

UNDERSTANDING
MACHINE LEARNING

From Theory to
Algorithms

Shai Shalev-Shwartz
The Hebrew University, Jerusalem

Shai Ben-David
University of Waterloo, Canada

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107057135

c⃝ Shai Shalev-Shwartz and Shai Ben-David 2014

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2014

Printed in the United States of America

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication Data

ISBN 978-1-107-05713-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of
URLs for external or third-party Internet Web sites referred to in this publication,
and does not guarantee that any content on such Web sites is, or will remain,
accurate or appropriate.

2 A Gentle Start

Let us begin our mathematical analysis by showing how successful learning can be

achieved in a relatively simplified setting. Imagine you have just arrived in some

small Pacific island. You soon find out that papayas are a significant ingredient

in the local diet. However, you have never before tasted papayas. You have to

learn how to predict whether a papaya you see in the market is tasty or not.

First, you need to decide which features of a papaya your prediction should be

based on. On the basis of your previous experience with other fruits, you decide

to use two features: the papaya’s color, ranging from dark green, through orange

and red to dark brown, and the papaya’s softness, ranging from rock hard to

mushy. Your input for figuring out your prediction rule is a sample of papayas

that you have examined for color and softness and then tasted and found out

whether they were tasty or not. Let us analyze this task as a demonstration of

the considerations involved in learning problems.

Our first step is to describe a formal model aimed to capture such learning

tasks.

2.1 A Formal Model – The Statistical Learning Framework

• The learner’s input: In the basic statistical learning setting, the learner has

access to the following:

– Domain set: An arbitrary set, X . This is the set of objects that we

may wish to label. For example, in the papaya learning problem men-

tioned before, the domain set will be the set of all papayas. Usually,

these domain points will be represented by a vector of features (like

the papaya’s color and softness). We also refer to domain points as

instances and to X as instance space.

– Label set: For our current discussion, we will restrict the label set to

be a two-element set, usually {0, 1} or {−1,+1}. Let Y denote our

set of possible labels. For our papayas example, let Y be {0, 1}, where

1 represents being tasty and 0 stands for being not-tasty.

– Training data: S = ((x1, y1) . . . (xm, ym)) is a finite sequence of pairs in

X ×Y: that is, a sequence of labeled domain points. This is the input

that the learner has access to (like a set of papayas that have been

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

34 A Gentle Start

tasted and their color, softness, and tastiness). Such labeled examples

are often called training examples. We sometimes also refer to S as a

training set.1

• The learner’s output: The learner is requested to output a prediction rule,

h : X → Y. This function is also called a predictor, a hypothesis, or a clas-

sifier. The predictor can be used to predict the label of new domain points.

In our papayas example, it is a rule that our learner will employ to predict

whether future papayas he examines in the farmers’ market are going to

be tasty or not. We use the notation A(S) to denote the hypothesis that a

learning algorithm, A, returns upon receiving the training sequence S.

• A simple data-generation model We now explain how the training data is

generated. First, we assume that the instances (the papayas we encounter)

are generated by some probability distribution (in this case, representing

the environment). Let us denote that probability distribution over X by

D. It is important to note that we do not assume that the learner knows

anything about this distribution. For the type of learning tasks we discuss,

this could be any arbitrary probability distribution. As to the labels, in the

current discussion we assume that there is some “correct” labeling function,

f : X → Y, and that yi = f(xi) for all i. This assumption will be relaxed in

the next chapter. The labeling function is unknown to the learner. In fact,

this is just what the learner is trying to figure out. In summary, each pair

in the training data S is generated by first sampling a point xi according

to D and then labeling it by f .

• Measures of success: We define the error of a classifier to be the probability

that it does not predict the correct label on a random data point generated

by the aforementioned underlying distribution. That is, the error of h is

the probability to draw a random instance x, according to the distribution

D, such that h(x) does not equal f(x).

Formally, given a domain subset,2 A ⊂ X , the probability distribution,

D, assigns a number, D(A), which determines how likely it is to observe a

point x ∈ A. In many cases, we refer to A as an event and express it using

a function π : X → {0, 1}, namely, A = {x ∈ X : π(x) = 1}. In that case,

we also use the notation Px∼D[π(x)] to express D(A).

