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Abstract

This paper reviews recent advances in automated computer-based learning capabilities. It briefly
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and, symbolism. While each of these approaches can demonstrate some degree of learning, a

learning capability that is comparable with human learning is still in its infancy and will likely

require the combination of multiple algorithmic approaches. However, the current state reached

in machine-learning suggests that Artificial General Intelligence and even Artificial

Superintelligence may indeed be eventually feasible.
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How can a machine learn?

There are problems that are difficult and sometimes impossible to solve by writing a traditional

computer program in which we instruct the computer step-by-step how to solve the problem. The

reason is that either it would be too complicated to embed in the program all of the conditions

that must be considered in arriving at a solution or we simply do not know how to solve the

problem. The latter category includes the interpretation of handwriting. For example, the

hurriedly written number zero shown in Figure 1 in which the loop is not fully closed at the top

could easily be interpreted as the number “6”.

Figure 1: Handwritten “0” that is difficult to distinguish from a “6”

It would be very difficult to construct a set of rules that can solve this problem heuristically.

There are many types of problems such as recognizing objects in images and comprehending

speech that fall into this category. We cannot solve these kinds of problems with a traditional

computer program because we do not know exactly how our own brain is able to solve such
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problems successfully in most cases.

The approach that machine-learning relies on to solve such problems is very different from the

traditional computer programming approach. We devise an algorithm that the computer can use

to look at thousands of examples and learn to recognise the correct solution to the problem. In

other words, the computer is learning by analyzing example cases. However, as intuitively

simple this approach may appear, there is a potential problem. Even if the computer has

analyzed thousnds of example cases that all validate the conclusion reached by the algorithm we

cannot be sure that the conclusion holds true universally for other examples that are external to
the corpus of data currently available to the computer.

How can we ever be justified in generalizing from what we have observed to what we have not

observed? Is there any way to learn something from the past that we can be confident will hold

true for the future? This is a fundamental problem for machine-learning. Analysis of a corpus of

data may result in the appearance of one or more patterns. These apparent patterns may be false

due to the features selected for the analysis not being sufficiently decisive (e.g., there being no

single or small set of predictive factors)
1
, or the corpus of data that has been analyzed not being

large enough, or one or more primary features having been considered of minor importance or

altogether overlooked.

The generalization dilemma

Philosophers have debated the induction dilemma ever since it was first posed by Hume in 1739

without coming to a definitive conclusion. It essentially means that we can never be certain that

some conclusion that has held for all instances until now will continue to hold for all instances in

the future. At best, we can possibly say that it has a very high probability of holding for all

instances in the future. The questions then arise: How important is absolute certainty and how

critical are any potential exceptions? The answer to each of these questions depends on the

individual circumstances. When Google responds to a search query it looks in its massive logs

for the same or similar search queries that have been entered by users in the past and assumes

that the links that these users have clicked on in the results pages are equally applicable to this

particular search query. The penalty for this assumption being incorrect is not severe. At most a

second try by the user with a slightly different query and an acknowledgement that the Google

search algorithms require further fine-tuning. On the other hand, in a medical diagnosis where

the wellbeing or even the very life of the patient is at stake, a wrong assumption may have dire

consequences. In this case, the circumstances are exacerbated by the fact that no two human

beings are exactly alike and no set of symptoms are a complete match for two patients.

Generalizing on the basis of existing data to future instances (i.e., cases that we have not seen

before) is the fundamental machine-learning problem (Domingos 2015, 59)
2
. Memorization on

its own cannot solve this problem, because the number of combinations is simply too large. For

example, if we have a corpus of data with just a million records and each record with just 100

Boolean fields with a yes/no question, then how many possible cases are we likely to have seen.

For 100 questions with yes/no answers the total number of cases is 2
100
, which is equal to

1.2676506x10
30
and more than a hundred thousand times as large as our original corpus of one

1 In other words, there is no basis to select one generalization over another.
2 Frequent reference is made in this paper to Pedro Domingos’ comprehensive review of the principal approaches

to machine-learning in his book entitled “The Master Algorithm: How the Quest for the Ultimate Learning

Machine will Remake the World”. This excellent book is highly recommended for further reading.
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million records. When we scale this to a more likely database of a billion or a trillion records the

available data becomes a miniscule percentage of the number of cases. Accordingly, the

probability that a new case on which a decision has to be made is already in the database is so

miniscule small that we are forced to resort to generalization if we want to make a decision about

this new case.

The appropriate conclusion is that data alone is not sufficient for successful machine-learning.

What is also needed is knowledge, so that the theoretically determined enormous number of

possible cases is reduced to a much smaller set of relevant cases by incorporating context in the

machine-learning algorithm. This of course also introduces a degree of bias into the machine-

learning algorithm. Although we typically consider bias leading to preconceived notions as

undesirable in our daily activities, such preconceived notions are a very necessary component of

machine-learning (Mitchell 1997, 39; Domingos 2015, 64). In the case of human learning both

our genes and the external interventions of our environment, particularly during our early

formative years, embed preconceived notions and beliefs in our brain. These embedded notions,

beliefs and biases are an essential part of our learning process. Similarly, the objective in

machine-learning is to include just sufficient knowledge in our program so that the learner can

continue to acquire knowledge ad infinitum by reading and synthesizing data. This is a gamble

because machine-learning will not always make the correct decision. In fact, it is likely to make

many mistakes. However, we can deal with this inaccuracy by discarding the misses and building

on the hits. The cumulative result is what is important to us and that has been shown to be
generally reliable.

How much seed knowledge does machine-learning need to be cumulatively successful? The

nature of the knowledge that we embed in the learning algorithm appears to be quite primitive,

but it is in fact very powerful. It starts with the selection of the features of the data that we

consider to be relevant. This is indicative of the gamble that we face. If we chose the wrong

features then the learning algorithm is unlikely to produce any useful results, or worse, the

results may be misleading. Then we apply initial weights to these features on the understanding

that these weights will be progressively automatically adjusted by the algorithm as it reads and

synthesizes more and more data. In this respect, mechanisms that allow the learning algorithm
to change features and adjust weights as it gains more knowledge are of critical importance.

