan. As in the case of state spaces, time may be either discrete or continuous.
In the latter case, imagine that a continuum of decisions is being made by a plan.

Actions A plan generates actions that manipulate the state. The terms actions
and operators are common in artificial intelligence; in control theory and robotics,
the related terms are inputs and controls. Somewhere in the planning formulation,
it must be specified how the state changes when actions are applied. This may be
expressed as a state-valued function for the case of discrete time or as an ordinary
differential equation for continuous time. For most motion planning problems,
explicit reference to time is avoided by directly specifying a path through a con-
tinuous state space. Such paths could be obtained as the integral of differential
equations, but this is not necessary. For some problems, actions could be chosen
by nature, which interfere with the outcome and are not under the control of the
decision maker. This enables uncertainty in predictability to be introduced into
the planning problem; see Chapter 10.

Initial and goal states A planning problem usually involves starting in some
initial state and trying to arrive at a specified goal state or any state in a set of
goal states. The actions are selected in a way that tries to make this happen.

A criterion This encodes the desired outcome of a plan in terms of the state
and actions that are executed. There are generally two different kinds of planning
concerns based on the type of criterion:

1. Feasibility: Find a plan that causes arrival at a goal state, regardless of its
efficiency.

2. Optimality: Find a feasible plan that optimizes performance in some care-
fully specified manner, in addition to arriving in a goal state.

For most of the problems considered in this book, feasibility is already challenging
enough; achieving optimality is considerably harder for most problems. There-
fore, much of the focus is on finding feasible solutions to problems, as opposed
to optimal solutions. The majority of literature in robotics, control theory, and
related fields focuses on optimality, but this is not necessarily important for many
problems of interest. In many applications, it is difficult to even formulate the
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right criterion to optimize. Even if a desirable criterion can be formulated, it may
be impossible to obtain a practical algorithm that computes optimal plans. In
such cases, feasible solutions are certainly preferable to having no solutions at all.
Fortunately, for many algorithms the solutions produced are not too far from opti-
mal in practice. This reduces some of the motivation for finding optimal solutions.
For problems that involve probabilistic uncertainty, however, optimization arises
more frequently. The probabilities are often utilized to obtain the best perfor-
mance in terms of expected costs. Feasibility is often associated with performing
a worst-case analysis of uncertainties.

A plan In general, a plan imposes a specific strategy or behavior on a decision
maker. A plan may simply specify a sequence of actions to be taken; however,
it could be more complicated. If it is impossible to predict future states, then
the plan can specify actions as a function of state. In this case, regardless of
the future states, the appropriate action is determined. Using terminology from
other fields, this enables feedback or reactive plans. It might even be the case
that the state cannot be measured. In this case, the appropriate action must be
determined from whatever information is available up to the current time. This
will generally be referred to as an information state, on which the actions of a
plan are conditioned.

1.4 Algorithms, Planners, and Plans

Machine
State

1 10 1 0 1 10

Infinite Tape

Figure 1.15: According to the Church-Turing thesis, the notion of an algorithm is
equivalent to the notion of a Turing machine.

1.4.1 Algorithms

What is a planning algorithm? This is a difficult question, and a precise math-
ematical definition will not be given in this book. Instead, the general idea will
be explained, along with many examples of planning algorithms. A more basic
question is, What is an algorithm? One answer is the classical Turing machine
model, which is used to define an algorithm in theoretical computer science. A
Turing machine is a finite state machine with a special head that can read and
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Figure 1.16: (a) The boundary between machine and environment is considered as
an arbitrary line that may be drawn in many ways depending on the context. (b)
Once the boundary has been drawn, it is assumed that the machine, M , interacts
with the environment, E, through sensing and actuation.

write along an infinite piece of tape, as depicted in Figure 1.15. The Church-
Turing thesis states that an algorithm is a Turing machine (see [29, 55] for more
details). The input to the algorithm is encoded as a string of symbols (usually
a binary string) and then is written to the tape. The Turing machine reads the
string, performs computations, and then decides whether to accept or reject the
string. This version of the Turing machine only solves decision problems; however,
there are straightforward extensions that can yield other desired outputs, such as
a plan.