We define the error of a prediction rule, h : X → Y, to be

LD,f (h)
def
= P

x∼D
[h(x) 6= f(x)]

def
= D({x : h(x) 6= f(x)}). (2.1)

That is, the error of such h is the probability of randomly choosing an

example x for which h(x) 6= f(x). The subscript (D, f) indicates that the

error is measured with respect to the probability distribution D and the

1 Despite the “set” notation, S is a sequence. In particular, the same example may appear
twice in S and some algorithms can take into account the order of examples in S.

2 Strictly speaking, we should be more careful and require that A is a member of some

σ-algebra of subsets of X , over which D is defined. We will formally define our
measurability assumptions in the next chapter.

2.2 Empirical Risk Minimization 35

correct labeling function f . We omit this subscript when it is clear from

the context. L(D,f)(h) has several synonymous names such as the general-

ization error, the risk, or the true error of h, and we will use these names

interchangeably throughout the book. We use the letter L for the error,

since we view this error as the loss of the learner. We will later also discuss

other possible formulations of such loss.

• A note about the information available to the learner The learner is

blind to the underlying distribution D over the world and to the labeling

function f. In our papayas example, we have just arrived in a new island

and we have no clue as to how papayas are distributed and how to predict

their tastiness. The only way the learner can interact with the environment

is through observing the training set.

In the next section we describe a simple learning paradigm for the preceding

setup and analyze its performance.

2.2 Empirical Risk Minimization

As mentioned earlier, a learning algorithm receives as input a training set S,

sampled from an unknown distribution D and labeled by some target function

f , and should output a predictor hS : X → Y (the subscript S emphasizes the

fact that the output predictor depends on S). The goal of the algorithm is to

find hS that minimizes the error with respect to the unknown D and f .

Since the learner does not know what D and f are, the true error is not directly

available to the learner. A useful notion of error that can be calculated by the

learner is the training error – the error the classifier incurs over the training

sample:

LS(h)
def
=
|{i ∈ [m] : h(xi) 6= yi}|

m
, (2.2)

where [m] = {1, . . . ,m}.
The terms empirical error and empirical risk are often used interchangeably

for this error.

Since the training sample is the snapshot of the world that is available to the

learner, it makes sense to search for a solution that works well on that data.

This learning paradigm – coming up with a predictor h that minimizes LS(h) –

is called Empirical Risk Minimization or ERM for short.

2.2.1 Something May Go Wrong – Overfitting

Although the ERM rule seems very natural, without being careful, this approach

may fail miserably.

To demonstrate such a failure, let us go back to the problem of learning to

36 A Gentle Start

predict the taste of a papaya on the basis of its softness and color. Consider a

sample as depicted in the following:

Assume that the probability distribution D is such that instances are distributed

uniformly within the gray square and the labeling function, f , determines the

label to be 1 if the instance is within the inner blue square, and 0 otherwise. The

area of the gray square in the picture is 2 and the area of the blue square is 1.

Consider the following predictor:

hS(x) =

{
yi if ∃i ∈ [m] s.t. xi = x

0 otherwise.
(2.3)

While this predictor might seem rather artificial, in Exercise 1 we show a natural

representation of it using polynomials. Clearly, no matter what the sample is,

LS(hS) = 0, and therefore this predictor may be chosen by an ERM algorithm (it

is one of the empirical-minimum-cost hypotheses; no classifier can have smaller

error). On the other hand, the true error of any classifier that predicts the label

1 only on a finite number of instances is, in this case, 1/2. Thus, LD(hS) = 1/2.

We have found a predictor whose performance on the training set is excellent,

yet its performance on the true “world” is very poor. This phenomenon is called

overfitting. Intuitively, overfitting occurs when our hypothesis fits the training

data “too well” (perhaps like the everyday experience that a person who provides

a perfect detailed explanation for each of his single actions may raise suspicion).