The inductive process in machine-learning

In the treaties Principia (Cohen and Whitman 1999) Newton enunciated his well-known three

laws of motion as well as four much lesser known rules of induction. The third of his induction

rules states: Whatever is true of everything we have seen is true of everything in the universe.

While this rule represents an enormous leap to generalization, it is also at the very heart of

machine-learning. We start the automated inductive learning process by applying the most

widely applicable rules and then proceed to reduce the scope of these rules when the data forces

us to do so. For example, we might initially assume that the rate of car accidents is mostly

governed by the speed at which a car is traveling. When the application of this rule to the data

produces contradictory results we are forced to reduce the scope of the rule by adding a second

rule; namely, that the age of the driver is also a factor. If the conjunction of these two rules fails

as well then we add a third rule, such as male drivers are more likely to have accidents, and so

on. Until we have a set of conjunctive concepts
3
that correlate with the data and allow us to fairly

3 Dictionary definitions are typically conjunctive concepts (e.g., a chair has a seat, a back, and one or more legs).
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accurately predict the rate of car accidents. The larger the set of conjunctions, the greater the

number of possible combinations of features that have to be analyzed, requiring an ever

increasing amount of computation. It now becomes clear that machine-learning requires huge

volumes of data to reduce the risk of false results and an enormous amount of computation due

to many plausible conjunctions.

Starting with broad (i.e., restrictive) assumptions and gradually relaxing them if they fail to

explain the data is the typical machine-learning approach. This process is normally carried out

automatically by the algorithm. First, it uses all single factors, then conjunctions of two factors,

then conjunctions of three factors, and so on. The limit to this process is time and computational

power (Domingos 2015, 66-68). However, even with the enormous computational power that has

become available over the past two decades this approach is likely to be too time consuming. To

overcome this problem we could start off by assuming that all matches are good and then prune

the large number of matches by deleting all matches that do not include a particular feature (i.e.,

attribute). If we repeat this for each feature and in this way identify those features that delete the

least good matches and the most bad matches, then we are likely to be left with a set of

conjunctive concepts that have been pre-qualified.

The rule-based approach

The problem with the conjunctive concepts approach is that it allows for neither exceptions nor

alternative ways of achieving a goal. For example, birds fly unless they are ostriches, kiwis,

penguins, or are housed in a cage. A chess game can be won in many different ways. In the early

1980s Michalski (1980, 1983, 1986) showed that the conjunctive concepts methodology could be

used to generate a set of rules. After the system learns a rule all positive examples that it

accounts for are removed from the data. Then the next rule is applied to the remaining data and

all cases that it can account for are discarded, and so on until there are no remaining cases. For

example, applying this to the previously discussed corpus of traffic accident data, we might

apply the following set of rules: you are more likely to have a car accident if you are under 25

years of age; if you have been drinking alcohol; if you are using your mobile phone; if you are

driving in peak-hour traffic. While rules are more powerful than conjunctive concepts, they are

also more dangerous. Let us assume that a rule set covers the exact positive cases in a corpus of

data. Then it will predict that every new case that is not exactly like at least one of the positive

cases is negative. In other words, the ability of computers to remember every detail of every

instance is not especially useful for machine-learning. For example, while a computer has no

difficulty to remember every detail of every e-mail spam message, a rule that suggests that an e-

mail is spam only if it is exactly like a previous spam message would be useless.

The overfitting problem

Whenever machine-learning finds a pattern in the data that is not actually true in the context of

our real world then we refer to that as overfitting the data. Unfortunately, learning algorithms are

particularly vulnerable to finding patterns in data that do not exist in the real world. The reason is

that the computer has the ability to process vast amounts of data and therefore an unlimited

capacity to identify potential patterns. For example, The Bible Code published in 1989 (Drosnin

1997) became a bestseller due to its claim that the Bible contains potential predictions of future

events when one constructs new words by skipping letters at regular intervals. It turns out that

there are so many ways of doing this that one is bound to construct something useful as long as

the text is long enough. The claim was easily countered by demonstrating the same phenomenon
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in transcripts of U.S. Supreme Court rulings.

As Silver (2012) points out, overfitting is greatly exacerbated by noise in data, which equates to

errors and random occurrences in machine-learning that can lead to false hypotheses. However,

even without considering noise in data, for a learning algorithm based on conjunctive principles

the number of possible instances of a conjunctive concept is an exponential function of the

number of features (attributes). In the case of Boolean attributes, each new attribute doubles the

number of possible instances by virtue of its required yes/no value. As an analogy, if we take the

64 squares on a chessboard and place two grains of wheat on the first square, four grains on the

second square, and so on doubling the number of grains for each square, we end up with 2
64
or

over one trillion tons of wheat on the 64
th
square alone

4
.

Domingos (2015, 74-75) makes the case that machine-learning is a trade-off between the number

of hypotheses considered and the amount of data available to test each hypothesis. While more

data can exponentially reduce the number of positive hypotheses and increase the probability that

a hypothesis is correct, there is no absolute certainty that the hypothesis will hold for all new

data. The question then arises: When can we believe that a hypothesis that appears to have been

validated by a learning algorithm is in fact correct? The core response is that it has to be verified

with new data. It is not sufficient for a new theory to explain past data. The theory must also hold

true for new data. To accomplish this verification in machine-learning it is common practice to

divide the available data arbitrarily into two sections; - namely training data and validation data.

The training data is used to create the hypothesis and the validation data is used to test it against

new data.

While testing the learning algorithm on new data is of critical importance in machine-learning,

even then we cannot be sure that the possibility of overfitting has been eliminated. Apparently, in

an early military application, a relatively simple learning algorithm was able to detect with

almost 100% accuracy in both the training and testing data the presence of tanks in photographic

images. It was later discovered that all of the images containing tanks were lighter than the other
images and that was all that the algorithm had learned to base its recognition of tanks on.

