
Part I

Introductory Material

Steven M. LaValle

University of Illinois

Copyright Steven M. LaValle 2006

Available for downloading at http://planning.cs.uiuc.edu/

Published by Cambridge University Press

Chapter 2

Discrete Planning

This chapter provides introductory concepts that serve as an entry point into
other parts of the book. The planning problems considered here are the simplest
to describe because the state space will be finite in most cases. When it is not
finite, it will at least be countably infinite (i.e., a unique integer may be assigned
to every state). Therefore, no geometric models or differential equations will be
needed to characterize the discrete planning problems. Furthermore, no forms
of uncertainty will be considered, which avoids complications such as probability
theory. All models are completely known and predictable.

There are three main parts to this chapter. Sections 2.1 and 2.2 define and
present search methods for feasible planning, in which the only concern is to reach
a goal state. The search methods will be used throughout the book in numerous
other contexts, including motion planning in continuous state spaces. Following
feasible planning, Section 2.3 addresses the problem of optimal planning. The
principle of optimality, or the dynamic programming principle, [1] provides a key
insight that greatly reduces the computation effort in many planning algorithms.
The value-iteration method of dynamic programming is the main focus of Section
2.3. The relationship between Dijkstra’s algorithm and value iteration is also
discussed. Finally, Sections 2.4 and 2.5 describe logic-based representations of
planning and methods that exploit these representations to make the problem
easier to solve; material from these sections is not needed in later chapters.

Although this chapter addresses a form of planning, it encompasses what is
sometimes referred to as problem solving. Throughout the history of artificial in-
telligence research, the distinction between problem solving [45] and planning has
been rather elusive. The widely used textbook by Russell and Norvig [53] pro-
vides a representative, modern survey of the field of artificial intelligence. Two of
its six main parts are termed “problem-solving” and “planning”; however, their
definitions are quite similar. The problem-solving part begins by stating, “Prob-
lem solving agents decide what to do by finding sequences of actions that lead
to desirable states” ([53], p. 59). The planning part begins with, “The task of
coming up with a sequence of actions that will achieve a goal is called planning”
([53], p. 375). Also, the STRIPS system [19] is widely considered as a seminal

29

30 S. M. LaValle: Planning Algorithms

planning algorithm, and the “PS” part of its name stands for “Problem Solver.”
Thus, problem solving and planning appear to be synonymous. Perhaps the term
“planning” carries connotations of future time, whereas “problem solving” sounds
somewhat more general. A problem-solving task might be to take evidence from
a crime scene and piece together the actions taken by suspects. It might seem
odd to call this a “plan” because it occurred in the past.

Since it is difficult to make clear distinctions between problem solving and
planning, we will simply refer to both as planning. This also helps to keep with
the theme of this book. Note, however, that some of the concepts apply to a
broader set of problems than what is often meant by planning.

2.1 Introduction to Discrete Feasible Planning

2.1.1 Problem Formulation

The discrete feasible planning model will be defined using state-space models,
which will appear repeatedly throughout this book. Most of these will be natural
extensions of the model presented in this section. The basic idea is that each
distinct situation for the world is called a state, denoted by x, and the set of all
possible states is called a state space, X. For discrete planning, it will be important
that this set is countable; in most cases it will be finite. In a given application,
the state space should be defined carefully so that irrelevant information is not
encoded into a state (e.g., a planning problem that involves moving a robot in
France should not encode information about whether certain light bulbs are on in
China). The inclusion of irrelevant information can easily convert a problem that
is amenable to efficient algorithmic solutions into one that is intractable. On the
other hand, it is important that X is large enough to include all information that
is relevant to solve the task.

The world may be transformed through the application of actions that are
chosen by the planner. Each action, u, when applied from the current state,
x, produces a new state, x′, as specified by a state transition function, f . It is
convenient to use f to express a state transition equation,

x′ = f(x, u). (2.1)

Let U(x) denote the action space for each state x, which represents the set of
all actions that could be applied from x. For distinct x, x′ ∈ X, U(x) and U(x′)
are not necessarily disjoint; the same action may be applicable in multiple states.
Therefore, it is convenient to define the set U of all possible actions over all states:

U =
⋃

x∈X

U(x). (2.2)

As part of the planning problem, a set XG ⊂ X of goal states is defined. The
task of a planning algorithm is to find a finite sequence of actions that when

2.1. INTRODUCTION TO DISCRETE FEASIBLE PLANNING 31

applied, transforms the initial state xI to some state in XG. The model is sum-
marized as:

Formulation 2.1 (Discrete Feasible Planning)

1. A nonempty state space X, which is a finite or countably infinite set of
states.

2. For each state x ∈ X, a finite action space U(x).

3. A state transition function f that produces a state f(x, u) ∈ X for every
x ∈ X and u ∈ U(x). The state transition equation is derived from f as
x′ = f(x, u).

4. An initial state xI ∈ X.

5. A goal set XG ⊂ X.

It is often convenient to express Formulation 2.1 as a directed state transition
graph. The set of vertices is the state space X. A directed edge from x ∈ X to
x′ ∈ X exists in the graph if and only if there exists an action u ∈ U(x) such that
x′ = f(x, u). The initial state and goal set are designated as special vertices in
the graph, which completes the representation of Formulation 2.1 in graph form.

2.1.2 Examples of Discrete Planning

Example 2.1 (Moving on a 2D Grid) Suppose that a robot moves on a grid
in which each grid point has integer coordinates of the form (i, j). The robot
takes discrete steps in one of four directions (up, down, left, right), each of which
increments or decrements one coordinate. The motions and corresponding state
transition graph are shown in Figure 2.1, which can be imagined as stepping from
tile to tile on an infinite tile floor.

This will be expressed using Formulation 2.1. Let X be the set of all integer
pairs of the form (i, j), in which i, j ∈ Z (Z denotes the set of all integers). Let
U = {(0, 1), (0,−1), (1, 0), (−1, 0)}. Let U(x) = U for all x ∈ X. The state
transition equation is f(x, u) = x + u, in which x ∈ X and u ∈ U are treated as
two-dimensional vectors for the purpose of addition. For example, if x = (3, 4)
and u = (0, 1), then f(x, u) = (3, 5). Suppose for convenience that the initial state
is xI = (0, 0). Many interesting goal sets are possible. Suppose, for example, that
XG = {(100, 100)}. It is easy to find a sequence of actions that transforms the
state from (0, 0) to (100, 100).

The problem can be made more interesting by shading in some of the square
tiles to represent obstacles that the robot must avoid, as shown in Figure 2.2. In
this case, any tile that is shaded has its corresponding vertex and associated edges
deleted from the state transition graph. An outer boundary can be made to fence
in a bounded region so that X becomes finite. Very complicated labyrinths can

32 S. M. LaValle: Planning Algorithms

Figure 2.1: The state transition graph for an example problem that involves
walking around on an infinite tile floor.

be constructed. �

Example 2.2 (Rubik’s Cube Puzzle) Many puzzles can be expressed as dis-
crete planning problems. For example, the Rubik’s cube is a puzzle that looks
like an array of 3× 3× 3 little cubes, which together form a larger cube as shown
in Figure 1.1a (Section 1.2). Each face of the larger cube is painted one of six
colors. An action may be applied to the cube by rotating a 3 × 3 sheet of cubes
by 90 degrees. After applying many actions to the Rubik’s cube, each face will
generally be a jumble of colors. The state space is the set of configurations for

Figure 2.2: Interesting planning problems that involve exploring a labyrinth can
be made by shading in tiles.

2.1. INTRODUCTION TO DISCRETE FEASIBLE PLANNING 33

the cube (the orientation of the entire cube is irrelevant). For each state there
are 12 possible actions. For some arbitrarily chosen configuration of the Rubik’s
cube, the planning task is to find a sequence of actions that returns it to the
configuration in which each one of its six faces is a single color. �

It is important to note that a planning problem is usually specified without
explicitly representing the entire state transition graph. Instead, it is revealed
incrementally in the planning process. In Example 2.1, very little information
actually needs to be given to specify a graph that is infinite in size. If a planning
problem is given as input to an algorithm, close attention must be paid to the
encoding when performing a complexity analysis. For a problem in which X

is infinite, the input length must still be finite. For some interesting classes of
problems it may be possible to compactly specify a model that is equivalent to
Formulation 2.1. Such representation issues have been the basis of much research
in artificial intelligence over the past decades as different representation logics
have been proposed; see Section 2.4 and [23]. In a sense, these representations
can be viewed as input compression schemes.

Readers experienced in computer engineering might recognize that when X is
finite, Formulation 2.1 appears almost identical to the definition of a finite state
machine or Mealy/Moore machines. Relating the two models, the actions can
be interpreted as inputs to the state machine, and the output of the machine
simply reports its state. Therefore, the feasible planning problem (if X is finite)
may be interpreted as determining whether there exists a sequence of inputs that
makes a finite state machine eventually report a desired output. From a planning
perspective, it is assumed that the planning algorithm has a complete specification
of the machine transitions and is able to read its current state at any time.

Readers experienced with theoretical computer science may observe similar
connections to a deterministic finite automaton (DFA), which is a special kind of
finite state machine that reads an input string and makes a decision about whether
to accept or reject the string. The input string is just a finite sequence of inputs,
in the same sense as for a finite state machine. A DFA definition includes a set
of accept states, which in the planning context can be renamed to the goal set.
This makes the feasible planning problem (if X is finite) equivalent to determining
whether there exists an input string that is accepted by a given DFA. Usually, a
language is associated with a DFA, which is the set of all strings it accepts. DFAs
are important in the theory of computation because their languages correspond
precisely to regular expressions. The planning problem amounts to determining
whether the empty language is associated with the DFA.

Thus, there are several ways to represent and interpret the discrete feasible
planning problem that sometimes lead to a very compact, implicit encoding of the
problem. This issue will be revisited in Section 2.4. Until then, basic planning
algorithms are introduced in Section 2.2, and discrete optimal planning is covered
in Section 2.3.

34 S. M. LaValle: Planning Algorithms

(a) (b)

Figure 2.3: (a) Many search algorithms focus too much on one direction, which
may prevent them from being systematic on infinite graphs. (b) If, for example,
the search carefully expands in wavefronts, then it becomes systematic. The
requirement to be systematic is that, in the limit, as the number of iterations
tends to infinity, all reachable vertices are reached.

2.2 Searching for Feasible Plans

The methods presented in this section are just graph search algorithms, but
with the understanding that the state transition graph is revealed incrementally
through the application of actions, instead of being fully specified in advance. The
presentation in this section can therefore be considered as visiting graph search
algorithms from a planning perspective. An important requirement for these or
any search algorithms is to be systematic. If the graph is finite, this means that
the algorithm will visit every reachable state, which enables it to correctly declare
in finite time whether or not a solution exists. To be systematic, the algorithm
should keep track of states already visited; otherwise, the search may run for-
ever by cycling through the same states. Ensuring that no redundant exploration
occurs is sufficient to make the search systematic.

If the graph is infinite, then we are willing to tolerate a weaker definition
for being systematic. If a solution exists, then the search algorithm still must
report it in finite time; however, if a solution does not exist, it is acceptable
for the algorithm to search forever. This systematic requirement is achieved by
ensuring that, in the limit, as the number of search iterations tends to infinity,
every reachable vertex in the graph is explored. Since the number of vertices is
assumed to be countable, this must always be possible.

As an example of this requirement, consider Example 2.1 on an infinite tile
floor with no obstacles. If the search algorithm explores in only one direction, as

2.2. SEARCHING FOR FEASIBLE PLANS 35

FORWARD SEARCH
1 Q.Insert(xI) and mark xI as visited
2 while Q not empty do
3 x← Q.GetF irst()
4 if x ∈ XG

5 return SUCCESS
6 forall u ∈ U(x)
7 x′ ← f(x, u)
8 if x′ not visited
9 Mark x′ as visited
10 Q.Insert(x′)
11 else
12 Resolve duplicate x′

13 return FAILURE

Figure 2.4: A general template for forward search.

depicted in Figure 2.3a, then in the limit most of the space will be left uncovered,
even though no states are revisited. If instead the search proceeds outward from
the origin in wavefronts, as depicted in Figure 2.3b, then it may be systematic.
In practice, each search algorithm has to be carefully analyzed. A search algo-
rithm could expand in multiple directions, or even in wavefronts, but still not be
systematic. If the graph is finite, then it is much simpler: Virtually any search
algorithm is systematic, provided that it marks visited states to avoid revisiting
the same states indefinitely.

2.2.1 General Forward Search

Figure 2.4 gives a general template of search algorithms, expressed using the state-
space representation. At any point during the search, there will be three kinds of
states:

1. Unvisited: States that have not been visited yet. Initially, this is every
state except xI .

2. Dead: States that have been visited, and for which every possible next
state has also been visited. A next state of x is a state x′ for which there
exists a u ∈ U(x) such that x′ = f(x, u). In a sense, these states are dead
because there is nothing more that they can contribute to the search; there
are no new leads that could help in finding a feasible plan. Section 2.3.3
discusses a variant in which dead states can become alive again in an effort
to obtain optimal plans.

3. Alive: States that have been encountered, but possibly have unvisited next
states. These are considered alive. Initially, the only alive state is xI .

36 S. M. LaValle: Planning Algorithms

The set of alive states is stored in a priority queue, Q, for which a priority
function must be specified. The only significant difference between various search
algorithms is the particular function used to sort Q. Many variations will be
described later, but for the time being, it might be helpful to pick one. Therefore,
assume for now that Q is a common FIFO (First-In First-Out) queue; whichever
state has been waiting the longest will be chosen when Q.GetF irst() is called. The
rest of the general search algorithm is quite simple. Initially, Q contains the initial
state xI . A while loop is then executed, which terminates only when Q is empty.
This will only occur when the entire graph has been explored without finding
any goal states, which results in a FAILURE (unless the reachable portion of X
is infinite, in which case the algorithm should never terminate). In each while
iteration, the highest ranked element, x, of Q is removed. If x lies in XG, then it
reports SUCCESS and terminates; otherwise, the algorithm tries applying every
possible action, u ∈ U(x). For each next state, x′ = f(x, u), it must determine
whether x′ is being encountered for the first time. If it is unvisited, then it is
inserted into Q; otherwise, there is no need to consider it because it must be
either dead or already in Q.