The Turing model is reasonable for many of the algorithms in this book; how-
ever, others may not exactly fit. The trouble with using the Turing machine in
some situations is that plans often interact with the physical world. As indicated
in Figure 1.16, the boundary between the machine and the environment is an
arbitrary line that varies from problem to problem. Once drawn, sensors provide
information about the environment; this provides input to the machine during
execution. The machine then executes actions, which provides actuation to the
environment. The actuation may alter the environment in some way that is later
measured by sensors. Therefore, the machine and its environment are closely cou-
pled during execution. This is fundamental to robotics and many other fields in
which planning is used.

Using the Turing machine as a foundation for algorithms usually implies that
the physical world must be first carefully modeled and written on the tape before
the algorithm can make decisions. If changes occur in the world during execution
of the algorithm, then it is not clear what should happen. For example, a mobile
robot could be moving in a cluttered environment in which people are walking
around. As another example, a robot might throw an object onto a table without
being able to precisely predict how the object will come to rest. It can take
measurements of the results with sensors, but it again becomes a difficult task to
determine how much information should be explicitly modeled and written on the
tape. The on-line algorithm model is more appropriate for these kinds of problems
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Infinite Row of Switches

Turing
Robot

Figure 1.17: A robot and an infinite sequence of switches could be used to simulate
a Turing machine. Through manipulation, however, many other kinds of behavior
could be obtained that fall outside of the Turing model.

[33, 48, 56]; however, it still does not capture a notion of algorithms that is broad
enough for all of the topics of this book.

Processes that occur in a physical world are more complicated than the inter-
action between a state machine and a piece of tape filled with symbols. It is even
possible to simulate the tape by imagining a robot that interacts with a long row
of switches as depicted in Figure 1.17. The switches serve the same purpose as the
tape, and the robot carries a computer that can simulate the finite state machine.1

The complicated interaction allowed between a robot and its environment could
give rise to many other models of computation.2 Thus, the term algorithm will be
used somewhat less formally than in the theory of computation. Both planners
and plans are considered as algorithms in this book.

1.4.2 Planners

A planner simply constructs a plan and may be a machine or a human. If the
planner is a machine, it will generally be considered as a planning algorithm. In
many circumstances it is an algorithm in the strict Turing sense; however, this is
not necessary. In some cases, humans become planners by developing a plan that
works in all situations. For example, it is perfectly acceptable for a human to
design a state machine that is connected to the environment (see Section 12.3.1).
There are no additional inputs in this case because the human fulfills the role
of the algorithm. The planning model is given as input to the human, and the
human “computes” a plan.

1.4.3 Plans

Once a plan is determined, there are three ways to use it:

1Of course, having infinitely long tape seems impossible in the physical world. Other versions
of Turing machines exist in which the tape is finite but as long as necessary to process the given
input. This may be more appropriate for the discussion.

2Performing computations with mechanical systems is discussed in [52]. Computation models
over the reals are covered in [5].
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Figure 1.18: (a) A planner produces a plan that may be executed by the machine.
The planner may either be a machine itself or even a human. (b) Alternatively,
the planner may design the entire machine.

1. Execution: Execute it either in simulation or in a mechanical device (robot)
connected to the physical world.

2. Refinement: Refine it into a better plan.

3. Hierarchical Inclusion: Package it as an action in a higher level plan.

Each of these will be explained in succession.

Execution A plan is usually executed by a machine. A human could alterna-
tively execute it; however, the case of machine execution is the primary focus of
this book. There are two general types of machine execution. The first is depicted
in Figure 1.18a, in which the planner produces a plan, which is encoded in some
way and given as input to the machine. In this case, the machine is considered
programmable and can accept possible plans from a planner before execution. It
will generally be assumed that once the plan is given, the machine becomes au-
tonomous and can no longer interact with the planner. Of course, this model
could be extended to allow machines to be improved over time by receiving better
plans; however, we want a strict notion of autonomy for the discussion of planning
in this book. This approach does not prohibit the updating of plans in practice;
however, this is not preferred because plans should already be designed to take
into account new information during execution.