Machine-learning algorithms

Machine-learning algorithms essentially program themselves by drawing inferences from large

volumes of data. Their application is pervasive in our daily activities. Our alarm clock wakes us

up in the morning with a tune that we like and that has been selected by an algorithm that has

learned our musical taste. The temperature in our house is comfortable and yet our electricity bill

is lower after we installed a smart thermostat that has learned how to conserve energy. We drive

to work guided by a navigation system that selected the best route based on typical traffic

patterns applied to current conditions. Our car is able to optimize fuel consumption by

continually adjusting the fuel injection system based at least partly on our observed driving

habits. When we arrive in the office, our e-mail has been conveniently sorted into categories

based on our preferences. There is a message in a foreign language that can be immediately

translated into English by Google’s translator. As we prepare a report the word processing

system automatically checks our spelling and grammar. When we make travel reservations our

Travel App suggests that we delay purchasing the selected airline ticket because the price is

4 264 is equal to 1.8447x1019. If there are 7,000 grains in one pound then there are 15,680,000 grains in one ton

(i.e., 2,240 lb) and 1.176x1012 tons in 264 grains of wheat. The weight of wheat required to fill the entire chess

board is therefore far beyond the world’s annual wheat production of approximately 65 million tons.
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likely to reduce within the next 24 hours.

Machine-learning is fast becoming a foundational methodology in the field of Artificial

Intelligence. It already plays a role in every part of our lives, as it analyzes and learns from the

keystrokes on our computer, the calls we make and receive on our mobile phone, what we buy

and how frequently in our local supermarket, the approval of our credit card when we make a

purchase, and so on. The rapid rise of machine-learning is due to its ability to automatically

extract information and knowledge from any large corpus of data; - it learns by finding and

testing hypothetical relationships and dependencies.

While there are many new learning algorithms proposed each year, there are really only five

principal approaches (Domingos 2015, xvii): connectionist algorithms endeavor to simulate the

way the human brain works; evolutionary algorithms draw on genetics and evolutionary biology;

Bayesian algorithms rely on statistical probabilities; analogy algorithms rely on similarity

judgments; and, symbolistic algorithms use inverse deduction. These five approaches are
commonly referred to in the literature as the five tribes of machine-learning.

Connectionist Approach: In the human brain the recognition of any image starts with the

activation of neurons that respond to very low-level properties of the image such as the

luminance of one or more distinct areas or dots or lines or planes in the image. The firing of

these neurons will activate other connected neurons that respond to other features that build

on the partial interpretations of the previous level neurons, and so on. This is referred to as a

synaptic chain in which the chemical connections (i.e., synapses) between neurons play a

decisive role. With each successive level of response the comprehension of the whole image

becomes more complete and the contribution of the next level builds more and more on the
cumulative results of the previous levels.

In the connectionist approach to machine-learning these synaptic chain operations of the

brain are simulated mathematically not only by multiple layers of neurodes (i.e., simulated

neurons) in each neural network but also by stacking multiple neural networks vertically with

mathematically computed connections between them. Like a neuron, a neurode receives

inputs from its connection to other neurodes within the network and multiplies these inputs

(X) by a weighting factor (W) to compute a function (F). If this function exceeds a

cumulative value then the neurodes will fire by sending an output to all other neurodes that

are connected to it (Figure 2).

X1W1

X2W2 A= X1W1+X2W2+…+ XnWn

… Function (F) 1 Function (F)

XnWn 1 + e
-A

Linear Neurode Sigmoidal Neurode

Figure 2: Linear and sigmoidal neurode firing functions

When the total input to the function (F) is very negative its value is close to zero. If the input

is very large and positive then the value of the function is close to one. The neurodes are

connected in one or more (hidden) layers between the input layer and the output layer.

Backpropagation is the connectionist’s principal machine-learning algorithm. It was invented



Jens Pohl: Machine-Learning, InterSymp-2019, 29 July, 2019 RESU113-IS19

7

by David Rumelhart in 1986 (Rumelhart et al. 1986). After the neural network has processed

the input to the output during its forward pass, the output is compared with the desired output

and the error is propagated back through the layers of the network and the input. Each

neurode adjusts its weighting based on the error and the input that it received during the

forward pass. After thousands of repetitions the neural network’s output neurodes will

closely match the desired output that recognizes the particular input that it was trained to

recognize. During this gradient descent operation there is no certainty that the neural

network has reached the best (i.e., optimum) output condition even after thousands of

iterations; - i.e., it may have reached a local minimum of the error. However, experience has

shown that this is not as serious a drawback of backpropagation as originally thought. First, a

local minimum may be quite acceptable since in most cases the error plane resembles a quilt

with many peaks and troughs. Second, the local minimum is less likely to have overfitted the

data than if we were to insist on reaching the global minimum.

Deep Learning utilizes interconnected neural networks to simulate the ability of the human

brain to comprehend a visual sensory input (i.e., a scene in the local real world environment).

Several neural networks are stacked vertically to conceptually simulate synaptic chain

operations in our brain. During training the neural networks are shown a large number of

positive (i.e., correct) examples and the weights between neurodes are incrementally adjusted
to produce a positive output (i.e., value of function (F) close to one).

Evolutionist Approach: This approach is based on Darwin’s theory of natural selection,

using genetic algorithms. A genetic algorithm replaces the selective breeding process of

plants and animals with a learning algorithm and reduces the time between generations to a

few seconds of computer time. Holland (1992) recognized the importance of incorporating

the mechanism of sexual reproduction in the learning algorithm. In reproduction two new

chromosomes are produced; one consisting of the mother’s chromosome before and the

father’s after reproduction and the other consisting of the father’s chromosome before and

the mother’s after reproduction (Figure 3).

Figure 3: Sexual reproduction (Domingos 2015, 124)

Based on a fitness function the genetic algorithm creates variations that can be evaluated

according to meeting the fitness goal. Similar to the way that in nature DNA encodes an

organism as a sequence of chromosome pairs, the genetic algorithm uses a string of bits.