The algorithm description in Figure 2.4 omits several details that often become
important in practice. For example, how efficient is the test to determine whether
x ∈ XG in line 4? This depends, of course, on the size of the state space and
on the particular representations chosen for x and XG. At this level, we do not
specify a particular method because the representations are not given.

One important detail is that the existing algorithm only indicates whether
a solution exists, but does not seem to produce a plan, which is a sequence of
actions that achieves the goal. This can be fixed by inserting a line after line
7 that associates with x′ its parent, x. If this is performed each time, one can
simply trace the pointers from the final state to the initial state to recover the
plan. For convenience, one might also store which action was taken, in addition
to the pointer from x′ to x.

Lines 8 and 9 are conceptually simple, but how can one tell whether x′ has
been visited? For some problems the state transition graph might actually be a
tree, which means that there are no repeated states. Although this does not occur
frequently, it is wonderful when it does because there is no need to check whether
states have been visited. If the states in X all lie on a grid, one can simply make
a lookup table that can be accessed in constant time to determine whether a state
has been visited. In general, however, it might be quite difficult because the state
x′ must be compared with every other state in Q and with all of the dead states.
If the representation of each state is long, as is sometimes the case, this will be
very costly. A good hashing scheme or another clever data structure can greatly
alleviate this cost, but in many applications the computation time will remain
high. One alternative is to simply allow repeated states, but this could lead to an
increase in computational cost that far outweighs the benefits. Even if the graph
is very small, search algorithms could run in time exponential in the size of the

2.2. SEARCHING FOR FEASIBLE PLANS 37

state transition graph, or the search may not terminate at all, even if the graph
is finite.

One final detail is that some search algorithms will require a cost to be com-
puted and associated with every state. If the same state is reached multiple times,
the cost may have to be updated, which is performed in line 12, if the particular
search algorithm requires it. Such costs may be used in some way to sort the
priority queue, or they may enable the recovery of the plan on completion of the
algorithm. Instead of storing pointers, as mentioned previously, the optimal cost
to return to the initial state could be stored with each state. This cost alone is
sufficient to determine the action sequence that leads to any visited state. Start-
ing at a visited state, the path back to xI can be obtained by traversing the state
transition graph backward in a way that decreases the cost as quickly as possible
in each step. For this to succeed, the costs must have a certain monotonicity
property, which is obtained by Dijkstra’s algorithm and A∗ search, and will be
introduced in Section 2.2.2. More generally, the costs must form a navigation
function, which is considered in Section 8.2.2 as feedback is incorporated into
discrete planning.

2.2.2 Particular Forward Search Methods

This section presents several search algorithms, each of which constructs a search
tree. Each search algorithm is a special case of the algorithm in Figure 2.4,
obtained by defining a different sorting function for Q. Most of these are just
classical graph search algorithms [12].

Breadth first The method given in Section 2.2.1 specifies Q as a First-In First-
Out (FIFO) queue, which selects states using the first-come, first-serve principle.
This causes the search frontier to grow uniformly and is therefore referred to as
breadth-first search. All plans that have k steps are exhausted before plans with
k + 1 steps are investigated. Therefore, breadth first guarantees that the first
solution found will use the smallest number of steps. On detection that a state
has been revisited, there is no work to do in line 12. Since the search progresses in
a series of wavefronts, breadth-first search is systematic. In fact, it even remains
systematic if it does not keep track of repeated states (however, it will waste time
considering irrelevant cycles).

The asymptotic running time of breadth-first search is O(|V |+ |E|), in which
|V | and |E| are the numbers of vertices and edges, respectively, in the state tran-
sition graph (recall, however, that the graph is usually not the input; for example,
the input may be the rules of the Rubik’s cube). This assumes that all basic
operations, such as determining whether a state has been visited, are performed
in constant time. In practice, these operations will typically require more time
and must be counted as part of the algorithm’s complexity. The running time
can be expressed in terms of the other representations. Recall that |V | = |X| is

38 S. M. LaValle: Planning Algorithms

the number of states. If the same actions U are available from every state, then
|E| = |U ||X|. If the action sets U(x1) and U(x2) are pairwise disjoint for any
x1, x2 ∈ X, then |E| = |U |.

Depth first By making Q a stack (Last-In, First-Out; or LIFO), aggressive
exploration of the state transition graph occurs, as opposed to the uniform ex-
pansion of breadth-first search. The resulting variant is called depth-first search
because the search dives quickly into the graph. The preference is toward inves-
tigating longer plans very early. Although this aggressive behavior might seem
desirable, note that the particular choice of longer plans is arbitrary. Actions are
applied in the forall loop in whatever order they happen to be defined. Once
again, if a state is revisited, there is no work to do in line 12. Depth-first search is
systematic for any finite X but not for an infinite X because it could behave like
Figure 2.3a. The search could easily focus on one “direction” and completely miss
large portions of the search space as the number of iterations tends to infinity.
The running time of depth first search is also O(|V |+ |E|).

Dijkstra’s algorithm Up to this point, there has been no reason to prefer one
action over any other in the search. Section 2.3 will formalize optimal discrete
planning and will present several algorithms that find optimal plans. Before go-
ing into that, we present a systematic search algorithm that finds optimal plans
because it is also useful for finding feasible plans. The result is the well-known
Dijkstra’s algorithm for finding single-source shortest paths in a graph [18], which
is a special form of dynamic programming. More general dynamic programming
computations appear in Section 2.3 and throughout the book.

Suppose that every edge, e ∈ E, in the graph representation of a discrete plan-
ning problem has an associated nonnegative cost l(e), which is the cost to apply
the action. The cost l(e) could be written using the state-space representation as
l(x, u), indicating that it costs l(x, u) to apply action u from state x. The total
cost of a plan is just the sum of the edge costs over the path from the initial state
to a goal state.

The priority queue, Q, will be sorted according to a function C : X → [0,∞],
called the cost-to-come. For each state x, the value C∗(x) is called the optimal1

cost-to-come from the initial state xI . This optimal cost is obtained by summing
edge costs, l(e), over all possible paths from xI to x and using the path that
produces the least cumulative cost. If the cost is not known to be optimal, then
it is written as C(x).

The cost-to-come is computed incrementally during the execution of the search
algorithm in Figure 2.4. Initially, C∗(xI) = 0. Each time the state x′ is generated,
a cost is computed as C(x′) = C∗(x) + l(e), in which e is the edge from x to x′

(equivalently, we may write C(x′) = C∗(x) + l(x, u)). Here, C(x′) represents the
best cost-to-come that is known so far, but we do not write C∗ because it is not

1As in optimization literature, we will use ∗ to mean optimal.

2.2. SEARCHING FOR FEASIBLE PLANS 39

yet known whether x′ was reached optimally. Due to this, some work is required
in line 12. If x′ already exists in Q, then it is possible that the newly discovered
path to x′ is more efficient. If so, then the cost-to-come value C(x′) must be
lowered for x′, and Q must be reordered accordingly.

When does C(x) finally become C∗(x) for some state x? Once x is removed
from Q using Q.GetF irst(), the state becomes dead, and it is known that x cannot
be reached with a lower cost. This can be argued by induction. For the initial
state, C∗(xI) is known, and this serves as the base case. Now assume that every
dead state has its optimal cost-to-come correctly determined. This means that
their cost-to-come values can no longer change. For the first element, x, of Q, the
value must be optimal because any path that has a lower total cost would have to
travel through another state in Q, but these states already have higher costs. All
paths that pass only through dead states were already considered in producing
C(x). Once all edges leaving x are explored, then x can be declared as dead,
and the induction continues. This is not enough detail to constitute a proof of
optimality; more arguments appear in Section 2.3.3 and in [12]. The running time
is O(|V | lg |V |+ |E|), in which |V | and |E| are the numbers of edges and vertices,
respectively, in the graph representation of the discrete planning problem. This
assumes that the priority queue is implemented with a Fibonacci heap, and that
all other operations, such as determining whether a state has been visited, are
performed in constant time. If other data structures are used to implement the
priority queue, then higher running times may be obtained.

A-star The A∗ (pronounced “ay star”) search algorithm is an extension of Di-
jkstra’s algorithm that tries to reduce the total number of states explored by
incorporating a heuristic estimate of the cost to get to the goal from a given state.
Let C(x) denote the cost-to-come from xI to x, and let G(x) denote the cost-
to-go from x to some state in XG. It is convenient that C∗(x) can be computed
incrementally by dynamic programming; however, there is no way to know the
true optimal cost-to-go, G∗, in advance. Fortunately, in many applications it is
possible to construct a reasonable underestimate of this cost. As an example of a
typical underestimate, consider planning in the labyrinth depicted in Figure 2.2.
Suppose that the cost is the total number of steps in the plan. If one state has
coordinates (i, j) and another has (i′, j′), then |i′ − i| + |j′ − j| is an underesti-
mate because this is the length of a straightforward plan that ignores obstacles.
Once obstacles are included, the cost can only increase as the robot tries to get
around them (which may not even be possible). Of course, zero could also serve
as an underestimate, but that would not provide any helpful information to the
algorithm. The aim is to compute an estimate that is as close as possible to the
optimal cost-to-go and is also guaranteed to be no greater. Let Ĝ∗(x) denote such
an estimate.

The A∗ search algorithm works in exactly the same way as Dijkstra’s algorithm.
The only difference is the function used to sort Q. In the A∗ algorithm, the sum

40 S. M. LaValle: Planning Algorithms

xI

xG

Figure 2.5: Here is a troublesome example for best-first search. Imagine trying
to reach a state that is directly below the spiral tube. If the initial state starts
inside of the opening at the top of the tube, the search will progress around the
spiral instead of leaving the tube and heading straight for the goal.

C∗(x′) + Ĝ∗(x′) is used, implying that the priority queue is sorted by estimates
of the optimal cost from xI to XG. If Ĝ∗(x) is an underestimate of the true
optimal cost-to-go for all x ∈ X, the A∗ algorithm is guaranteed to find optimal
plans [19, 49]. As Ĝ∗ becomes closer to G∗, fewer vertices tend to be explored in
comparison with Dijkstra’s algorithm. This would always seem advantageous, but
in some problems it is difficult or impossible to find a heuristic that is both efficient
to evaluate and provides good search guidance. Note that when Ĝ∗(x) = 0 for all
x ∈ X, then A∗ degenerates to Dijkstra’s algorithm. In any case, the search will
always be systematic.

Best first For best-first search, the priority queue is sorted according to an
estimate of the optimal cost-to-go. The solutions obtained in this way are not
necessarily optimal; therefore, it does not matter whether the estimate exceeds
the true optimal cost-to-go, which was important to maintain optimality for A∗

search. Although optimal solutions are not found, in many cases, far fewer vertices
are explored, which results in much faster running times. There is no guarantee,

2.2. SEARCHING FOR FEASIBLE PLANS 41

however, that this will happen. The worst-case performance of best-first search is
worse than that of A∗ search and dynamic programming. The algorithm is often
too greedy because it prefers states that “look good” very early in the search.
Sometimes the price must be paid for being greedy! Figure 2.5 shows a contrived
example in which the planning problem involves taking small steps in a 3D world.
For any specified number, k, of steps, it is easy to construct a spiral example that
wastes at least k steps in comparison to Dijkstra’s algorithm. Note that best-first
search is not systematic.

Iterative deepening The iterative deepening approach is usually preferable if
the search tree has a large branching factor (i.e., there are many more vertices in
the next level than in the current level). This could occur if there are many actions
per state and only a few states are revisited. The idea is to use depth-first search
and find all states that are distance i or less from xI . If the goal is not found,
then the previous work is discarded, and depth first is applied to find all states
of distance i+ 1 or less from xI . This generally iterates from i = 1 and proceeds
indefinitely until the goal is found. Iterative deepening can be viewed as a way
of converting depth-first search into a systematic search method. The motivation
for discarding the work of previous iterations is that the number of states reached
for i+ 1 is expected to far exceed (e.g., by a factor of 10) the number reached for
i. Therefore, once the commitment has been made to reach level i + 1, the cost
of all previous iterations is negligible.

The iterative deepening method has better worst-case performance than breadth-
first search for many problems. Furthermore, the space requirements are reduced
because the queue in breadth-first search is usually much larger than for depth-
first search. If the nearest goal state is i steps from xI , breadth-first search in
the worst case might reach nearly all states of distance i + 1 before terminating
successfully. This occurs each time a state x 6∈ XG of distance i from xI is reached
because all new states that can be reached in one step are placed onto Q. The
A∗ idea can be combined with iterative deepening to yield IDA∗, in which i is
replaced by C∗(x′) + Ĝ∗(x′). In each iteration of IDA∗, the allowed total cost
gradually increases [49].

2.2.3 Other General Search Schemes

This section covers two other general templates for search algorithms. The first
one is simply a “backward” version of the tree search algorithm in Figure 2.4. The
second one is a bidirectional approach that grows two search trees, one from the
initial state and one from a goal state.

Backward search Backward versions of any of the forward search algorithms
of Section 2.2.2 can be made. For example, a backward version of Dijkstra’s
algorithm can be made by starting from xG. To create backward search algorithms,

42 S. M. LaValle: Planning Algorithms

suppose that there is a single goal state, xG. For many planning problems, it might
be the case that the branching factor is large when starting from xI . In this case,
it might be more efficient to start the search at a goal state and work backward
until the initial state is encountered. A general template for this approach is
given in Figure 2.6. For forward search, recall that an action u ∈ U(x) is applied
from x ∈ X to obtain a new state, x′ = f(x, u). For backward search, a frequent
computation will be to determine for some x′, the preceding state x ∈ X, and
action u ∈ U(x) such that x′ = f(x, u). The template in Figure 2.6 can be
extended to handle a goal region, XG, by inserting all xG ∈ XG into Q in line 1
and marking them as visited.

For most problems, it may be preferable to precompute a representation of the
state transition function, f , that is “backward” to be consistent with the search
algorithm. Some convenient notation will now be constructed for the backward
version of f . Let U−1 = {(x, u) ∈ X × U | x ∈ X, u ∈ U(x)}, which represents
the set of all state-action pairs and can also be considered as the domain of f .
Imagine from a given state x′ ∈ X, the set of all (x, u) ∈ U−1 that map to x′

using f . This can be considered as a backward action space, defined formally for
any x′ ∈ X as

U−1(x′) = {(x, u) ∈ U−1 | x′ = f(x, u)}. (2.3)

For convenience, let u−1 denote a state-action pair (x, u) that belongs to some
U−1(x′). From any u−1 ∈ U−1(x′), there is a unique x ∈ X. Thus, let f−1 denote
a backward state transition function that yields x from x′ and u−1 ∈ U−1(x′). This
defines a backward state transition equation, x = f−1(x′, u−1), which looks very
similar to the forward version, x′ = f(x, u).