The second type of machine execution of a plan is depicted in Figure 1.18b.
In this case, the plan produced by the planner encodes an entire machine. The
plan is a special-purpose machine that is designed to solve the specific tasks given
originally to the planner. Under this interpretation, one may be a minimalist and
design the simplest machine possible that sufficiently solves the desired tasks. If
the plan is encoded as a finite state machine, then it can sometimes be considered
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Figure 1.19: A refinement approach that has been used for decades in robotics.
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Figure 1.20: In a hierarchical model, the environment of one machine may itself
contain a machine.

as an algorithm in the Turing sense (depending on whether connecting the machine
to a tape preserves its operation).

Refinement If a plan is used for refinement, then a planner accepts it as input
and determines a new plan that is hopefully an improvement. The new plan
may take more problem aspects into account, or it may simply be more efficient.
Refinement may be applied repeatedly, to produce a sequence of improved plans,
until the final one is executed. Figure 1.19 shows a refinement approach used
in robotics. Consider, for example, moving an indoor mobile robot. The first
plan yields a collision-free path through the building. The second plan transforms
the route into one that satisfies differential constraints based on wheel motions
(recall Figure 1.11). The third plan considers how to move the robot along the
path at various speeds while satisfying momentum considerations. The fourth
plan incorporates feedback to ensure that the robot stays as close as possible to
the planned path in spite of unpredictable behavior. Further elaboration on this
approach and its trade-offs appears in Section 14.6.1.

Hierarchical inclusion Under hierarchical inclusion, a plan is incorporated as
an action in a larger plan. The original plan can be imagined as a subroutine
in the larger plan. For this to succeed, it is important for the original plan to
guarantee termination, so that the larger plan can execute more actions as needed.
Hierarchical inclusion can be performed any number of times, resulting in a rooted
tree of plans. This leads to a general model of hierarchical planning. Each vertex
in the tree is a plan. The root vertex represents the master plan. The children
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of any vertex are plans that are incorporated as actions in the plan of the vertex.
There is no limit to the tree depth or number of children per vertex. In hierarchical
planning, the line between machine and environment is drawn in multiple places.
For example, the environment, E1, with respect to a machine, M1, might actually
include another machine, M2, that interacts with its environment, E2, as depicted
in Figure 1.20. Examples of hierarchical planning appear in Sections 7.3.2 and
12.5.1.

1.5 Organization of the Book

Here is a brief overview of the book. See also the overviews at the beginning of
Parts II–IV.
PART I: Introductory Material
This provides very basic background for the rest of the book.

• Chapter 1: Introductory Material
This chapter offers some general perspective and includes some motivational
examples and applications of planning algorithms.

• Chapter 2: Discrete Planning
This chapter covers the simplest form of planning and can be considered as
a springboard for entering into the rest of the book. From here, you can
continue to Part II, or even head straight to Part III. Sections 2.1 and 2.2
are most important for heading into Part II. For Part III, Section 2.3 is
additionally useful.

PART II: Motion Planning
The main source of inspiration for the problems and algorithms covered in this
part is robotics. The methods, however, are general enough for use in other
applications in other areas, such as computational biology, computer-aided design,
and computer graphics. An alternative title that more accurately reflects the kind
of planning that occurs is “Planning in Continuous State Spaces.”

• Chapter 3: Geometric Representations and Transformations
The chapter gives important background for expressing a motion planning
problem. Section 3.1 describes how to construct geometric models, and the
remaining sections indicate how to transform them. Sections 3.1 and 3.2 are
important for later chapters.

• Chapter 4: The Configuration Space
This chapter introduces concepts from topology and uses them to formu-
late the configuration space, which is the state space that arises in motion
planning. Sections 4.1, 4.2, and 4.3.1 are important for understanding most
of the material in later chapters. In addition to the previously mentioned
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sections, all of Section 4.3 provides useful background for the combinatorial
methods of Chapter 6.