During each generation the algorithm creates the fittest cases in the data by crossing over

their bit strings at a random point in time. In this virtual computational world each mutated

case receives a fitness score, with the result that each computed generation is fitter than the

previous one. The process terminates when either the desired fitness level has been reached
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or time runs out.

Koza took Holland’s work a major step forward by replacing the bit strings in genetic

algorithms with software code, arguing that a computer program is really a tree of

subroutines (Koza 1992). Using crossover (Figure 4) and mutation to swap subroutines

between program trees he was able to show that genetic programs can include a wide range

of programming constructs such as if-then comparisons, loops, and recursion.

Genetic programming’s first major success in the mid-1990s was in the design of electronic

circuits (Koza et al. 1999). Koza was able to reinvent a previously patented design for a low-

pass filter that could be used to selectively enhance a particular frequency band in a musical

recording (Carnett and Heinz 2006). In 2005, the US Patent Office awarded a patent to a

factory optimization system that was designed using genetic programming.

Bayesian Approach: At the core of Bayes’ theorem is the simple concept of starting with a

hypothesis in the form of an estimated probability that the hypothesis is correct and then

adjusting the probability as new evidence (i.e., data) becomes available. For example, if we

flip a true coin a sufficiently large number of times the number of heads will be

approximately equal to the number of tails. Therefore, if our hypothesis is that the coin is

true then our initial estimated probability of the flipped coin coming down heads would be

50%. As we continue to flip the coin each heads will increase and each tails will decrease the

probability of the coin being true. The initial probability, which is essentially a subjective

belief, is referred to as the prior probability and the adjusted probability based on new data is

referred to as the posterior probability. The posterior probability is determined with Bayes’

theorem as follows, where P stands for probability:

P(cause | effect) = P(cause) x P(effect | cause) / P(effect)

Domingos (2015, 147) provides the following medical example where influenza is the cause

and fever is the effect. If out of 100 patients, 14 had influenza, 20 had a fever that was not

necessarily associated with influenza, and 11 had both influenza and a fever. Therefore:

P(cause-influenza) = 14 / 100

P(effect-fever) | cause-influenza) = 11 / 14

P(effect-fever) = 20 / 100
P(cause-influenza | effect-fever) = (14/100) x (11/14) / (20/100)

5

posterior probability = 0.55 or 55%

We usually know the probability of the effects given the cause. For example, the probability

of a fever if the patient has influenza. However, what we would like to know is the

probability of the cause given the effect, such as the probability that the patient has influenza

if the patient has a fever. If in the above example the physician had started with an intuitive

estimate of the prior probability of 70% that a patient with a fever has influenza, then this

probability would now be reduced to 55%. Additional data would either increase or decrease
the 55% that has now become the prior probability.

In reality, the application of Bayes’ theorem to this machine-learning example would require

multiple effects such as sore throat, fatigue, prevalence of influenza in proximity of the

patient, and so on, to be taken into account. The computational burden increases

exponentially. If there are n effects and each carries the Boolean value of yes or no, then

5 Posterior probability = P(cause | effect) = (14/100) x (11/14) / (20/100) = 0.14 x 0.7857 / 0.2 = 0.5499 or 55%
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there are 2
n
combinations that have to be calculated for each data set. In the case of only

10,000 data sets and only ten effects there are already over 10 million calculations (10000 x

2
10
= 10000 x 1024 = 10,024,000).

However, we are faced with two further problems. First, there are dependencies that require

combinations of symptoms to be considered. A patient who has a fever and also a sore throat

is more likely to have influenza than a patient with only one of those symptoms. Second, we

need an enormous amount of data to have some confidence that the available data covers the

combinatorial range of different cases and that there are a sufficient number of instances of

each case
6
. To deal with the combinatorial explosion problem we are forced to make

concessions such as, we assume that the effects are independent of each other given the

cause. This is referred to as the Naïve Bayes Classifier. Naïve Bayes is widely applied to e-

mail spam filters, search engines, text classifiers, and in many other domains. In fact, at this

time (2019) it may still be the most widely used machine-learning algorithm (Russell and

Norvig 2012; Domingos 2015, 152).

Analogist Approach: Global connectivity has resulted in a deluge of data. The emergence of

the Internet of Things (IoT), where almost everything we use on a daily basis will be tracked,

promises to increase the amount of data by orders of magnitude. However, the data is often

unevenly distributed so that we may have more data than we can deal with in most domains

and at the same time insufficient data in some smaller subdomains. The connectionist,

evolutionist and Bayesian approaches to machine-learning all construct an explicit model of

the phenomenon under consideration and therefore depend on the availability of ample data.

They cannot learn if there are serious data gaps. This is where analogizers come to the

rescue, because they do not construct a model and can therefore learn from as little as one
example (Domingos 2015, 175).

The analogist approach learns by finding an example that is sufficiently similar to the case in

the data under consideration. At the most primitive level it uses the nearest-neighbor

algorithm
7
. For example, when a Facebook user uploads a photograph of a person how does

Facebook recognize the image as being the face of a person? It looks through its database of

images to find another image that contains enough similar features to make it highly probable

that it is of the same kind. If this image is known by Facebook to be the face of a person then
the just uploaded photograph is also classified as containing the face of a person.

Domingos (2015, 180-2) provides an excellent example of how the apparently trivial

capabilities of a lazy learner can be applied in a surprisingly sophisticated manner. Let us

assume that we want to determine the approximate border between two states in the US. The

lazy learner might start with the hypothesis that the border is a straight line half-way between

the capital cities of the two states (Figure 4). By taking into consideration a large number of

towns on either side of the border it is then able to construct an intricate border based on just

the location of each town and the state that the town belongs to. K-nearest-neighbor is a

refinement of the nearest-neighbor algorithm by taking into account several nearest

neighbors instead of just one nearest neighbor. For example, if the first nearest neighbor of

the case being analyzed is sufficiently like the test case but the next two nearest neighbors

6 While the computing power to process the data may be available, the corpus of data may be insufficient. We
would like to have at least a few tens of each combinatorial instance (i.e., each case), which will require

millions of patients.
7 The nearest-neighbor algorithm is also known as the lazy learner.
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are not then the combined vote would be that the test case classification is not appropriate for
the case under consideration.