The interpretation of f−1 is easy to capture in terms of the state transition
graph: reverse the direction of every edge. This makes finding a plan in the
reversed graph using backward search equivalent to finding one in the original
graph using forward search. The backward state transition function is the variant
of f that is obtained after reversing all of the edges. Each u−1 is a reversed edge.
Since there is a perfect symmetry with respect to the forward search of Section
2.2.1, any of the search algorithm variants from Section 2.2.2 can be adapted to
the template in Figure 2.6, provided that f−1 has been defined.

Bidirectional search Now that forward and backward search have been cov-
ered, the next reasonable idea is to conduct a bidirectional search. The general
search template given in Figure 2.7 can be considered as a combination of the two
in Figures 2.4 and 2.6. One tree is grown from the initial state, and the other
is grown from the goal state (assume again that XG is a singleton, {xG}). The
search terminates with success when the two trees meet. Failure occurs if either
priority queue has been exhausted. For many problems, bidirectional search can
dramatically reduce the amount of required exploration. There are Dijkstra and
A∗ variants of bidirectional search, which lead to optimal solutions. For best-
first and other variants, it may be challenging to ensure that the two trees meet

2.2. SEARCHING FOR FEASIBLE PLANS 43

BACKWARD SEARCH
1 Q.Insert(xG) and mark xG as visited
2 while Q not empty do
3 x′ ← Q.GetF irst()
4 if x = xI

5 return SUCCESS
6 forall u−1 ∈ U−1(x)
7 x← f−1(x′, u−1)
8 if x not visited
9 Mark x as visited
10 Q.Insert(x)
11 else
12 Resolve duplicate x

13 return FAILURE

Figure 2.6: A general template for backward search.

quickly. They might come very close to each other and then fail to connect. Addi-
tional heuristics may help in some settings to guide the trees into each other. One
can even extend this framework to allow any number of search trees. This may
be desirable in some applications, but connecting the trees becomes even more
complicated and expensive.

2.2.4 A Unified View of the Search Methods

It is convenient to summarize the behavior of all search methods in terms of sev-
eral basic steps. Variations of these steps will appear later for more complicated
planning problems. For example, in Section 5.4, a large family of sampling-based
motion planning algorithms can be viewed as an extension of the steps presented
here. The extension in this case is made from a discrete state space to a con-
tinuous state space (called the configuration space). Each method incrementally
constructs a search graph, G(V,E), which is the subgraph of the state transition
graph that has been explored so far.

All of the planning methods from this section followed the same basic template:

1. Initialization: Let the search graph, G(V,E), be initialized with E empty
and V containing some starting states. For forward search, V = {xI}; for
backward search, V = {xG}. If bidirectional search is used, then V =
{xI , xG}. It is possible to grow more than two trees and merge them during
the search process. In this case, more states can be initialized in V . The
search graph will incrementally grow to reveal more and more of the state
transition graph.

2. Select Vertex: Choose a vertex ncur ∈ V for expansion; this is usually

44 S. M. LaValle: Planning Algorithms

BIDIRECTIONAL SEARCH
1 QI .Insert(xI) and mark xI as visited
2 QG.Insert(xG) and mark xG as visited
3 while QI not empty and QG not empty do
4 if QI not empty
5 x← QI .GetF irst()
6 if x already visited from xG

7 return SUCCESS
8 forall u ∈ U(x)
9 x′ ← f(x, u)
10 if x′ not visited
11 Mark x′ as visited
12 QI .Insert(x

′)
13 else
14 Resolve duplicate x′

15 if QG not empty
16 x′ ← QG.GetF irst()
17 if x′ already visited from xI

18 return SUCCESS
19 forall u−1 ∈ U−1(x′)
20 x← f−1(x′, u−1)
21 if x not visited
22 Mark x as visited
23 QG.Insert(x)
24 else
25 Resolve duplicate x

26 return FAILURE

Figure 2.7: A general template for bidirectional search.

2.3. DISCRETE OPTIMAL PLANNING 45

accomplished by maintaining a priority queue. Let xcur denote the state
associated with ncur.

3. Apply an Action: In either a forward or backward direction, a new state,
xnew, is obtained. This may arise from xnew = f(x, u) for some u ∈ U(x)
(forward) or x = f(xnew, u) for some u ∈ U(xnew) (backward).

4. Insert a Directed Edge into the Graph: If certain algorithm-specific
tests are passed, then generate an edge from x to xnew for the forward case,
or an edge from xnew to x for the backward case. If xnew is not yet in V , it
will be inserted into V .2

5. Check for Solution: Determine whether G encodes a path from xI to xG.
If there is a single search tree, then this is trivial. If there are two or more
search trees, then this step could be expensive.

6. Return to Step 2: Iterate unless a solution has been found or an early
termination condition is satisfied, in which case the algorithm reports failure.

Note that in this summary, several iterations may have to be made to gener-
ate one iteration in the previous formulations. The forward search algorithm in
Figure 2.4 tries all actions for the first element of Q. If there are k actions, this
corresponds to k iterations in the template above.

2.3 Discrete Optimal Planning

This section extends Formulation 2.1 to allow optimal planning problems to be
defined. Rather than being satisfied with any sequence of actions that leads to the
goal set, suppose we would like a solution that optimizes some criterion, such as
time, distance, or energy consumed. Three important extensions will be made: 1)
A stage index will be used to conveniently indicate the current plan step; 2) a cost
functional will be introduced, which behaves like a taxi meter by indicating how
much cost accumulates during the plan execution; and 3) a termination action
will be introduced, which intuitively indicates when it is time to stop the plan
and fix the total cost.

The presentation involves three phases. First, the problem of finding optimal
paths of a fixed length is covered in Section 2.3.1. The approach, called value it-
eration, involves iteratively computing optimal cost-to-go functions over the state
space. Although this case is not very useful by itself, it is much easier to un-
derstand than the general case of variable-length plans. Once the concepts from
this section are understood, their extension to variable-length plans will be much
clearer and is covered in Section 2.3.2. Finally, Section 2.3.3 explains the close

2In some variations, the vertex could be added without a corresponding edge. This would
start another tree in a multiple-tree approach

46 S. M. LaValle: Planning Algorithms

relationship between value iteration and Dijkstra’s algorithm, which was covered
in Section 2.2.1.

With nearly all optimization problems, there is the arbitrary, symmetric choice
of whether to define a criterion to minimize or maximize. If the cost is a kind
of energy or expense, then minimization seems sensible, as is typical in robotics
and control theory. If the cost is a kind of reward, as in investment planning or
in most AI books, then maximization is preferred. Although this issue remains
throughout the book, we will choose to minimize everything. If maximization is
instead preferred, then multiplying the costs by −1 and swapping minimizations
with maximizations should suffice.

The fixed-length optimal planning formulation will be given shortly, but first
we introduce some new notation. Let πK denote aK-step plan, which is a sequence
(u1, u2, . . ., uK) of K actions. If πK and xI are given, then a sequence of states,
(x1, x2, . . ., xK+1), can be derived using the state transition function, f . Initially,
x1 = xI , and each subsequent state is obtained by xk+1 = f(xk, uk).

The model is now given; the most important addition with respect to Formu-
lation 2.1 is L, the cost functional.

Formulation 2.2 (Discrete Fixed-Length Optimal Planning)

1. All of the components from Formulation 2.1 are inherited directly: X, U(x),
f , xI , and XG, except here it is assumed that X is finite (some algorithms
may easily extend to the case in which X is countably infinite, but this will
not be considered here).

2. A number, K, of stages, which is the exact length of a plan (measured as the
number of actions, u1, u2, . . ., uK). States may also obtain a stage index.
For example, xk+1 denotes the state obtained after uk is applied.

3. Let L denote a stage-additive cost (or loss) functional, which is applied to a
K-step plan, πK . This means that the sequence (u1, . . . , uK) of actions and
the sequence (x1, . . . , xK+1) of states may appear in an expression of L. For
convenience, let F denote the final stage, F = K + 1 (the application of uK

advances the stage to K + 1). The cost functional is

L(πK) =
K
∑

k=1

l(xk, uk) + lF (xF). (2.4)

The cost term l(xk, uk) yields a real value for every xk ∈ X and uk ∈ U(xk).
The final term lF (xF) is outside of the sum and is defined as lF (xF) = 0 if
xF ∈ XG, and lF (xF) =∞ otherwise.

An important comment must be made regarding lF . Including lF in (2.4)
is actually unnecessary if it is agreed in advance that L will only be applied to
evaluate plans that reach XG. It would then be undefined for all other plans. The

2.3. DISCRETE OPTIMAL PLANNING 47

algorithms to be presented shortly will also function nicely under this assumption;
however, the notation and explanation can become more cumbersome because
the action space must always be restricted to ensure that successful plans are
produced. Instead of this, the domain of L is extended to include all plans,
and those that do not reach XG are penalized with infinite cost so that they are
eliminated automatically in any optimization steps. At some point, the role of
lF may become confusing, and it is helpful to remember that it is just a trick to
convert feasibility constraints into a straightforward optimization (L(πK) = ∞
means not feasible and L(πK) <∞ means feasible with cost L(πK)).

Now the task is to find a plan that minimizes L. To obtain a feasible planning
problem like Formulation 2.1 but restricted to K-step plans, let l(x, u) ≡ 0. To
obtain a planning problem that requires minimizing the number of stages, let
l(x, u) ≡ 1. The possibility also exists of having goals that are less “crisp” by
letting lF (x) vary for different x ∈ XG, as opposed to lF (x) = 0. This is much
more general than what was allowed with feasible planning because now states
may take on any value, as opposed to being classified as inside or outside of XG.

2.3.1 Optimal Fixed-Length Plans

Consider computing an optimal plan under Formulation 2.2. One could naively
generate all length-K sequences of actions and select the sequence that produces
the best cost, but this would require O(|U |K) running time (imagine K nested
loops, one for each stage), which is clearly prohibitive. Luckily, the dynamic
programming principle helps. We first say in words what will appear later in
equations. The main observation is that portions of optimal plans are themselves
optimal. It would be absurd to be able to replace a portion of an optimal plan
with a portion that produces lower total cost; this contradicts the optimality of
the original plan.

The principle of optimality leads directly to an iterative algorithm, called value
iteration,3 that can solve a vast collection of optimal planning problems, including
those that involve variable-length plans, stochastic uncertainties, imperfect state
measurements, and many other complications. The idea is to iteratively compute
optimal cost-to-go (or cost-to-come) functions over the state space. In some cases,
the approach can be reduced to Dijkstra’s algorithm; however, this only occurs
under some special conditions. The value-iteration algorithm will be presented
next, and Section 2.3.3 discusses its connection to Dijkstra’s algorithm.

Backward value iteration

As for the search methods, there are both forward and backward versions of
the approach. The backward case will be covered first. Even though it may

3The “value” here refers to the optimal cost-to-go or cost-to-come. Therefore, an alternative
name could be cost-to-go iteration.

48 S. M. LaValle: Planning Algorithms

appear superficially to be easier to progress from xI , it turns out that progressing
backward from XG is notationally simpler. The forward case will then be covered
once some additional notation is introduced.

The key to deriving long optimal plans from shorter ones lies in the construc-
tion of optimal cost-to-go functions over X. For k from 1 to F , let G∗

k denote the
cost that accumulates from stage k to F under the execution of the optimal plan:

G∗
k(xk) = min

uk,...,uK

{

K
∑

i=k

l(xi, ui) + lF (xF)

}

. (2.5)

Inside of the min of (2.5) are the last F − k terms of the cost functional, (2.4).
The optimal cost-to-go for the boundary condition of k = F reduces to

G∗
F (xF) = lF (xF). (2.6)

This makes intuitive sense: Since there are no stages in which an action can be
applied, the final stage cost is immediately received.

Now consider an algorithm that makes K passes over X, each time computing
G∗

k from G∗
k+1, as k ranges from F down to 1. In the first iteration, G∗

F is copied
from lF without significant effort. In the second iteration, G∗

K is computed for
each xK ∈ X as

G∗
K(xK) = min

uK

{

l(xK , uK) + lF (xF)
}

. (2.7)

Since lF = G∗
F and xF = f(xK , uK), substitutions can be made into (2.7) to obtain

G∗
K(xK) = min

uK

{

l(xK , uK) +G∗
F (f(xK , uK))

}

, (2.8)

which is straightforward to compute for each xK ∈ X. This computes the costs
of all optimal one-step plans from stage K to stage F = K + 1.

It will be shown next that G∗
k can be computed similarly once G∗

k+1 is given.
Carefully study (2.5) and note that it can be written as

G∗
k(xk) = min

uk

{

min
uk+1,...,uK

{

l(xk, uk) +
K
∑

i=k+1

l(xi, ui) + lF (xF)

}}

(2.9)

by pulling the first term out of the sum and by separating the minimization over
uk from the rest, which range from uk+1 to uK . The second min does not affect
the l(xk, uk) term; thus, l(xk, uk) can be pulled outside to obtain

G∗
k(xk) = min

uk

{

l(xk, uk) + min
uk+1,...,uK

{

K
∑

i=k+1

l(xi, ui) + lF (xF)

}}

. (2.10)

The inner min is exactly the definition of the optimal cost-to-go function G∗
k+1.

Upon substitution, this yields the recurrence

G∗
k(xk) = min

uk

{

l(xk, uk) +G∗
k+1(xk+1)

}

, (2.11)

2.3. DISCRETE OPTIMAL PLANNING 49

1 112

4

1 1

ba c2 d e

Figure 2.8: A five-state example. Each vertex represents a state, and each edge
represents an input that can be applied to the state transition equation to change
the state. The weights on the edges represent l(xk, uk) (xk is the originating vertex
of the edge).

in which xk+1 = f(xk, uk). Now that the right side of (2.11) depends only on xk,
uk, and G∗

k+1, the computation of G∗
k easily proceeds in O(|X||U |) time. This

computation is called a value iteration. Note that in each value iteration, some
states receive an infinite value only because they are not reachable; a (K − k)-
step plan from xk to XG does not exist. This means that there are no actions,
uk ∈ U(xk), that bring xk to a state xk+1 ∈ X from which a (K−k−1)-step plan
exists that terminates in XG.