• Chapter 5: Sampling-Based Motion Planning
This chapter introduces motion planning algorithms that have dominated
the literature in recent years and have been applied in fields both in and
out of robotics. If you understand the basic idea that the configuration
space represents a continuous state space, most of the concepts should be
understandable. They even apply to other problems in which continuous
state spaces emerge, in addition to motion planning and robotics. Chapter
14 revisits sampling-based planning, but under differential constraints.

• Chapter 6: Combinatorial Motion Planning
The algorithms covered in this section are sometimes called exact algorithms
because they build discrete representations without losing any information.
They are complete, which means that they must find a solution if one exists;
otherwise, they report failure. The sampling-based algorithms have been
more useful in practice, but they only achieve weaker notions of complete-
ness.

• Chapter 7: Extensions of Basic Motion Planning
This chapter introduces many problems and algorithms that are extensions
of the methods from Chapters 5 and 6. Most can be followed with basic un-
derstanding of the material from these chapters. Section 7.4 covers planning
for closed kinematic chains; this requires an understanding of the additional
material, from Section 4.4

• Chapter 8: Feedback Motion Planning
This is a transitional chapter that introduces feedback into the motion plan-
ning problem but still does not introduce differential constraints, which
are deferred until Part IV. The previous chapters of Part II focused on
computing open-loop plans, which means that any errors that might occur
during execution of the plan are ignored, yet the plan will be executed as
planned. Using feedback yields a closed-loop plan that responds to unpre-
dictable events during execution.

PART III: Decision-Theoretic Planning
An alternative title to Part III is “Planning Under Uncertainty.” Most of Part III
addresses discrete state spaces, which can be studied immediately following Part
I. However, some sections cover extensions to continuous spaces; to understand
these parts, it will be helpful to have read some of Part II.

• Chapter 9: Basic Decision Theory
The main idea in this chapter is to design the best decision for a decision
maker that is confronted with interference from other decision makers. The
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others may be true opponents in a game or may be fictitious in order to
model uncertainties. The chapter focuses on making a decision in a sin-
gle step and provides a building block for Part III because planning under
uncertainty can be considered as multi-step decision making.

• Chapter 10: Sequential Decision Theory
This chapter takes the concepts from Chapter 9 and extends them by chain-
ing together a sequence of basic decision-making problems. Dynamic pro-
gramming concepts from Section 2.3 become important here. For all of
the problems in this chapter, it is assumed that the current state is always
known. All uncertainties that exist are with respect to prediction of future
states, as opposed to measuring the current state.

• Chapter 11: Sensors and Information Spaces
The chapter extends the formulations of Chapter 10 into a framework for
planning when the current state is unknown during execution. Information
regarding the state is obtained from sensor observations and the memory of
actions that were previously applied. The information space serves a similar
purpose for problems with sensing uncertainty as the configuration space
has for motion planning.

• Chapter 12: Planning Under Sensing Uncertainty
This chapter covers several planning problems and algorithms that involve
sensing uncertainty. This includes problems such as localization, map build-
ing, pursuit-evasion, and manipulation. All of these problems are unified
under the idea of planning in information spaces, which follows from Chap-
ter 11.

PART IV: Planning Under Differential Constraints
This can be considered as a continuation of Part II. Here there can be both global
(obstacles) and local (differential) constraints on the continuous state spaces that
arise in motion planning. Dynamical systems are also considered, which yields
state spaces that include both position and velocity information (this coincides
with the notion of a state space in control theory or a phase space in physics and
differential equations).

• Chapter 13: Differential Models
This chapter serves as an introduction to Part IV by introducing numerous
models that involve differential constraints. This includes constraints that
arise from wheels rolling as well as some that arise from the dynamics of
mechanical systems.

• Chapter 14: Sampling-Based Planning Under Differential Con-
straints
Algorithms for solving planning problems under the models of Chapter 13
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are presented. Many algorithms are extensions of methods from Chapter
5. All methods are sampling-based because very little can be accomplished
with combinatorial techniques in the context of differential constraints.

• Chapter 15: System Theory and Analytical Techniques
This chapter provides an overview of the concepts and tools developed
mainly in control theory literature. They are complementary to the al-
gorithms of Chapter 14 and often provide important insights or components
in the development of planning algorithms under differential constraints.
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