Figure 4: Nearest-neighbor algorithm example

In the early 1990s the nearest-neighbor algorithm was essentially supplanted by the Support

Vector Machine (SVM) concept developed by the Russian Vladimir Vapnik at Bell

Laboratories after he immigrated to the US from Russia in 1990 (Ben-Hur et al. 2001). SVM

is similar to a weighted k-nearest-neighbor. The division between the positive and negative

cases
8
is defined by a set of weighted examples together with a similarity measure. A test

example is considered to belong to the positive class if, on average, it looks more like the

positive examples than the negative examples. In the border example above, SVM will

remember only the key examples that define the location of the border line.

The two most difficult problems encountered by analogical learning is how to measure

similarity and what to infer from the similarity. A typical example is an automated Help

Desk. Chances are that the problem that a customer is encountering with a product has

occurred previously and that a solution has been successfully implemented. As Domingos

(2015, 199) points out Wall Street hires many physicists because scientific and financial

problems have a similar mathematical structure. Similarly, persons with a degree in

architecture often end up in professional careers that are unrelated to the design and

construction of buildings. Since a typical five-year architecture degree program is heavily

oriented toward design, it prepares students for solving problems through the assembly and

careful analysis of requirements. Those skills are applicable in many other professional

domains.

Symbolistic Approach: The symbolistic approach to machine-learning is based on the

representation of objects with symbols that can be manipulated logically, very much like we

deal with variables in mathematical equations. In this respect, symbolists are particularly

interested in how infants learn to recognize and classify objects during the first 18 months of

their life. During this time we learn that we are situated in an environment that is made up of

objects that persist over time. We appear to spontaneously establish object categories (i.e.,

clusters) and gain some understanding of what different categories of object can and cannot

8 The technical term is classes (i.e., instead of cases) because the nearest-neighbor, k-nearest-neighbor and SVM

algorithms are categorized as classifiers.
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do. For example, dolls and teddy bears cannot fly while birds, bees and balloons can fly.

The ability to cluster is fundamental to human intelligence (i.e., biological intelligence) and

is often the first step in acquiring knowledge. A cluster is a group of physical objects or non-

physical entities that have similar characteristics, or are at least more similar to each other

than members of other clusters. The quest for an algorithm that can automatically group

together entities into clusters is an intensely pursued area of research in machine-learning. A

cluster typically has a prototypical set of attributes such as an average height or weight of a

person in a cluster of people, even though none of its members may be of that exact height or

weight. Or, the desirable product specifications of an abstract cluster such as a market

segment or potential consumer group. Without any preexisting knowledge a clustering

algorithm will need to start off by assuming that each new entity is part of a separate cluster

unless it is in some ways similar to the entities in an existing cluster. With a computer being

able to perform millions of computations per second such a clustering algorithm is able to

fairly rapidly group thousands of entities into a hierarchical structure of clusters and sub-

clusters based on some rules that define the desired degree of similarity that the members of

a sub-cluster should adhere to.

This is essentially the way the k-means algorithm that was first proposed by Stuart Lloyd at

Bell Laboratories in 1957 works (Lloyd 1982). While it is simple and popular, it has at least

one serious hurdle to overcome. The k-means algorithm works only if the clusters are well

differentiated. We can overcome this hurdle to some extent by providing external assistance.

For example, by training k-means with the attributes of members of existing clusters and the

probability associated with each attribute. Another approach is to reduce the number of

possible similarity dimensions through a process of dimensionality reduction. In the case of

clustering images we can reduce the number of visible differences (i.e., dimensions) at the

pixel level to a much smaller number of combined features. For example, with only 10

choices for each facial feature, a law enforcement artist can draw a portrait of a suspect that

is often good enough to recognize that suspect.

In the late 1970s Newell and Rosenbloom (1980) proposed the concept of chunking to

explain why the rate of performance improvement in learning a skill is not constant. The rate

falls off after an initial learning period, with the performance varying with time raised to

some negative power (Figure 5); - referred to as the power law.

Figure 5: The Power Law

They argued that our ability to perceive and remember in chunks allows us to process much

more information than we could if we had to deal with each information item individually.
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We can remember the telephone number 805-697-0034 much more easily than without

separating hyphens (i.e., 8056970034). In learning a skill we progressively build chunks that

consist of chunks. For example, a major difference between a novice and an experienced

chess player is that the experienced player judges a game by the positional pattern, while the

novice player sees individual chess pieces. Protocol studies have shown that we solve

problems by decomposing them into multiple levels of sub-problems depending on the

complexity of the problem. The solutions of these chunked sub-problems are essentially
symbols that are then combined into a solution of the problem as a whole.

It was initially thought that since chunking is a fundamental component of learning that a

chunking-based algorithm may be sufficient for machine-learning. This led to the proposal

by Newell, Laird and Rosenbloom (Laird et al. 1986; Rosenbloom 2006) of a general theory

of cognition and the Soar general problem-solving program (Laird 2012). While Soar worked

well within a predefined hierarchy of goals and was even able to define and solve new sub-

problems, it ultimately failed to live up to the initial expectations. In particular, as Soar

learned more complicated chunks the program slowed down instead of becoming faster.

Even though chunking is not as prevalent in the business applications of machine-learning as

clustering, supervised learning and some other learning algorithms, it is recognized as an

important contribution from psychology that seems assured of playing a role in the continued
evolution of AI.

Tribal Differences

In summary: symbolists believe that intelligence can be reduced to the manipulation of symbols;

connectionists simulate the operation of the biological brain, which learns by changing the

strengths of the connections (i.e., synapses) between neurons; evolutionaries simulate natural

selection using genetic algorithms; Bayesians rely on probabilistic inference to overcome

uncertainty; and, analogizers look for similarities between disparate situations to discover other

similarities. Each of these five approaches to machine-learning has strengths and weaknesses.