Summarizing, the value iterations proceed as follows:

G∗
F → G∗

K → G∗
K−1 · · · G∗

k → G∗
k−1 · · · G∗

2 → G∗
1 (2.12)

until finally G∗
1 is determined after O(K|X||U |) time. The resulting G∗

1 may
be applied to yield G∗

1(xI), the optimal cost to go to the goal from xI . It also
conveniently gives the optimal cost-to-go from any other initial state. This cost
is infinity for states from which XG cannot be reached in K stages.

It seems convenient that the cost of the optimal plan can be computed so easily,
but how is the actual plan extracted? One possibility is to store the action that
satisfied the min in (2.11) from every state, and at every stage. Unfortunately,
this requires O(K|X|) storage, but it can be reduced to O(|X|) using the tricks
to come in Section 2.3.2 for the more general case of variable-length plans.

Example 2.3 (A Five-State Optimal Planning Problem) Figure 2.8 shows
a graph representation of a planning problem in which X = {a, c, b, d, e}. Suppose
that K = 4, xI = a, and XG = {d}. There will hence be four value iterations,
which construct G∗

4, G
∗
3, G

∗
2, and G∗

1, once the final-stage cost-to-go, G∗
5, is given.

The cost-to-go functions are shown in Figure 2.9. Figures 2.10 and 2.11 il-
lustrate the computations. For computing G∗

4, only b and c receive finite values
because only they can reach d in one stage. For computing G∗

3, only the values
G∗

4(b) = 4 and G∗
4(c) = 1 are important. Only paths that reach b or c can possibly

lead to d in stage k = 5. Note that the minimization in (2.11) always chooses the
action that produces the lowest total cost when arriving at a vertex in the next
stage. �

50 S. M. LaValle: Planning Algorithms

a b c d e

G∗
5 ∞ ∞ ∞ 0 ∞

G∗
4 ∞ 4 1 ∞ ∞

G∗
3 6 2 ∞ 2 ∞

G∗
2 4 6 3 ∞ ∞

G∗
1 6 4 5 4 ∞

Figure 2.9: The optimal cost-to-go functions computed by backward value itera-
tion.

ba c d e

ba c d e

2 2 1

1

1 1

14

Figure 2.10: The possibilities for advancing forward one stage. This is obtained
by making two copies of the states from Figure 2.8, one copy for the current state
and one for the potential next state.

Forward value iteration

The ideas from Section 2.3.1.1 may be recycled to yield a symmetrically equiva-
lent method that computes optimal cost-to-come functions from the initial stage.
Whereas backward value iterations were able to find optimal plans from all initial
states simultaneously, forward value iterations can be used to find optimal plans
to all states in X. In the backward case, XG must be fixed, and in the forward
case, xI must be fixed.

The issue of maintaining feasible solutions appears again. In the forward
direction, the role of lF is not important. It may be applied in the last iteration,
or it can be dropped altogether for problems that do not have a predetermined
XG. However, one must force all plans considered by forward value iteration
to originate from xI . We again have the choice of either making notation that
imposes constraints on the action spaces or simply adding a term that forces
infeasible plans to have infinite cost. Once again, the latter will be chosen here.

Let C∗
k denote the optimal cost-to-come from stage 1 to stage k, optimized over

all (k − 1)-step plans. To preclude plans that do not start at xI , the definition of
C∗

1 is given by
C∗

1(x1) = lI(x1), (2.13)

in which lI is a new function that yields lI(xI) = 0, and lI(x) =∞ for all x 6= xI .
Thus, any plans that try to start from a state other than xI will immediately
receive infinite cost.

2.3. DISCRETE OPTIMAL PLANNING 51

2

1

a

b

c

d

e

2

4

1

1

1

1

2

1

a

b

c

d

e

2

4

1

1

1

1

2

1

a

b

c

d

e

2

4

1

1

1

1

2

1

a

b

c

d

e

2

4

1

1

1

1

d

b

c

e

a

Figure 2.11: By turning Figure 2.10 sideways and copying it K times, a graph
can be drawn that easily shows all of the ways to arrive at a final state from an
initial state by flowing from left to right. The computations automatically select
the optimal route.

For an intermediate stage, k ∈ {2, . . . , K}, the following represents the optimal
cost-to-come:

C∗
k(xk) = min

u1,...,uk−1

{

lI(x1) +
k−1
∑

i=1

l(xi, ui)

}

. (2.14)

Note that the sum refers to a sequence of states, x1, . . . , xk−1, which is the result
of applying the action sequence (u1, . . . , uk−2). The last state, xk, is not included
because its cost term, l(xk, uk), requires the application of an action, uk, which
has not been chosen. If it is possible to write the cost additively, as l(xk, uk) =
l1(xk)+l2(uk), then the l1(xk) part could be included in the cost-to-come definition,
if desired. This detail will not be considered further.

As in (2.5), it is assumed in (2.14) that ui ∈ U(xi) for every i ∈ {1, . . . , k−1}.
The resulting xk, obtained after applying uk−1, must be the same xk that is named
in the argument on the left side of (2.14). It might appear odd that x1 appears
inside of the min above; however, this is not a problem. The state x1 can be
completely determined once u1, . . . , uk−1 and xk are given.

The final forward value iteration is the arrival at the final stage, F . The

52 S. M. LaValle: Planning Algorithms

a b c d e

C∗
1 0 ∞ ∞ ∞ ∞

C∗
2 2 2 ∞ ∞ ∞

C∗
3 4 4 3 6 ∞

C∗
4 4 6 5 4 7

C∗
5 6 6 5 6 5

Figure 2.12: The optimal cost-to-come functions computed by forward value iter-
ation.

cost-to-come in this case is

C∗
F (xF) = min

u1,...,uK

{

lI(x1) +
K
∑

i=1

l(xi, ui)

}

. (2.15)

This equation looks the same as (2.5) after substituting k = 1; however, lI is used
here instead of lF . This has the effect of filtering the plans that are considered
to include only those that start at xI . The forward value iterations find optimal
plans to any reachable final state from xI . This behavior is complementary to
that of backward value iteration. In that case, XG was fixed, and optimal plans
from any initial state were found. For forward value iteration, this is reversed.

To express the dynamic-programming recurrence, one further issue remains.
Suppose that C∗

k−1 is known by induction, and we want to compute C∗
k(xk) for

a particular xk. This means that we must start at some state xk−1 and arrive
in state xk by applying some action. Once again, the backward state transition
equation from Section 2.2.3 is useful. Using the stage indices, it is written here as
xk−1 = f−1(xk, u

−1
k).

The recurrence is

C∗
k(xk) = min

u−1

k
∈U−1(xk)

{

C∗
k−1(xk−1) + l(xk−1, uk−1)

}

, (2.16)

in which xk−1 = f−1(xk, u
−1
k) and uk−1 ∈ U(xk−1) is the input to which u−1

k ∈
U−1(xk) corresponds. Using (2.16), the final cost-to-come is iteratively computed
in O(K|X||U |) time, as in the case of computing the first-stage cost-to-go in the
backward value-iteration method.

Example 2.4 (Forward Value Iteration) Example 2.3 is revisited for the case
of forward value iterations with a fixed plan length of K = 4. The cost-to-come
functions shown in Figure 2.12 are obtained by direct application of (2.16). It will
be helpful to refer to Figures 2.10 and 2.11 once again. The first row corresponds
to the immediate application of lI . In the second row, finite values are obtained
for a and b, which are reachable in one stage from xI = a. The iterations continue
until k = 5, at which point that optimal cost-to-come is determined for every

2.3. DISCRETE OPTIMAL PLANNING 53

state. �

2.3.2 Optimal Plans of Unspecified Lengths

The value-iteration method for fixed-length plans can be generalized nicely to the
case in which plans of different lengths are allowed. There will be no bound on
the maximal length of a plan; therefore, the current case is truly a generalization
of Formulation 2.1 because arbitrarily long plans may be attempted in efforts to
reach XG. The model for the general case does not require the specification of K
but instead introduces a special action, uT .

Formulation 2.3 (Discrete Optimal Planning)

1. All of the components from Formulation 2.1 are inherited directly: X, U(x),
f , xI , and XG. Also, the notion of stages from Formulation 2.2 is used.

2. Let L denote a stage-additive cost functional, which may be applied to any
K-step plan, πK , to yield

L(πK) =
K
∑

k=1

l(xk, uk) + lF (xF). (2.17)

In comparison with L from Formulation 2.2, the present expression does not
consider K as a predetermined constant. It will now vary, depending on the
length of the plan. Thus, the domain of L is much larger.

3. Each U(x) contains the special termination action, uT . If uT is applied at xk,
then the action is repeatedly applied forever, the state remains unchanged,
and no more cost accumulates. Thus, for all i ≥ k, ui = uT , xi = xk, and
l(xi, uT) = 0.

The termination action is the key to allowing plans of different lengths. It will
appear throughout this book. Suppose that value iterations are performed up to
K = 5, and for the problem there exists a two-step solution plan, (u1, u2), that ar-
rives inXG from xI . This plan is equivalent to the five-step plan (u1, u2, uT , uT , uT)
because the termination action does not change the state, nor does it accumulate
cost. The resulting five-step plan reaches XG and costs the same as (u1, u2). With
this simple extension, the forward and backward value iteration methods of Sec-
tion 2.3.1 may be applied for any fixed K to optimize over all plans of length K

or less (instead of fixing K).
The next step is to remove the dependency on K. Consider running backward

value iterations indefinitely. At some point, G∗
1 will be computed, but there is

no reason why the process cannot be continued onward to G∗
0, G

∗
−1, and so on.

Recall that xI is not utilized in the backward value-iteration method; therefore,

54 S. M. LaValle: Planning Algorithms

there is no concern regarding the starting initial state of the plans. Suppose that
backward value iteration was applied for K = 16 and was executed down to G∗

−8.
This considers all plans of length 25 or less. Note that it is harmless to add 9 to
all stage indices to shift all of the cost-to-go functions. Instead of running from
G∗

−8 to G
∗
16, they can run from G∗

1 to G
∗
25 without affecting their values. The index

shifting is allowed because none of the costs depend on the particular index that
is given to the stage. The only important aspect of the value iterations is that
they proceed backward and consecutively from stage to stage.

Eventually, enough iterations will have been executed so that an optimal plan
is known from every state that can reach XG. From that stage, say k, onward, the
cost-to-go values from one value iteration to the next will be stationary, meaning
that for all i ≤ k, G∗

i−1(x) = G∗
i (x) for all x ∈ X. Once the stationary condition

is reached, the cost-to-go function no longer depends on a particular stage k. In
this case, the stage index may be dropped, and the recurrence becomes

G∗(x) = min
u

{

l(x, u) +G∗(f(x, u))
}

. (2.18)

Are there any conditions under which backward value iterations could be exe-
cuted forever, with each iteration producing a cost-to-go function for which some
values are different from the previous iteration? If l(x, u) is nonnegative for all
x ∈ X and u ∈ U(x), then this could never happen. It could certainly be true that,
for any fixed K, longer plans will exist, but this cannot be said of optimal plans.
From every x ∈ X, there either exists a plan that reaches XG with finite cost or
there is no solution. For each state from which there exists a plan that reaches
XG, consider the number of stages in the optimal plan. Consider the maximum
number of stages taken from all states that can reach XG. This serves as an upper
bound on the number of value iterations before the cost-to-go becomes stationary.
Any further iterations will just consider solutions that are worse than the ones
already considered (some may be equivalent due to the termination action and
shifting of stages). Some trouble might occur if l(x, u) contains negative values.
If the state transition graph contains a cycle for which total cost is negative, then
it is preferable to execute a plan that travels around the cycle forever, thereby
reducing the total cost to −∞. Therefore, we will assume that the cost functional
is defined in a sensible way so that negative cycles do not exist. Otherwise, the
optimization model itself appears flawed. Some negative values for l(x, u), how-
ever, are allowed as long as there are no negative cycles. (It is straightforward to
detect and report negative cycles before running the value iterations.)

Since the particular stage index is unimportant, let k = 0 be the index of
the final stage, which is the stage at which the backward value iterations begin.
Hence, G∗

0 is the final stage cost, which is obtained directly from lF . Let −K
denote the stage index at which the cost-to-go values all become stationary. At
this stage, the optimal cost-to-go function, G∗ : X → R ∪ {∞}, is expressed by
assigning G∗ = G∗

−K . In other words, the particular stage index no longer matters.
The value G∗(x) gives the optimal cost to go from state x ∈ X to the specific goal

2.3. DISCRETE OPTIMAL PLANNING 55

state xG.
If the optimal actions are not stored during the value iterations, the optimal

cost-to-go, G∗, can be used to efficiently recover them. Consider starting from
some x ∈ X. What is the optimal next action? This is given by

u∗ = argmin
u∈U(x)

{

l(x, u) +G∗(f(x, u))
}

, (2.19)

in which argmin denotes the argument that achieves the minimum value of the
expression. The action minimizes an expression that is very similar to (2.11). The
only differences between (2.19) and (2.11) are that the stage indices are dropped
in (2.19) because the cost-to-go values no longer depend on them, and argmin is
used so that u∗ is selected. After applying u∗, the state transition equation is
used to obtain x′ = f(x, u∗), and (2.19) may be applied again on x′. This process
continues until a state in XG is reached. This procedure is based directly on the
dynamic programming recurrence; therefore, it recovers the optimal plan. The
function G∗ serves as a kind of guide that leads the system from any initial state
into the goal set optimally. This can be considered as a special case of a navigation
function, which will be covered in Section 8.2.2.