2.3 Empirical Risk Minimization with Inductive Bias

We have just demonstrated that the ERM rule might lead to overfitting. Rather

than giving up on the ERM paradigm, we will look for ways to rectify it. We will

search for conditions under which there is a guarantee that ERM does not overfit,

namely, conditions under which when the ERM predictor has good performance

with respect to the training data, it is also highly likely to perform well over the

underlying data distribution.

A common solution is to apply the ERM learning rule over a restricted search

space. Formally, the learner should choose in advance (before seeing the data) a

set of predictors. This set is called a hypothesis class and is denoted by H. Each

h ∈ H is a function mapping from X to Y. For a given class H, and a training

sample, S, the ERMH learner uses the ERM rule to choose a predictor h ∈ H,

2.3 Empirical Risk Minimization with Inductive Bias 37

with the lowest possible error over S. Formally,

ERMH(S) ∈ argmin
h∈H

LS(h),

where argmin stands for the set of hypotheses in H that achieve the minimum

value of LS(h) over H. By restricting the learner to choosing a predictor from

H, we bias it toward a particular set of predictors. Such restrictions are often

called an inductive bias. Since the choice of such a restriction is determined

before the learner sees the training data, it should ideally be based on some

prior knowledge about the problem to be learned. For example, for the papaya

taste prediction problem we may choose the class H to be the set of predictors

that are determined by axis aligned rectangles (in the space determined by the

color and softness coordinates). We will later show that ERMH over this class is

guaranteed not to overfit. On the other hand, the example of overfitting that we

have seen previously, demonstrates that choosing H to be a class of predictors

that includes all functions that assign the value 1 to a finite set of domain points

does not suffice to guarantee that ERMH will not overfit.

A fundamental question in learning theory is, over which hypothesis classes

ERMH learning will not result in overfitting. We will study this question later

in the book.

Intuitively, choosing a more restricted hypothesis class better protects us

against overfitting but at the same time might cause us a stronger inductive

bias. We will get back to this fundamental tradeoff later.

2.3.1 Finite Hypothesis Classes

The simplest type of restriction on a class is imposing an upper bound on its size

(that is, the number of predictors h in H). In this section, we show that if H is

a finite class then ERMH will not overfit, provided it is based on a sufficiently

large training sample (this size requirement will depend on the size of H).

Limiting the learner to prediction rules within some finite hypothesis class may

be considered as a reasonably mild restriction. For example, H can be the set of

all predictors that can be implemented by a C++ program written in at most

109 bits of code. In our papayas example, we mentioned previously the class of

axis aligned rectangles. While this is an infinite class, if we discretize the repre-

sentation of real numbers, say, by using a 64 bits floating-point representation,

the hypothesis class becomes a finite class.

Let us now analyze the performance of the ERMH learning rule assuming that

H is a finite class. For a training sample, S, labeled according to some f : X → Y,

let hS denote a result of applying ERMH to S, namely,

hS ∈ argmin
h∈H

LS(h). (2.4)

In this chapter, we make the following simplifying assumption (which will be

relaxed in the next chapter).

	Preface
	Introduction
	Part I Foundations
	A Gentle Start
	A Formal Learning Model
	Learning via Uniform Convergence
	The Bias-Complexity Tradeoff
	The VC-Dimension
	Nonuniform Learnability
	The Runtime of Learning

	Part II From Theory to Algorithms
	Linear Predictors
	Boosting
	Model Selection and Validation
	Convex Learning Problems
	Regularization and Stability
	Stochastic Gradient Descent
	Support Vector Machines
	Kernel Methods
	Multiclass, Ranking, and Complex Prediction Problems
	Decision Trees
	Nearest Neighbor
	Neural Networks

	Part III Additional Learning Models
	Online Learning
	Clustering
	Dimensionality Reduction
	Generative Models
	Feature Selection and Generation

	Part IV Advanced Theory
	Rademacher Complexities
	Covering Numbers
	Proof of the Fundamental Theorem of Learning Theory
	Multiclass Learnability
	Compression Bounds
	PAC-Bayes
	to 1.15Appendix ATechnical Lemmas
	to 1.15Appendix BMeasure Concentration
	to 1.15Appendix CLinear Algebra
	Notes
	References
	Index