All of the algorithms used by the five approaches are guided by instant gratification. There is a

subfield in machine-learning entitled reinforcement learning that focuses on algorithms that are

designed to explore future opportunities that may sacrifice taking advantage of an immediate

reward, just like a chess player may sacrifice a piece for a positional advantage that may

eventually win the game. The core concept of reinforcement learning is that every state has a
value, even though it may not have a reward (Sutton and Barto 1998; Hutter 2004).

While the connectionist and evolutionary approaches to machine-learning both attempt to

simulate nature, they take different directions. The connectionist approach uses many copies of a

relatively simple mathematically formulated component (i.e., the neurode) that are

interconnected as nodes within a network. The flow of signals between nodes is controlled by

weighting factors that are incrementally adjusted during thousands of cycles based on specific

training criteria. In the evolutionary approach the focus is on creating many alternatives,

combining parts of the best alternatives based on a fitness function, and repeating this process

over many generations to produce an optimized learning algorithm. Domingos (2015, 138)

argues that neither approach is sufficient by itself, but that there is a need to combine the

structure learning approach (i.e., nurture) of the evolutionaries with the weight learning approach
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(i.e., nature) of the connectionists
9
. He points to natural evolution where structure (the brain)

evolves in tandem with the need to process environmental stimuli, citing as an example the

growth of the cortex in response to the learning associated with the sensory areas.

There are two principal differences between the connectionist and symbolist approaches. First, in

symbolism there is a one-to-one correspondence between symbols and what they represent,

while connectionist representations are distributed among many neurodes. Second, symbolist

learning is sequential, while connectionist learning is a parallel operation with neurodes learning

simultaneously. One might ask: How successful can these connectionist simulations be in the

light of advances in technology? The number of transistors in computers is catching up with the

number of neurons in the brain, but the brain has orders of magnitude more connections (i.e.,

synapses). Each transistor in a computer is connected to only a few other transistors, while a

single neuron may have thousands of synapses. The computer can to a modest extent make up

for some of the lack of connectivity by being much faster than the brain. While a computer can

make millions of calculations per second, neurons will typically fire less than a thousand times
per second. However, there may be billions of neurons firing during a single second.

Symbolists dominated the first few decades of cognitive psychology (1940s to 1970s).

Connectionists came to the foreground in the 1980s and 1990s, but now Bayesians are on the

rise. Thomas Bayes, an 18
th
Century English clergyman, proposed the concept of considering an

a priori probability. However, it was the Frenchman, Pierre-Simon de Laplace, who 50 years

later formulated Bayes theorem. He argued that every morning that the sun rises should increase

our confidence the sun will also rise tomorrow. After hundreds of years the probability that the

sun will rise tomorrow will be very close to 1 (but not quite 1), because we can never be

completely certain that the sun will rise. Based on Laplace’s Rule of Succession the probability

that the sun will rise again tomorrow morning after it has risen on n successive previous

mornings is (n+1)/(n+2). If n is 0 then the probability is 50% and if n is 100 then the probability
is 99%.

Frequentists, like Ronald Fisher, have been historically at odds with Bayesians. While

frequentists believe that the only acceptable way to estimate a probability is to count the number

of times that the particular event occurred and then divide it by the total number of observations,

the Bayesians start off with an initial subjective estimate that is then improved or disproved by

new information. According to frequentists, probability is based on frequency of occurrence and

according to Bayesians probability is a subjective degree of belief. For frequentists to estimate

the probability of an event, the event must have occurred at least more than once. However,

Bayesians are able to subjectively estimate the probability of an event occurring that has never
occurred previously.

Domingos (2015, 174-5) argues that in machine-learning there is a need for both probability and

logic. A Bayesian network can model one aspect of how cells function, but logic is needed to

build a comprehensive model of cell operations. On the other hand, logic cannot deal with

incomplete information or noisy data, while Bayesian networks excel in this area. While we can

combine the evolutionist and connectionist approaches by building a network structure and

determining the weights between nodes with backpropagation, unifying probability and logic is a
much more difficult undertaking.

Analogy continues to play a prominent role in machine-learning. According to Hofstadter

9 Domingos (2015, 140) further argues that in the context of information systems, nature is the computer program

and nurture is the data that it processes, and that neither of them is more important than the other.
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(Hofstadter and Sander 2013, Hofstadter 1999) all intelligent behavior reduces to analogy. He

argues that everything that we learn, from the meaning of everyday words such as mother, father,

house, and car to our understanding of concepts and acquisition of knowledge is the result of

analogous thinking. Throughout the recent history of cognitive science there has been a debate

between analogizers and symbolists in respect to which of the two approaches is more

comprehensive in respect to its ability to model a phenomenon. While the symbolist’s approach

to modeling is to devise rules (i.e., rule-based), the analogical approach is instance-based
learning (Domingos 2015, 200-2).

Conclusion

While clustering and dimensionality reduction are certainly powerful tools in the symbolistic

approach, they like the algorithms used in the other four machine-learning approaches are

mathematically predefined. They cannot change their mathematical formulation based on the

results of their data analysis. An important part of the learning process of an infant is that the

infant is actively engaged in the environment by being able to touch objects, play with them,

experiment, use them as tools to pursue objectives, and so on. Children are not taught to crawl,

walk and run. They acquire those skills on their own through trial and error driven by a strong

desire to be mobile, because mobility facilitates the exploration of the environment in which they

are situated. Emotions play a role in as much as children, like adults, seek pleasure and avoid

pain. According to Thorndike’s law of effect (1898) actions that result in pleasure are more likely

to be repeated than those resulting in pain. Humans are able to associate both pleasure and pain

not only with that actual experience but also with the sequence of actions or events leading up to
that experience.

What the infant achieves during the first few months does not involve much teaching. The infant

essentially learns through physical interaction, trial and error experimentation, and curiosity.

None of the existing machine-learning algorithms are capable of or even intended to emulate this

experience-based approach to learning. What is probably highly significant is that the infant’s

brain, which is the core of its learning capability, forms in parallel with the learning process. The

infant does not learn by applying an existing capability, instead the capability evolves driven by

the infant’s interaction with the environment. In other words, the infant’s learning capabilities

develop as an integral part of the learning experience. This is a very different paradigm in

comparison with a machine-learning algorithm, whose operational mechanism and capabilities

are fixed from the start with the objective of using these capabilities to extract knowledge from
data.