As in the case of fixed-length plans, the direction of the value iterations can
be reversed to obtain a forward value-iteration method for the variable-length
planning problem. In this case, the backward state transition equation, f−1, is
used once again. Also, the initial cost term lI is used instead of lF , as in (2.14). The
forward value-iteration method starts at k = 1, and then iterates until the cost-
to-come becomes stationary. Once again, the termination action, uT , preserves
the cost of plans that arrived at a state in earlier iterations. Note that it is not
required to specify XG. A counterpart to G∗ may be obtained, from which optimal
actions can be recovered. When the cost-to-come values become stationary, an
optimal cost-to-come function, C∗ : X → R∪{∞}, may be expressed by assigning
C∗ = C∗

F , in which F is the final stage reached when the algorithm terminates.
The value C∗(x) gives the cost of an optimal plan that starts from xI and reaches
x. The optimal action sequence for any specified goal xG ∈ X can be obtained
using

argmin
u−1∈U−1

{

C∗(f−1(x, u−1)) + l(f−1(x, u−1), u′)
}

, (2.20)

which is the forward counterpart of (2.19). The u′ is the action in U(f−1(x, u−1))
that yields x when the state transition function, f , is applied. The iterations
proceed backward from xG and terminate when xI is reached.

Example 2.5 (Value Iteration for Variable-Length Plans) Once again, Ex-
ample 2.3 is revisited; however, this time the plan length is not fixed due to the
termination action. Its effect is depicted in Figure 2.13 by the superposition of
new edges that have zero cost. It might appear at first that there is no incen-
tive to choose nontermination actions, but remember that any plan that does not
terminate in state xG = d will receive infinite cost.

56 S. M. LaValle: Planning Algorithms

0 0

00

0 0 0

0

2 2 2

0

0

2

0

0

1

a

b

c

d

e

2

4

1

1

1

1

0

0

0

2

0

0

1

a

b

c

d

e

2

4

1

1

1

1

0

d

b

c

e

a

1

a

b

c

d

e

2

4

1

1

1

1

0

0 0 0

1

a

b

c

d

e

2

4

1

1

1

1

1

a

b

c

d

e

2

4

1

1

1

1

0

0 0

Figure 2.13: Compare this figure to Figure 2.11, for which K was fixed at 4. The
effect of the termination action is depicted as dashed-line edges that yield 0 cost
when traversed. This enables plans of all finite lengths to be considered. Also, the
stages extend indefinitely to the left (for the case of backward value iteration).

a b c d e

G∗
0 ∞ ∞ ∞ 0 ∞

G∗
−1 ∞ 4 1 0 ∞

G∗
−2 6 2 1 0 ∞

G∗
−3 4 2 1 0 ∞

G∗
−4 4 2 1 0 ∞
G∗ 4 2 1 0 ∞

Figure 2.14: The optimal cost-to-go functions computed by backward value iter-
ation applied in the case of variable-length plans.

2.3. DISCRETE OPTIMAL PLANNING 57

a b c d e

C∗
1 ∞ 0 ∞ ∞ ∞

C∗
2 ∞ 0 1 4 ∞

C∗
3 2 0 1 2 5

C∗
4 2 0 1 2 3

C∗ 2 0 1 2 3

Figure 2.15: The optimal cost-to-come functions computed by forward value iter-
ation applied in the case of variable-length plans.

See Figure 2.14. After a few backward value iterations, the cost-to-go values
become stationary. After this point, the termination action is being applied from
all reachable states and no further cost accumulates. The final cost-to-go function
is defined to be G∗. Since d is not reachable from e, G∗(e) =∞.

As an example of using (2.19) to recover optimal actions, consider starting
from state a. The action that leads to b is chosen next because the total cost
2 + G∗(b) = 4 is better than 2 + G∗(a) = 6 (the 2 comes from the action cost).
From state b, the optimal action leads to c, which produces total cost 1+G∗(c) = 1.
Similarly, the next action leads to d ∈ XG, which terminates the plan.

Using forward value iteration, suppose that xI = b. The following cost-to-come
functions shown in Figure 2.15 are obtained. For any finite value that remains
constant from one iteration to the next, the termination action was applied. Note
that the last value iteration is useless in this example. Once C∗

3 is computed, the
optimal cost-to-come to every possible state from xI is determined, and future
cost-to-come functions are identical. Therefore, the final cost-to-come is renamed
C∗. �

2.3.3 Dijkstra Revisited

So far two different kinds of dynamic programming have been covered. The value-
iteration method of Section 2.3.2 involves repeated computations over the entire
state space. Dijkstra’s algorithm from Section 2.2.2 flows only once through the
state space, but with the additional overhead of maintaining which states are
alive.

Dijkstra’s algorithm can be derived by focusing on the forward value iterations,
as in Example 2.5, and identifying exactly where the “interesting” changes occur.
Recall that for Dijkstra’s algorithm, it was assumed that all costs are nonnega-
tive. For any states that are not reachable, their values remain at infinity. They
are precisely the unvisited states. States for which the optimal cost-to-come has
already become stationary are dead. For the remaining states, an initial cost is
obtained, but this cost may be lowered one or more times until the optimal cost

58 S. M. LaValle: Planning Algorithms

FORWARD LABEL CORRECTING(xG)
1 Set C(x) =∞ for all x 6= xI , and set C(xI) = 0
2 Q.Insert(xI)
3 while Q not empty do
4 x← Q.GetF irst()
5 forall u ∈ U(x)
6 x′ ← f(x, u)
7 if C(x) + l(x, u) < min{C(x′), C(xG)} then
8 C(x′)← C(x) + l(x, u)
9 if x′ 6= xG then
10 Q.Insert(x′)

Figure 2.16: A generalization of Dijkstra’s algorithm, which upon termination
produces an optimal plan (if one exists) for any prioritization of Q, as long as X
is finite. Compare this to Figure 2.4.

is obtained. All states for which the cost is finite, but possibly not optimal, are
in the queue, Q.

After understanding value iteration, it is easier to understand why Dijkstra’s
form of dynamic programming correctly computes optimal solutions. It is clear
that the unvisited states will remain at infinity in both algorithms because no
plan has reached them. It is helpful to consider the forward value iterations in
Example 2.5 for comparison. In a sense, Dijkstra’s algorithm is very much like the
value iteration, except that it efficiently maintains the set of states within which
cost-to-go values can change. It correctly inserts any states that are reached for
the first time, changing their cost-to-come from infinity to a finite value. The
values are changed in the same manner as in the value iterations. At the end
of both algorithms, the resulting values correspond to the stationary, optimal
cost-to-come, C∗.

If Dijkstra’s algorithm seems so clever, then why have we spent time covering
the value-iteration method? For some problems it may become too expensive to
maintain the sorted queue, and value iteration could provide a more efficient alter-
native. A more important reason is that value iteration extends easily to a much
broader class of problems. Examples include optimal planning over continuous
state spaces (Sections 8.5.2 and 14.5), stochastic optimal planning (Section 10.2),
and computing dynamic game equilibria (Section 10.5). In some cases, it is still
possible to obtain a Dijkstra-like algorithm by focusing the computation on the
“interesting” region; however, as the model becomes more complicated, it may
be inefficient or impossible in practice to maintain this region. Therefore, it is
important to have a good understanding of both algorithms to determine which
is most appropriate for a given problem.

Dijkstra’s algorithm belongs to a broader family of label-correcting algorithms,
which all produce optimal plans by making small modifications to the general

2.4. USING LOGIC TO FORMULATE DISCRETE PLANNING 59

forward-search algorithm in Figure 2.4. Figure 2.16 shows the resulting algorithm.
The main difference is to allow states to become alive again if a better cost-to-come
is found. This enables other cost-to-come values to be improved accordingly. This
is not important for Dijkstra’s algorithm and A∗ search because they only need to
visit each state once. Thus, the algorithms in Figures 2.4 and 2.16 are essentially
the same in this case. However, the label-correcting algorithm produces optimal
solutions for any sorting of Q, including FIFO (breadth first) and LIFO (depth
first), as long as X is finite. If X is not finite, then the issue of systematic search
dominates because one must guarantee that states are revisited sufficiently many
times to guarantee that optimal solutions will eventually be found.

Another important difference between label-correcting algorithms and the stan-
dard forward-search model is that the label-correcting approach uses the cost at
the goal state to prune away many candidate paths; this is shown in line 7. Thus,
it is only formulated to work for a single goal state; it can be adapted to work
for multiple goal states, but performance degrades. The motivation for including
C(xG) in line 7 is that there is no need to worry about improving costs at some
state, x′, if its new cost-to-come would be higher than C(xG); there is no way it
could be along a path that improves the cost to go to xG. Similarly, xG is not
inserted in line 10 because there is no need to consider plans that have xG as an
intermediate state. To recover the plan, either pointers can be stored from x to
x′ each time an update is made in line 7, or the final, optimal cost-to-come, C∗,
can be used to recover the actions using (2.20).

2.4 Using Logic to Formulate Discrete Planning

For many discrete planning problems that we would like a computer to solve, the
state space is enormous (e.g., 10100 states). Therefore, substantial effort has been
invested in constructing implicit encodings of problems in hopes that the entire
state space does not have to be explored by the algorithm to solve the problem.
This will be a recurring theme throughout this book; therefore, it is important
to pay close attention to representations. Many planning problems can appear
trivial once everything has been explicitly given.

Logic-based representations have been popular for constructing such implicit
representations of discrete planning. One historical reason is that such represen-
tations were the basis of the majority of artificial intelligence research during the
1950s–1980s. Another reason is that they have been useful for representing cer-
tain kinds of planning problems very compactly. It may be helpful to think of
these representations as compression schemes. A string such as 010101010101...
may compress very nicely, but it is impossible to substantially compress a random
string of bits. Similar principles are true for discrete planning. Some problems
contain a kind of regularity that enables them to be expressed compactly, whereas
for others it may be impossible to find such representations. This is why there
has been a variety of representation logics proposed through decades of planning

60 S. M. LaValle: Planning Algorithms

research.
Another reason for using logic-based representations is that many discrete

planning algorithms are implemented in large software systems. At some point,
when these systems solve a problem, they must provide the complete plan to a
user, who may not care about the internals of planning. Logic-based represen-
tations have seemed convenient for producing output that logically explains the
steps involved to arrive at some goal. Other possibilities may exist, but logic has
been a first choice due to its historical popularity.

In spite of these advantages, one shortcoming with logic-based representations
is that they are difficult to generalize. It is important in many applications to
enable concepts such as continuous spaces, unpredictability, sensing uncertainty,
and multiple decision makers to be incorporated into planning. This is the main
reason why the state-space representation has been used so far: It will be easy to
extend and adapt to the problems covered throughout this book. Nevertheless,
it is important to study logic-based representations to understand the relation-
ship between the vast majority of discrete planning research and other problems
considered in this book, such as motion planning and planning under differential
constraints. There are many recurring themes throughout these different kinds
of problems, even though historically they have been investigated by separate
research communities. Understanding these connections well provides powerful
insights into planning issues across all of these areas.

2.4.1 A STRIPS-Like Representation

STRIPS-like representations have been the most common logic-based representa-
tions for discrete planning problems. This refers to the STRIPS system, which is
considered one of the first planning algorithms and representations [19]; its name
is derived from the STanford Research Institute Problem Solver. The original
representation used first-order logic, which had great expressive power but many
technical difficulties. Therefore, the representation was later restricted to only
propositional logic [46], which is similar to the form introduced in this section.
There are many variations of STRIPS-like representations. Here is one formula-
tion:

Formulation 2.4 (STRIPS-Like Planning)

1. A finite, nonempty set I of instances.

2. A finite, nonempty set P of predicates, which are binary-valued (partial)
functions of one of more instances. Each application of a predicate to a
specific set of instances is called a positive literal. A logically negated positive
literal is called a negative literal.

3. A finite, nonempty set O of operators, each of which has: 1) preconditions,
which are positive or negative literals that must hold for the operator to

2.4. USING LOGIC TO FORMULATE DISCRETE PLANNING 61

apply, and 2) effects, which are positive or negative literals that are the
result of applying the operator.

4. An initial set S which is expressed as a set of positive literals. Negative
literals are implied. For any positive literal that does not appear in S, its
corresponding negative literal is assumed to hold initially.

5. A goal set G which is expressed as a set of both positive and negative literals.

Formulation 2.4.1 provides a definition of discrete feasible planning expressed
in a STRIPS-like representation. The three most important components are the
sets of instances I, predicates P , and operators O. Informally, the instances char-
acterize the complete set of distinct things that exist in the world. They could,
for example, be books, cars, trees, and so on. The predicates correspond to basic
properties or statements that can be formed regarding the instances. For example,
a predicate called Under might be used to indicate things like Under(Book, Table)
(the book is under the table) or Under(Dirt, Rug). A predicate can be interpreted
as a kind of function that yields true or false values; however, it is important
to note that it is only a partial function because it might not be desirable to allow
any instance to be inserted as an argument to the predicate.

If a predicate is evaluated on an instance, for example, Under(Dirt, Rug), the
expression is called a positive literal. The set of all possible positive literals can be
formed by applying all possible instances to the domains over which the predicates
are defined. Every positive literal has a corresponding negative literal, which is
formed by negating the positive literal. For example, ¬Under(Dirt, Rug) is the
negative literal that corresponds to the positive literal Under(Dirt, Rug), and ¬
denotes negation. Let a complementary pair refer to a positive literal together
with its counterpart negative literal. The various components of the planning
problem are expressed in terms of positive and negative literals.

The role of an operator is to change the world. To be applicable, a set of pre-
conditions must all be satisfied. Each element of this set is a positive or negative
literal that must hold true for the operator to be applicable. Any complemen-
tary pairs that can be formed from the predicates, but are not mentioned in the
preconditions, may assume any value without affecting the applicability of the op-
erator. If the operator is applied, then the world is updated in a manner precisely
specified by the set of effects, which indicates positive and negative literals that
result from the application of the operator. It is assumed that the truth values of
all unmentioned complementary pairs are not affected.

Multiple operators are often defined in a single statement by using variables.
For example, Insert(i) may allow any instance i ∈ I to be inserted. In some
cases, this dramatically reduces the space required to express the problem.

The planning problem is expressed in terms of an initial set S of positive
literals and a goal set G of positive and negative literals. A state can be defined
by selecting either the positive or negative literal for every possible complementary
pair. The initial set S specifies such a state by giving the positive literals only.

62 S. M. LaValle: Planning Algorithms

Figure 2.17: An example that involves putting batteries into a flashlight.