Notwithstanding the above, a great deal of progress has been made in machine-learning,

particularly during the past decade. However, we are still very much at the beginning of truly

intelligent computer-based capabilities. What is significant is that some of the approaches

described in this paper have learning capabilities. While these capabilities are still in their

infancy and therefore primitive in comparison with human learning capabilities, they

nevertheless suggest that more sophisticated computer-based learning is feasible in the not too

distant future. As Domingos (2015) points out a master algorithm that would bring machine-

learning to an Artificial General Intelligence (AGI) level will require the seamless integration of

the distinctly different approaches pursued by the connectionists, evolutionists, Bayesians,

analogists, and symbolists.

It is easily argued that without automated learning capabilities Artificial Intelligence (AI) cannot

be more than a set of tools for human decision makers. Even though such tools have already
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proven themselves to be powerful decision-assistance aids, they serve in a supportive rather than

primary role that is on par with human intelligence. Husain (2017, 22-24) points to the distinct

difference between the computer’s ability to analyze a large number of alternative moves in a

chess game and mathematically assess the positional outcome in each case to considerable depth,

and the operation of our brain. This brute force approach, which may appear to be a sign of

intelligence when judged on the basis of the outcome, is very different from human intelligence.

Operating at a much slower, energy conserving pace and massively parallel mode our brain will

quickly prune the large number of possible moves to a much smaller number of more promising

alternatives. The fact that at times the computer will find an alternative sequence of superior

moves that may have been overlooked by the human chess master is a consequence of its

computational capabilities rather than a sign of chess playing expertise. The acquisition of the

latter expertise requires a learning capability and this is why the recent advances in machine-

learning are highly significant. Automated learning algorithms combined with enormous

computational speed potentially allow the computer to learn in seconds and minutes what would

take the human brain weeks and months. Therein lies the promise that AGI and even Artificial
Superintelligence (ASI) are indeed eventually achievable.
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Appendix: Machine-Learning Methods

The purpose of this Appendix is to briefly define and explain where appropriate the wide range

of concepts, methods and algorithms employed with varying success in the quest for machine-

learning capabilities.

1. abduction: Abductive reasoning starts with an observation or set of observations and
then seeks to find the simplest and most likely explanation.

2. A/B testing: Also known as randomized controlled trial (RCT); - particularly in respect

to drug testing. A very simple method of testing that is however still widely used in

business to test consumer preferences. For example, to determine whether a particular

new feature on a company’s website will increase sales it is tried out on thousands of

randomly chosen customers and then compared with the results of the website without

the new feature (Domingos 2015, 226-7). To apply A/B testing to machine-learning it is

necessary to first form a hypothesis, work out a randomization strategy, decide on a

sample size, and finally chose a measurement method.

3. autoencoder: An autoencoder is a multilayer neural network whose output is the same

as its input. Its value lies in the fact that it ends up encoding the input in fewer bits

within the hidden layer in such a way that it is automatically decoded back to the input

form as an output. In other words, it is able to encode a million pixel image into a much

smaller bit-code invented by itself and then decode that bit-code back to the complete

million pixel image as an output. In deep learning autoencoders are stacked vertically

with the output of the lowest encoder becoming the input of the one above it, and so on.

The interpretation of the input from the lowest to the highest autoencoder proceeds in

stages from very primitive localized features to more interconnected features to a final

interpretation of the input, much the same way that we currently believe the brain
interprets images.

4. backpropagation: After a neural network has processed the input to the output during

its forward pass, the output is compared with the desired output. The error is

propagated back through the layers of the network and the input. Each neurode adjusts

its weighting based on the error and the input that it received during the forward pass.
Backpropagation is the connectionist’s principal machine-learning algorithm.

5. chunking: The human brain handles the retention of information in chunks and this

enables us to process much more information than if we had to deal with each

individual information item. In learning a skill we progressively build chunks of sub-

problems that themselves consist of chunks. In a general sense chunking solves

problems by reference to past experience that is also stored in chunks. Conversely,

when a system has insufficient knowledge to solve a problem it forms a sub-goal. Any

result that is produced in the sub-goal results in the creation of chunks. Once a chunk

has been learnt the results of an impasse can be directly applied with the chunk(s)

created in the sub-goal, if the same situation occurs again. In this way chunking speeds

up problem solving (Saxena et al. 2017).

6. clustering: A cluster is a group of physical objects or non-physical entities that have

similar characteristics, or are at least more similar to each other than members of other

clusters. The ability to classify entities into categories and combine such clusters into a

hierarchical structure of objects (i.e., treat a cluster or set of clusters as an object) is
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fundamental to human intelligence. It allows us to acquire skills by decomposing the

skill into sub-skills and then combining those sub-skills to acquire a more

comprehensive skill.

7. Bayes theorem: The core concept of Bayes theorem is that the search for a solution

should start with an initial belief (i.e., hypothesis) and a subjective probability that this

hypothesis is correct. As the data analysis produces new evidence the probability of the

hypothesis is adjusted up or down accordingly. The following probability equation is

used by the Bayes approach:

P(cause | effect) = P(cause) x P(effect | cause) / P(effect)

8. Bayesian network: Pearl (1988) introduced a major extension to the application of

Bayes’ theorem by proposing the concept of a Bayesian network to represent

dependencies among variables, with the limitation that each variable depends directly

on only a few other variables. If we make the hypothesis (i.e., the belief) the cause and

the data the effect then the hypothesis can be as complex as a whole network or as
simple as the probability that a flipped coin will come up heads.

P(hypothesis | data) = P(hypothesis) x P(data | hypothesis) /P(data)

9. Boltzmann machine: A type of recurrent neural network in which there are sensory

and hidden neurons. The weightings between neurons are adjusted statistically

according to the Boltzmann distribution, which is a probability measure that a system

will be in a certain state as a function of given criteria. Boltzmann machines can be

strung together to make more sophisticated systems such as deep belief networks.