For all possible positive literals that do not appear in S, it is assumed that their
negative counterparts hold in the initial state. The goal set G actually refers to
a set of states because, for any unmentioned complementary pair, the positive
or negative literal may be chosen, and the goal is still achieved. The task is to
find a sequence of operators that when applied in succession will transform the
world from the initial state into one in which all literals of G are true. For each
operator, the preconditions must also be satisfied before it can be applied. The
following example illustrates Formulation 2.4.

Example 2.6 (Putting Batteries into a Flashlight) Imagine a planning prob-
lem that involves putting two batteries into a flashlight, as shown in Figure 2.17.
The set of instances are

I = {Battery1, Battery2, Cap, F lashlight}. (2.21)

Two different predicates will be defined, On and In, each of which is a partial
function on I. The predicate On may only be applied to evaluate whether the
Cap is On the Flashlight and is written as On(Cap, F lashlight). The pred-
icate In may be applied in the following two ways: In(Battery1, F lashlight),
In(Battery2, F lashlight), to indicate whether either battery is in the flashlight.
Recall that predicates are only partial functions in general. For the predicate
In, it is not desirable to apply any instance to any argument. For example,
it is meaningless to define In(Battery1, Battery1) and In(Flashlight, Battery2)
(they could be included in the model, always retaining a negative value, but it is
inefficient).

The initial set is

S = {On(Cap, F lashlight)}. (2.22)

2.4. USING LOGIC TO FORMULATE DISCRETE PLANNING 63

Name Preconditions Effects

PlaceCap {¬On(Cap, F lashlight)} {On(Cap, F lashlight)}
RemoveCap {On(Cap, F lashlight)} {¬On(Cap, F lashlight)}
Insert(i) {¬On(Cap, F lashlight),¬In(i, F lashlight)} {In(i, F lashlight)}

Figure 2.18: Three operators for the flashlight problem. Note that an operator
can be expressed with variable argument(s) for which different instances could be
substituted.

Based on S, both ¬In(Battery1, F lashlight) and ¬In(Battery2, F lashlight) are
assumed to hold. Thus, S indicates that the cap is on the flashlight, but the
batteries are outside.

The goal state is

G = {On(Cap, F lashlight), In(Battery1, F lashlight),

In(Battery2, F lashlight)},
(2.23)

which means that both batteries must be in the flashlight, and the cap must be
on.

The set O consists of the four operators, which are shown in Figure 2.18. Here
is a plan that reaches the goal state in the smallest number of steps:

(RemoveCap, Insert(Battery1), Insert(Battery2), P laceCap). (2.24)

In words, the plan simply says to take the cap off, put the batteries in, and place
the cap back on.

This example appears quite simple, and one would expect a planning algorithm
to easily find such a solution. It can be made more challenging by adding many
more instances to I, such as more batteries, more flashlights, and a bunch of
objects that are irrelevant to achieving the goal. Also, many other predicates and
operators can be added so that the different combinations of operators become
overwhelming. �

A large number of complexity results exist for planning expressed using logic.
The graph search problem is solved efficiently in polynomial time; however, a
state transition graph is not given as the input. An input that is expressed
using Formulation 2.4 may describe an enormous state transition graph using
very few instances, predicates, and operators. In a sense, the model is highly
compressed when using some logic-based formulations. This brings it closer to
the Kolmogorov complexity [14, 42] of the state transition graph, which is the
shortest bit size to which it can possibly be compressed and then fully recovered
by a Turing machine. This has the effect of making the planning problem appear
more difficult. Concise inputs may encode very challenging planning problems.
Most of the known hardness results are surveyed in Chapter 3 of [23]. Under most

64 S. M. LaValle: Planning Algorithms

formulations, logic-based planning is NP-hard. The particular level of hardness
(NP, PSPACE, EXPTIME, etc.) depends on the precise problem conditions. For
example, the complexity depends on whether the operators are fixed in advance or
included in the input. The latter case is much harder. Separate complexities are
also obtained based on whether negative literals are allowed in the operator effects
and also whether they are allowed in preconditions. The problem is generally
harder if both positive and negative literals are allowed in these cases.

2.4.2 Converting to the State-Space Representation

It is useful to characterize the relationship between Formulation 2.4 and the origi-
nal formulation of discrete feasible planning, Formulation 2.1. One benefit is that
it immediately shows how to adapt the search methods of Section 2.2 to work
for logic-based representations. It is also helpful to understand the relationships
between the algorithmic complexities of the two representations.

Up to now, the notion of “state” has been only vaguely mentioned in the con-
text of the STRIPS-like representation. Now consider making this more concrete.
Suppose that every predicate has k arguments, and any instance could appear in
each argument. This means that there are |P | |I|k complementary pairs, which
corresponds to all of the ways to substitute instances into all arguments of all
predicates. To express the state, a positive or negative literal must be selected
from every complementary pair. For convenience, this selection can be encoded
as a binary string by imposing a linear ordering on the instances and predicates.
Using Example 2.6, the state might be specified in order as

(On(Cap, F lashlight),¬In(Battery1, F lashlight1), In(Battery2, F lashlight)).
(2.25)

Using a binary string, each element can be “0” to denote a negative literal or “1”
to denote positive literal. The encoded state is x = 101 for (2.25). If any instance
can appear in the argument of any predicate, then the length of the string is
|P | |I|k. The total number of possible states of the world that could possibly be
distinguished corresponds to the set of all possible bit strings. This set has size

2|P | |I|k . (2.26)

The implication is that with a very small number of instances and predicates,
an enormous state space can be generated. Even though the search algorithms
of Section 2.2 may appear efficient with respect to the size of the search graph
(or the number of states), the algorithms appear horribly inefficient with respect
to the sizes of P and I. This has motivated substantial efforts on the develop-
ment of techniques to help guide the search by exploiting the structure of specific
representations. This is the subject of Section 2.5.

The next step in converting to a state-space representation is to encode the
initial state xI as a string. The goal set, XG, is the set of all strings that are

2.5. LOGIC-BASED PLANNING METHODS 65

consistent with the positive and negative goal literals. This can be compressed by
extending the string alphabet to include a “don’t care” symbol, δ. A single string
that has a “0” for each negative literal, a “1” for each positive literal, and a “δ”
for all others would suffice in representing any XG that is expressed with positive
and negative literals.

Now convert the operators. For each state, x ∈ X, the set U(x) represents
the set of operators with preconditions that are satisfied by x. To apply the
search techniques of Section 2.2, note that it is not necessary to determine U(x)
explicitly in advance for all x ∈ X. Instead, U(x) can be computed whenever
each x is encountered for the first time in the search. The effects of the operator
are encoded by the state transition equation. From a given x ∈ X, the next state,
f(x, u), is obtained by flipping the bits as prescribed by the effects part of the
operator.

All of the components of Formulation 2.1 have been derived from the com-
ponents of Formulation 2.4. Adapting the search techniques of Section 2.2 is
straightforward. It is also straightforward to extend Formulation 2.4 to represent
optimal planning. A cost can be associated with each operator and set of literals
that capture the current state. This would express l(x, u) of the cost functional,
L, from Section 2.3. Thus, it is even possible to adapt the value-iteration method
to work under the logic-based representation, yielding optimal plans.

2.5 Logic-Based Planning Methods

A huge body of research has been developed over the last few decades for plan-
ning using logic-based representations [23, 53]. These methods usually exploit
some structure that is particular to the representation. Furthermore, numerous
heuristics for accelerating performance have been developed from implementa-
tion studies. The main ideas behind some of the most influential approaches are
described in this section, but without presenting particular heuristics.

Rather than survey all logic-based planning methods, this section focuses on
some of the main approaches that exploit logic-based representations. Keep in
mind that the searching methods of Section 2.2 also apply. Once a problem is
given using Formulation 2.4, the state transition graph is incrementally revealed
during the search. In practice, the search graph may be huge relative to the size
of the problem description. One early attempt to reduce the size of this graph was
the STRIPS planning algorithm [19, 46]; it dramatically reduced the branching
factor but unfortunately was not complete. The methods presented in this section
represent other attempts to reduce search complexity in practice while maintaining
completeness. For each method, there are some applications in which the method
may be more efficient, and others for which performance may be worse. Thus,
there is no clear choice of method that is independent of its particular use.

66 S. M. LaValle: Planning Algorithms

2.5.1 Searching in a Space of Partial Plans

One alternative to searching directly in X is to construct partial plans without
reference to particular states. By using the operator representation, partial plans
can be incrementally constructed. The idea is to iteratively achieve required
subgoals in a partial plan while ensuring that no conflicts arise that could destroy
the solution developed so far.

A partial plan σ is defined as

1. A set Oσ of operators that need to be applied. If the operators contain
variables, these may be filled in by specific values or left as variables. The
same operator may appear multiple times in Oσ, possibly with different
values for the variables.

2. A partial ordering relation ≺σ on Oσ, which indicates for some pairs o1, o2 ∈
Oσ that one must appear before other: o1 ≺σ o2.

3. A set Bσ of binding constraints, in which each indicates that some variables
across operators must take on the same value.

4. A set Cσ of causal links, in which each is of the form (o1, l, o2) and indicates
that o1 achieves the literal l for the purpose of satisfying a precondition of
o2.

Example 2.7 (A Partial Plan) Each partial plan encodes a set of possible
plans. Recall the model from Example 2.6. Suppose

Oσ = {RemoveCap, Insert(Battery1)}. (2.27)

A sensible ordering constraint is that

RemoveCap ≺σ Insert(Battery1). (2.28)

A causal link,

(RemoveCap,¬On(Cap, F lashlight), Insert(Battery1)), (2.29)

indicates that theRemoveCap operator achieves the literal ¬On(Cap, F lashlight),
which is a precondition of Insert(Battery1). There are no binding constraints
for this example. The partial plan implicitly represents the set of all plans for
which RemoveCap appears before Insert(Battery1), under the constraint that
the causal link is not violated. �

Several algorithms have been developed to search in the space of partial plans.
To obtain some intuition about the partial-plan approach, a planning algorithm
is described in Figure 2.19. A vertex in the partial-plan search graph is a partial

2.5. LOGIC-BASED PLANNING METHODS 67

PLAN-SPACE PLANNING

1. Start with any initial partial plan, σ.

2. Find a flaw in σ, which may be 1) an operator precondition that has not
achieved, or 2) an operator in Oσ that threatens a causal constraint in Cσ.

3. If there is no flaw, then report that σ is a complete solution and compute a
linear ordering of Oσ that satisfies all constraints.

4. If the flaw is an unachieved precondition, l, for some operator o2, then find an
operator, o1, that achieves it and record a new causal constraint, (o1, l, o2).

5. If the flaw is a threat on a causal link, then the threat must be removed by
updating ≺σ to induce an appropriate operator ordering, or by updating Bσ

to bind the operators in a way that resolves the threat.

6. Return to Step 2.

Figure 2.19: Planning in the plan space is achieved by iteratively finding a flaw
in the plan and fixing it.

plan, and an edge is constructed by extending one partial plan to obtain another
partial plan that is closer to completion. Although the general template is simple,
the algorithm performance depends critically on the choice of initial plan and the
particular flaw that is resolved in each iteration. One straightforward generaliza-
tion is to develop multiple partial plans and decide which one to refine in each
iteration.

In early works, methods based on partial plans seemed to offer substantial
benefits; however, they are currently considered to be not “competitive enough”
in comparison to methods that search the state space [23]. One problem is that it
becomes more difficult to develop application-specific heuristics without explicit
references to states. Also, the vertices in the partial-plan search graph are costly
to maintain and manipulate in comparison to ordinary states.

2.5.2 Building a Planning Graph

Blum and Furst introduced the notion of a planning graph, which is a powerful
data structure that encodes information about which states may be reachable [4].
For the logic-based problem expressed in Formulation 2.4, consider performing
reachability analysis. Breadth-first search can be used from the initial state to
expand the state transition graph. In terms of the input representation, the
resulting graph may be of exponential size in the number of stages. This gives
precise reachability information and is guaranteed to find the goal state.

The idea of Blum and Furst is to construct a graph that is much smaller than

68 S. M. LaValle: Planning Algorithms

the state transition graph and instead contains only partial information about
reachability. The resulting planning graph is polynomial in size and can be effi-
ciently constructed for some challenging problems. The trade-off is that the plan-
ning graph indicates states that can possibly be reached. The true reachable set
is overapproximated, by eliminating many impossible states from consideration.
This enables quick elimination of impossible alternatives in the search process.
Planning algorithms have been developed that extract a plan from the planning
graph. In the worst case, this may take exponential time, which is not surpris-
ing because the problem in Formulation 2.4 is NP-hard in general. Nevertheless,
dramatic performance improvements were obtained on some well-known planning
benchmarks. Another way to use the planning graph is as a source of information
for developing search heuristics for a particular problem.

Planning graph definition A layered graph is a graph that has its vertices
partitioned into a sequence of layers, and its edges are only permitted to connect
vertices between successive layers. The planning graph is a layered graph in which
the layers of vertices form an alternating sequence of literals and operators:

(L1, O1, L2, O2, L3, O3, . . . , Lk, Ok, Lk+1). (2.30)

The edges are defined as follows. To each operator oi ∈ Oi, a directed edge is
made from each li ∈ Li that is a precondition of oi. To each literal li ∈ Li, an
edge is made from each operator oi−1 ∈ Oi−1 that has li as an effect.

One important requirement is that no variables are allowed in the operators.
Any operator from Formulation 2.4 that contains variables must be converted into
a set that contains a distinct copy of the operator for every possible substitution
of values for the variables.

Layer-by-layer construction The planning graph is constructed layer by layer,
starting from L1. In the first stage, L1 represents the initial state. Every positive
literal in S is placed into L1, along with the negation of every positive literal
not in S. Now consider stage i. The set Oi is the set of all operators for which
their preconditions are a subset of Li. The set Li+1 is the union of the effects of
all operators in Oi. The iterations continue until the planning graph stabilizes,
which means that Oi+1 = Oi and Li+1 = Li. This situation is very similar to the
stabilization of value iterations in Section 2.3.2. A trick similar to the termina-
tion action, uT , is needed even here so that plans of various lengths are properly
handled. In Section 2.3.2, one job of the termination action was to prevent state
transitions from occurring. The same idea is needed here. For each possible lit-
eral, l, a trivial operator is constructed for which l is the only precondition and
effect. The introduction of trivial operators ensures that once a literal is reached,
it is maintained in the planning graph for every subsequent layer of literals. Thus,
each Oi may contain some trivial operators, in addition to operators from the

2.5. LOGIC-BASED PLANNING METHODS 69

initially given set O. These are required to ensure that the planning graph expan-
sion reaches a steady state, in which the planning graph is identical for all future
expansions.

Mutex conditions During the construction of the planning graph, information
about the conflict between operators and literals within a layer is maintained. A
conflict is called a mutex condition, which means that a pair of literals4 or pair of
operators is mutually exclusive. Both cannot be chosen simultaneously without
leading to some kind of conflict. A pair in conflict is called mutex. For each layer,
a mutex relation is defined that indicates which pairs satisfy the mutex condition.
A pair, o, o′ ∈ Oi, of operators is defined to be mutex if any of these conditions is
met:

1. Inconsistent effects: An effect of o is the negated literal of an effect of o′.

2. Interference: An effect of o is the negated literal of a precondition of o′.

3. Competing needs: A pair of preconditions, one from each of o and o′, are
mutex in Li.

The last condition relies on the definition of mutex for literals, which is presented
next. Any pair, l, l′ ∈ Li, of literals is defined to be mutex if at least one of the
two conditions is met:

1. Negated literals: l and l′ form a complementary pair.

2. Inconsistent support: Every pair of operators, o, o′ ∈ Oi−1, that achieve
l and l′ is mutex. In this case, one operator must achieve l, and the other
must achieve l′. If there exists an operator that achieves both, then this
condition is false, regardless of the other pairs of operators.

The mutex definition depends on the layers; therefore, it is computed layer by
layer during the planning graph construction.

Example 2.8 (The Planning Graph for the Flashlight) Figure 2.20 shows
the planning graph for Example 2.6. In the first layer, L1 expresses the initial
state. The only applicable operator is RemoveCap. The operator layer O1 con-
tains RemoveCap and three trivial operators, which are needed to maintain the
literals from L1. The appearance of ¬On(Cap, F lashlight) enables the battery-
insertion operator to apply. Since variables are not allowed in operator definitions
in a planning graph, two different operators (labeled as I1 and I2) appear, one for
each battery. Notice the edges drawn to I1 and I2 from their preconditions. The
cap may also be replaced; hence, PlaceCap is included in O2. At the L3 layer, all
possible literals have been obtained. At O3, all possible operators, including the

4The pair of literals need not be a complementary pair, as defined in Section 2.4.1.

70 S. M. LaValle: Planning Algorithms

L2 O2 O3L1 O1 L3

¬O(C, F)

I(B2, F)

I(B1, F)

L4

¬O(C, F)

O(C, F)

¬I(B1, F)

¬I(B2, F)

O(C, F)

¬I(B1, F)

¬I(B2, F)

O(C, F)

¬I(B1, F)

¬I(B2, F)

¬O(C, F)

I(B2, F)

I(B1, F)

O(C, F)

¬I(B1, F)

¬I(B2, F)

I1

RC RC

I2

RC

I2

I1

PC PC

Figure 2.20: The planning graph for the flashlight example. The unlabeled oper-
ator vertices correspond to trivial operators. For clarity, the operator and literal
names are abbreviated.

trivial ones, are included. Finally, L4 = L3, and O4 will be the same as O3. This
implies that the planning graph has stabilized. �

Plan extraction Suppose that the planning graph has been constructed up
to Li. At this point, the planning graph can be searched for a solution. If no
solution is found and the planning graph has stabilized, then no solution exists to
the problem in general (this was shown in [4]; see also [23]). If the planning graph
has not stabilized, then it can be extended further by adding Oi and Li+1. The
extended graph can then be searched for a solution plan. A planning algorithm
derived from the planning graph interleaves the graph extensions and the searches
for solutions. Either a solution is reported at some point or the algorithm correctly
reports that no solution exists after the planning graph stabilizes. The resulting
algorithm is complete. One of the key observations in establishing completeness
is that the literal and operator layers each increase monotonically as i increases.
Furthermore, the sets of pairs that are mutex decrease monotonically, until all
possible conflicts are resolved.

Rather than obtaining a fully specified plan, the planning graph yields a layered
plan, which is a special form of partial plan. All of the necessary operators are
included, and the layered plan is specified as

(A1, A2, . . . , Ak), (2.31)

2.5. LOGIC-BASED PLANNING METHODS 71

in which each Ai is a set of operators. Within any Ai, the operators are nonmutex
and may be applied in any order without altering the state obtained by the layered
plan. The only constraint is that for each i from 1 to k, every operator in Ai must
be applied before any operators in Ai+1 can be applied. For the flashlight example,
a layered plan that would be constructed from the planning graph in Figure 2.20
is

({RemoveCap}, {Insert(Battery1), Insert(Battery2)}, {PlaceCap}). (2.32)

To obtain a fully specified plan, the layered plan needs to be linearized by specify-
ing a linear ordering for the operators that is consistent with the layer constraints.
For (2.32), this results in (2.24). The actual plan execution usually involves more
stages than the number in the planning graph. For complicated planning prob-
lems, this difference is expected to be huge. With a small number of stages, the
planning graph can consider very long plans because it can apply several nonmutex
operators in a single layer.

At each level, the search for a plan could be quite costly. The idea is to start
from Li and perform a backward and/or search. To even begin the search, the
goal literals G must be a subset of Li, and no pairs are allowed to be mutex;
otherwise, immediate failure is declared. From each literal l ∈ G, an “or” part
of the search tries possible operators that produce l as an effect. The “and”
part of the search must achieve all literals in the precondition of an operator
chosen at the previous “or” level. Each of these preconditions must be achieved,
which leads to another “or” level in the search. The idea is applied recursively
until the initial set L1 of literals is obtained. During the and/or search, the
computed mutex relations provide information that immediately eliminates some
branches. Frequently, triples and higher order tuples are checked for being mutex
together, even though they are not pairwise mutex. A hash table is constructed to
efficiently retrieve this information as it is considered multiple times in the search.
Although the plan extraction is quite costly, superior performance was shown in
[4] on several important benchmarks. In the worst case, the search could require
exponential time (otherwise, a polynomial-time algorithm would have been found
to an NP-hard problem).

2.5.3 Planning as Satisfiability

Another interesting approach is to convert the planning problem into an enormous
Boolean satisfiability problem. This means that the planning problem of Formu-
lation 2.4 can be solved by determining whether some assignment of variables is
possible for a Boolean expression that leads to a true value. Generic methods for
determining satisfiability can be directly applied to the Boolean expression that
encodes the planning problem. The Davis-Putnam procedure is one of the most
widely known algorithms for satisfiability. It performs a depth-first search by
iteratively trying assignments for variables and backtracking when assignments

72 S. M. LaValle: Planning Algorithms

fail. During the search, large parts of the expression can be eliminated due to
the current assignments. The algorithm is complete and reasonably efficient. Its
use in solving planning problems is surveyed in [23]. In practice, stochastic local
search methods provide a reasonable alternative to the Davis-Putnam procedure
[28].

Suppose a planning problem has been given in terms of Formulation 2.4. All
literals and operators will be tagged with a stage index. For example, a literal that
appears in two different stages will be considered distinct. This kind of tagging is
similar to situation calculus [22]; however, in that case, variables are allowed for
the tags. To obtain a finite, Boolean expression the total number of stages must be
declared. Let K denote the number of stages at which operators can be applied.
As usual, the fist stage is k = 1 and the final stage is k = F = K + 1. Setting
a stage limit is a significant drawback of the approach because this is usually
not known before the problem is solved. A planning algorithm can assume a
small value for F and then gradually increase it each time the resulting Boolean
expression is not satisfied. If the problem is not solvable, however, this approach
iterates forever.

Let ∨ denote logical OR, and let ∧ denote logical AND. The Boolean expression
is written as a conjunction5 of many terms, which arise from five different sources:

1. Initial state: A conjunction of all literals in S is formed, along with the
negation of all positive literals not in S. These are all tagged with 1, the
initial stage index.

2. Goal state: A conjunction of all literals in G, tagged with the final stage
index, F = K + 1.

3. Operator encodings: Each operator must be copied over the stages. For
each o ∈ O, let ok denote the operator applied at stage k. A conjunction is
formed over all operators at all stages. For each ok, the expression is

¬ok ∨ (p1 ∧ p2 ∧ · · · ∧ pm ∧ e1 ∧ e2 ∧ · · · ∧ en) , (2.33)

in which p1, . . ., pm are the preconditions of ok, and e1, . . ., en are the effects
of ok.

4. Frame axioms: The next part is to encode the implicit assumption that
every literal that is not an effect of the applied operator remains unchanged
in the next stage. This can alternatively be stated as follows: If a literal l
becomes negated to ¬l, then an operator that includes ¬l as an effect must
have been executed. (If l was already a negative literal, then ¬l is a positive
literal.) For each stage and literal, an expression is needed. Suppose that
lk and lk+1 are the same literal but are tagged for different stages. The
expression is

(lk ∨ ¬lk+1) ∨ (ok,1 ∨ ok,2 ∨ · · · ∨ ok,j), (2.34)

5Conjunction means logical AND.

2.5. LOGIC-BASED PLANNING METHODS 73

in which ok,1, . . ., ok,j are the operators, tagged for stage k, that contain lk+1

as an effect. This ensures that if ¬lk appears, followed by lk+1, then some
operator must have caused the change.

5. Complete exclusion axiom: This indicates that only one operator applies
at every stage. For every stage k, and any pair of stage-tagged operators ok
and o′k, the expression is

¬ok ∨ ¬o
′
k, (2.35)

which is logically equivalent to ¬(ok ∧ o′k) (meaning, “not both at the same
stage”).

It is shown in [34] that a solution plan exists if and only if the resulting Boolean
expression is satisfiable.

The following example illustrates the construction.

Example 2.9 (The Flashlight Problem as a Boolean Expression) A Boolean
expression will be constructed for Example 2.6. Each of the expressions given be-
low is joined into one large expression by connecting them with ∧’s.

The expression for the initial state is

O(C,F, 1) ∧ ¬I(B1, F, 1) ∧ ¬I(B2, F, 1), (2.36)

which uses the abbreviated names, and the stage tag has been added as an argu-
ment to the predicates. The expression for the goal state is

O(C,F, 5) ∧ I(B1, F, 5) ∧ I(B2, F, 5), (2.37)

which indicates that the goal must be achieved at stage k = 5. This value was
determined because we already know the solution plan from (2.24). The method
will also work correctly for a larger value of k. The expressions for the operators
are

¬PCk ∨ (¬O(C,F, k) ∧O(C,F, k + 1))

¬RCk ∨ (O(C,F, k) ∧ ¬O(C,F, k + 1))

¬I1k ∨ (¬O(C,F, k) ∧ ¬I(B1, F, k) ∧ I(B1, F, k + 1))

¬I2k ∨ (¬O(C,F, k) ∧ ¬I(B2, F, k) ∧ I(B2, F, k + 1))

(2.38)

for each k from 1 to 4.
The frame axioms yield the expressions

(O(C,F, k) ∨ ¬O(C,F, k + 1)) ∨ (PCk)

(¬O(C,F, k) ∨O(C,F, k + 1)) ∨ (RCk)

(I(B1, F, k) ∨ ¬I(B1, F, k + 1)) ∨ (I1k)

(¬I(B1, F, k) ∨ I(B1, F, k + 1))

(I(B2, F, k) ∨ ¬I(B2, F, k + 1)) ∨ (I2k)

(¬I(B2, F, k) ∨ I(B2, F, k + 1)),

(2.39)

74 S. M. LaValle: Planning Algorithms

for each k from 1 to 4. No operators remove batteries from the flashlight. Hence,
two of the expressions list no operators.

Finally, the complete exclusion axiom yields the expressions

¬RCk ∨ ¬PCk ¬RCk ∨ ¬O1k ¬RCk ∨ ¬O2k (2.40)

¬PCk ∨ ¬O1k ¬PCk ∨ ¬O2k ¬O1k ∨ ¬O2k,

for each k from 1 to 4. The full problem is encoded by combining all of the given
expressions into an enormous conjunction. The expression is satisfied by assign-
ing true values to RC1, IB12, IB23, and PC4. An alternative solution is RC1,
IB22, IB13, and PC4. The stage index tags indicate the order that the actions
are applied in the recovered plan. �

Further Reading

Most of the ideas and methods in this chapter have been known for decades. Most of
the search algorithms of Section 2.2 are covered in algorithms literature as graph search
[12, 24, 43, 54] and in AI literature as planning or search methods [37, 46, 47, 49, 53, 61].
Many historical references to search in AI appear in [53]. Bidirectional search was
introduced in [50, 51] and is closely related to means-end analysis [45]; more discussion
of bidirectional search appears in [8, 7, 31, 40, 53]. The development of good search
heuristics is critical to many applications of discrete planning. For substantial material
on this topic, see [23, 36, 49]. For the relationship between planning and scheduling,
see [15, 23, 57].

The dynamic programming principle forms the basis of optimal control theory and
many algorithms in computer science. The main ideas follow from Bellman’s principle
of optimality [1, 2]. These classic works led directly to the value-iteration methods
of Section 2.3. For more recent material on this topic, see [3], which includes Dijk-
stra’s algorithm and its generalization to label-correcting algorithms. An important
special version of Dijkstra’s algorithm is Dial’s algorithm [17] (see [59] and Section
8.2.3). Throughout this book, there are close connections between planning methods
and control theory. One step in this direction was taken earlier in [16].

The foundations of logic-based planning emerged from early work of Nilsson [19, 46],
which contains most of the concepts introduced in Section 2.4. Over the last few decades,
an enormous body of literature has been developed. Section 2.5 briefly surveyed some of
the highlights; however, several more chapters would be needed to do this subject justice.
For a comprehensive, recent treatment of logic-based planning, see [23]; topics beyond
those covered here include constraint-satisfaction planning, scheduling, and temporal
logic. Other sources for logic-based planning include [22, 53, 60, 62]. A critique of
benchmarks used for comparisons of logic-based planning algorithms appears in [30].

Too add uncertainty or multiple decision makers to the problems covered in this
chapter, jump ahead to Chapter 10 (this may require some background from Chapter
9). To move from searching in discrete to continuous spaces, try Chapters 5 and 6 (some
background from Chapters 3 and 4 is required).

2.5. LOGIC-BASED PLANNING METHODS 75

142

1

ba c d e3

7

1
1

Figure 2.21: Another five-state discrete planning problem.

Exercises

1. Consider the planning problem shown in Figure 2.21. Let a be the initial state,
and let e be the goal state.

(a) Use backward value iteration to determine the stationary cost-to-go.

(b) Do the same but instead use forward value iteration.

2. Try to construct a worst-case example for best-first search that has properties
similar to that shown in Figure 2.5, but instead involves moving in a 2D world
with obstacles, as introduced in Example 2.1.

3. It turns out that value iteration can be generalized to a cost functional of the
form

L(πK) =

K
∑

k=1

l(xk, uk, xk+1) + lF (xF), (2.41)

in which l(xk, uk) in (2.4) has been replaced by l(xk, uk, xk+1).

(a) Show that the dynamic programming principle can be applied in this more
general setting to obtain forward and backward value iteration methods that
solve the fixed-length optimal planning problem.

(b) Do the same but for the more general problem of variable-length plans,
which uses termination conditions.

4. The cost functional can be generalized to being stage-dependent, which means
that the cost might depend on the particular stage k in addition to the state, xk
and the action uk. Extend the forward and backward value iteration methods of
Section 2.3.1 to work for this case, and show that they give optimal solutions.
Each term of the more general cost functional should be denoted as l(xk, uk, k).

5. Recall from Section 2.3.2 the method of defining a termination action uT to make
the value iterations work correctly for variable-length planning. Instead of re-
quiring that one remains at the same state, it is also possible to formulate the
problem by creating a special state, called the terminal state, xT . Whenever uT
is applied, the state becomes xT . Describe in detail how to modify the cost func-
tional, state transition equation, and any other necessary components so that the
value iterations correctly compute shortest plans.

6. Dijkstra’s algorithm was presented as a kind of forward search in Section 2.2.1.

76 S. M. LaValle: Planning Algorithms

(a) Develop a backward version of Dijkstra’s algorithm that starts from the goal.
Show that it always yields optimal plans.

(b) Describe the relationship between the algorithm from part (a) and the back-
ward value iterations from Section 2.3.2.

(c) Derive a backward version of the A∗ algorithm and show that it yields op-
timal plans.

7. Reformulate the general forward search algorithm of Section 2.2.1 so that it is
expressed in terms of the STRIPS-like representation. Carefully consider what
needs to be explicitly constructed by a planning algorithm and what is considered
only implicitly.

8. Rather than using bit strings, develop a set-based formulation of the logic-based
planning problem. A state in this case can be expressed as a set of positive literals.

9. Extend Formulation 2.4 to allow disjunctive goal sets (there are alternative sets
of literals that must be satisfied). How does this affect the binary string repre-
sentation?

10. Make a Remove operator for Example 2.17 that takes a battery away from the
flashlight. For this operator to apply, the battery must be in the flashlight and
must not be blocked by another battery. Extend the model to allow enough
information for the Remove operator to function properly.

11. Model the operation of the sliding-tile puzzle in Figure 1.1b using the STRIPS-like
representation. You may use variables in the operator definitions.

12. Find the complete set of plans that are implicitly encoded by Example 2.7.

13. Explain why, in Formulation 2.4, G needs to include both positive and negative
literals, whereas S only needs positive literals. As an alternative definition, could
S have contained only negative literals? Explain.

14. Using Formulation 2.4, model a problem in which a robot checks to determine
whether a room is dark, moves to a light switch, and flips on the light. Predicates
should indicate whether the robot is at the light switch and whether the light is
on. Operators that move the robot and flip the switch are needed.

15. Construct a planning graph for the model developed in Exercise 14.

16. Express the model in Exercise 14 as a Boolean satisfiability problem.

17. In the worst case, how many terms are needed for the Boolean expression for
planning as satisfiability? Express your answer in terms of |I|, |P |, |O|, |S|, and
|G|.

Implementations

2.5. LOGIC-BASED PLANNING METHODS i

18. Using A∗ search, the performance degrades substantially when there are many
alternative solutions that are all optimal, or at least close to optimal. Implement
A∗ search and evaluate it on various grid-based problems, based on Example 2.1.
Compare the performance for two different cases:

(a) Using |i′ − i|+ |j′ − j| as the heuristic, as suggested in Section 2.2.2.

(b) Using
√

(i′ − i)2 + (j′ − j)2 as the heuristic.

Which heuristic seems superior? Explain your answer.

19. Implement A∗, breadth-first, and best-first search for grid-based problems. For
each search algorithm, design and demonstrate examples for which one is clearly
better than the other two.

20. Experiment with bidirectional search for grid-based planning. Try to understand
and explain the trade-off between exploring the state space and the cost of con-
necting the trees.

21. Try to improve the method used to solve Exercise 18 by detecting when the
search might be caught in a local minimum and performing random walks to try
to escape. Try using best-first search instead of A∗. There is great flexibility
in possible approaches. Can you obtain better performance on average for any
particular examples?

22. Implement backward value iteration and verify its correctness by reconstructing
the costs obtained in Example 2.5. Test the implementation on some complicated
examples.

23. For a planning problem under Formulation 2.3, implement both Dijkstra’s algo-
rithm and forward value iteration. Verify that these find the same plans. Com-
ment on their differences in performance.

24. Consider grid-based problems for which there are mostly large, open rooms. At-
tempt to develop a multi-resolution search algorithm that first attempts to take
larger steps, and only takes smaller steps as larger steps fail. Implement your
ideas, conduct experiments on examples, and refine your approach accordingly.

ii S. M. LaValle: Planning Algorithms

Bibliography

[1] R. E. Bellman. Dynamic Programming. Princeton University Press, Prince-
ton, NJ, 1957.

[2] R. E. Bellman and S. E. Dreyfus. Applied Dynamic Programming. Princeton
University Press, Princeton, NJ, 1962.

[3] D. P. Bertsekas. Dynamic Programming and Optimal Control, Vol. I, 2nd
Ed. Athena Scientific, Belmont, MA, 2001.

[4] A. L. Blum and M. L. Furst. Fast planing through planning graph analysis. In
Proceedings International Joint Conference on Artificial Intelligence, pages
1636–1642, 1995.

[5] L. Blum, F. Cucker, and M. Schub abd S. Smale. Complexity and Real
Computation. Springer-Verlag, Berlin, 1998.

[6] M. Buckland. AI Techniques for Game Programming. Premier Press, Port-
land, OR, 2002.

[7] D. D. Champeaux. Bidirectional heuristic search again. Journal of the ACM,
30(1):22–32, January 1983.

[8] D. D. Champeaux and L. Sint. An improved bidirectional heuristic search
algorithm. Journal of the ACM, 24(2):177–191, April 1977.

[9] H. Chang and T. Y. Li. Assembly maintainability study with motion plan-
ning. In Proceedings IEEE International Conference on Robotics & Automa-
tion, pages 1012–1019, 1995.

[10] P. Cheng and S. M. LaValle. Reducing metric sensitivity in randomized
trajectory design. In Proceedings IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 43–48, 2001.

[11] S. Chien, R. Sherwood, D. Tran, B. Cichy, D. Mandl, S. Frye, B. Trout,
S. Shulman, and D. Boyer. Using autonomy flight software to improve science
return on Earth Observing One. Journal of Aerospace Computing, Informa-
tion, and Communication, 2:196–216, April 2005.

iii

iv BIBLIOGRAPHY

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms (2nd Ed.). MIT Press, Cambridge, MA, 2001.

[13] J. Cortés. Motion Planning Algorithms for General Closed-Chain Mecha-
nisms. PhD thesis, Institut National Polytechnique de Toulouse, Toulouse,
France, 2003.

[14] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley,
New York, 1991.

[15] T. Dean and S. Kambhampati. Planning and scheduling. In A. B. Tucker,
editor, The CRC Handbook of Computer Science and Engineering, pages 614–
636. CRC Press, Boca Raton, FL, 1997.

[16] T. L. Dean and M. P. Wellman. Planning and Control. Morgan Kaufman,
San Francisco, CA, 1991.

[17] R. Dial. Algorithm 360: Shortest path forest with topological ordering. Com-
munications of the ACM, 12:632–633, 1969.

[18] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[19] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application
of theorem proving. Artificial Intelligence Journal, 2:189–208, 1971.

[20] D. Hähnel D. Fox, W. Burgard, and S. Thrun. A highly efficient FastSLAM
algorithm for generating cyclic maps of large-scale environments from raw
laser range measurements. In Proceedings IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2003.

[21] J. Funge. Artificial Intelligence for Computer Games. A. K. Peters, Wellesley,
MA, 2004.

[22] M. R. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelli-
gence. Morgan Kaufmann, San Francisco, CA, 1987.

[23] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and
Practice. Morgan Kaufman, San Francisco, CA, 2004.

[24] M. T. Goodrich and R. Tammasia. Algorithm Design: Foundations, Analysis,
and Internet Examples. Wiley, New York, 2002.

[25] S. K. Gupta, D. A. Bourne, K. Kim, and S. S. Krishnan. Automated process
planning for robotic sheet metal bending operations. Journal of Manufactur-
ing Systems, 17(5):338–360, 1998.

BIBLIOGRAPHY v

[26] J. W. Hartmann. Counter-Intuitive Behavior in Locally Optimal Solar Sail
Escape Trajectories. PhD thesis, University of Illinois, Urbana, IL, May 2005.

[27] Y. Hirano, K. Kitahama, and S. Yoshizawa. Image-based object recogni-
tion and dextrous hand/arm motion planning using RRTs for grasping in
cluttered scene. In Proceedings IEEE/RSJ International Conference on In-
telligent Robots and Systems, 2005.

[28] H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations and Appli-
cations. Morgan Kaufmann, San Francisco, 2004.

[29] J. E. Hopcroft, J. D. Ullman, and R. Motwani. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, Reading, MA, 2000.

[30] A. E. Howe and E. Dahlman. A critical assessment of benchmark comparison
in planning. Journal of Artificial Intelligence Research, pages 1–33, 2002.

[31] H. Kaindl and G. Kainz. Bidirectional heuristic search reconsidered. Journal
of Artificial Intelligence Research, pages 283–317, December 1997.

[32] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann. Planning collision-free
reaching motions for interactive object manipulation and grasping. Euro-
graphics, 22(3), 2003.

[33] R. M. Karp. On-line algorithms versus off-line algorithms: How much is it
worth to know the future? In Proceedings World Computer Congress, 1992.

[34] H. Kautz, D. McAllester, and B. Selman. Encoding plans in propositional
logic. In Proceedings International Conference on Knowledge Representation
and Reasoning, 1996.

[35] Y. Koga, K. Kondo, J. Kuffner, and J.-C. Latombe. Planning motions with
intentions. Proceedings ACM SIGGRAPH, pages 395–408, 1994.

[36] R. E. Korf. Search: A survey of recent results. In H. E. Shrobe, editor,
Exploring Artificial Intelligence: Survey Talks from the National Conference
on Artificial Intelligence. Moran Kaufmann, San Francisco, CA, 1988.

[37] R. E. Korf. Artificial intelligence search algorithms. In Algorithms and Theory
of Computation Handbook. CRC Press, Boca Raton, FL, 1999.

[38] J. J. Kuffner. Some Computed Examples [using RRT-Connect]. [Online],
2001. Available at http://www.kuffner.org/james/plan/examples.html.

[39] J. J. Kuffner, K. Nishiwaki, M. Inaba, and H. Inoue. Motion planning for
humanoid robots. In Proceedings International Symposium on Robotics Re-
search, 2003.

vi BIBLIOGRAPHY

[40] J. B. H. Kwa. BS*: An admissible bidirectional staged heuristic search algo-
rithm. Artificial Intelligence Journal, 38:95–109, 1989.

[41] M. Lau and J. J. Kuffner. Behavior planning for character animation. In
Proceedings Eurographics/SIGGRAPH Symposium on Computer Animation,
2005.

[42] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its
Applications. Springer-Verlag, Berlin, 1997.

[43] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadim-
itriou. The complexity of searching a graph. Journal of the ACM, 35(1):18–44,
January 1988.

[44] New York University. MathMol Library. Scientific Visualization Center.
Available from http://www.nyu.edu/pages/mathmol/library/, 2005.

[45] A. Newell and H. Simon. GPS: A program that simulates human thought.
In E. A. Feigenbaum and J. Feldman, editors, Computers and Thought.
McGraw-Hill, New York, 1963.

[46] N. J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Company,
Wellsboro, PA, 1980.

[47] N. J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann,
San Francisco, CA, 1998.

[48] C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map.
Theoretical Computer Science, 84:127–150, 1991.

[49] J. Pearl. Heuristics. Addison-Wesley, Reading, MA, 1984.

[50] I. Pohl. Bi-directional and heuristic search in path problems. Technical
report, Stanford Linear Accelerator Center, Stanford, CA, 1969.

[51] I. Pohl. Bi-directional search. In B. Meltzer and D. Michie, editors, Machine
Intelligence, pages 127–140. Elsevier, New York, 1971.

[52] J. Reif and Z. Sun. On frictional mechanical systems and their computational
power. SIAM Journal on Computing, 32(6):1449–1474, 2003.

[53] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, 2nd
Edition. Prentice-Hall, Englewood Cliffs, NJ, 2003.

[54] R. Sedgewick. Algorithms in C++, 2nd Ed. Addison-Wesley, Reading, MA,
2002.

[55] M. Sipser. Introduction to the Theory of Computation. PWS, Boston, MA,
1997.

BIBLIOGRAPHY vii

[56] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2):202–208, 1985.

[57] D. Smith, J. Frank, and A. Jónsson. Bridging the gap between planning and
scheduling. Knowledge Engineering Review, 15(1):47–83, 2000.

[58] S. J. J. Smith, D. S. Nau, and T. Throop. Computer bridge: A big win for
AI planning. AI Magazine, 19(2):93–105, 1998.

[59] J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE
Transactions on Automatic Control, 40(9):1528–1538, September 1995.

[60] D. Weld. Recent advances in AI planning. AI Magazine, 20(2), 1999.

[61] P. H. Winston. Artificial Intelligence. Addison-Wesley, Reading, MA, 1992.

[62] Q. Yang. Intelligent Planning. Springer-Verlag, Berlin, 1997.