Replacement of deterministic neurons in Hopfield networks with probabilistic neurons

(hence the name Boltzmann machines) was first proposed by Ackley, Hinton and

Sejnowski (1985).

10. Decision Tree: A hierarchical (tree-like) structure in which the properties of each node

differ by at least one attribute. Therefore, each branch of a decision tree can be

represented by one rule. A decision tree model is a classification system that classifies
future observations based on a set of decision rules, with maximum accuracy.

11. deduction: Reasoning from one or more premises to a logically certain conclusion.

Therefore, deductive reasoning moves from generalized principles that are accepted as
being true to a specific conclusion.

12. Deep Belief Networks: A class of multi-layer neural networks in which the layers, but

not the neurodes within the layers, are connected.

13. dimensionality reduction: Used to reduce the number of dimensions of data to a more

manageable set by defining characteristic attributes. For example, in trying to

automatically match the photograph of a robbery suspect with the photographs of

thousands of known criminals pixel by pixel, we can establish a few dozen facial

attributes to distinguish the faces of different persons.

14. empiricism: Empiricists believe that all reasoning is fallible and that true knowledge

must come from observation and experimentation. Typically, journalists, doctors, and

scientists are empiricists. Empiricists prefer to try things to see how they turn out; - in

computer science hackers and machine learners are empiricists. Aristotle was an early

empiricist followed by Locke, Berkeley, and Hume in more recent times.

15. Expectation Maximization (EM) algorithm: A statistical classification model that is
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capable of clustering cases when crucial information such as the classes of the training

data are unknown. EM can fractionally assign a case to two clusters and at the same

time update their descriptions accordingly. Like the k-means algorithm it alternates
between assigning cases to clusters and updating the descriptions of the clusters.

16. genetic algorithm: A heuristic search method based on the theory of natural selection

(i.e., selection, mutation, inheritance, and recombination) that incorporates a fitness

function (Holland 1992). The fitness function assigns a numeric score as a measure of

how well the current state fits the purpose.

17. genetic programming: Is a special form of the genetic algorithm concept in which the
output are programs instead of functions (Koza 1992).

18. gradient descent: Using a backpropagation algorithm, after thousands of repetitions

the neural network’s output neurodes will closely match the desired output that

recognizes the particular input that it was trained to recognize. During this gradient

descent operation there is no certainty that the neural network has reached the best (i.e.,

optimum) output condition even after thousands of iterations; - i.e., it may have reached

a local minimum of the error.

19. Hebb’s Law: When an axon of cell A is near enough to cell B and repeatedly takes

part in firing it, some metabolic change takes place in one or both cells such that cell

A’s efficiency as one of the cells firing cell B is increased (Hebb 1949).

20. Hidden Markov Model HMM): A Markov chain where the states are hidden. For

example, in a speech-recognition system such as Siri the observations are the sounds

spoken to Siri and the hidden states are the written words that the sounds are intended
to represent. The probability of the next word given the current word is a Markov chain.

21. Hopfield network: A neural network in which the neurodes are binary threshold units

(i.e., they take on only two different values for their states and the value is determined

by whether or not the units' input exceeds its threshold). Hopfield nets normally have

units that take on values of 1 or -1.

22. induction: Inferring from a particular case to the general case. Therefore, inductive
reasoning moves from specific instances to a generalized conclusion.

23. inverse deduction: Instead of the classical model of starting with a premise and

looking for the conclusions, inverse deduction starts with a set of premises and

conclusions and works backward to fill in the gaps. J.S. Mill (Eisenberg 2018) is the

chief advocate of the inverse deductive method. It is a combination of inductive

generalizations obtained by means of the comparative method (or by statistical method)

with deduction from more ultimate laws. It is a way to arrive at reality through
experiment, observation and conclusion.

24. Kalman filter: A Hidden Markov Model (HMM) in which the states and the

observations are continuous variables instead of discrete variables.

25. k-means algorithm: The k-means learning algorithm is used to cluster unlabeled data

(i.e., data without defined categories). It is an unsupervised clustering algorithm that

aims to partition cases into k clusters with a case being assigned to the cluster with the

nearest mean. If k is predetermined then the greater the value of k the smaller the value

of the metric that defines the differences between clusters. One of the metrics that is

commonly used to compare results across different values of k is the mean distance
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between data points and their cluster centroid.

26. k-nearest-neighbor: A refinement of the nearest-neighbor algorithm in which not one

but multiple nearest neighbors of the case under consideration determine (by vote)

whether the case belongs to the training test case.

27. Markov Chain: A stochastic model
10
describing a sequence of possible events in which

the probability of each event depends only on the state attained in the previous event

(i.e., satisfies the Markov property). A process satisfies the Markov property if one can

make predictions for the future of the process based solely on its present state just as

well as one could knowing the full history of the process. For example, Google’s
PageRank algorithm is a Markov chain.

28. Markov Chain Monte Carlo (MCMC): While a Markov Chain involves a sequence of

steps each of which depends only on the previous step, MCMC adds an element of

chance to the Markov Chain method with random sampling. For example, to determine

the area taken up by a circle that is inscribed within a square (of known dimensions) we

could take a felt pen, close our eyes and randomly make a mark inside the square. If we

repeat this many times then the proportion of dots that fall into the circle will allow us
to estimate the area of the circle.

29. Markov Network: Also referred to as Markov Random Fields. Capable of compactly

representing and visualizing a probability distribution that is based on the language of

undirected graphs
11
. A Markov Network represents relationships between random

variables. For example, Roger and Sue are both musicians and friends. However, while
these two variables depend on each other neither is the cause of the other.

30. Nearest-Neighbor algorithm: Looks for a similar image or case and then assumes the

image or case under consideration to be of the same classification as the similar one.

31. Newton’s Third Principle: Whatever is true of everything we have seen is true of

everything in the universe. According to Domingos (2015, 66) this is the first rule of

machine-learning.

32. overfitting: Imagining or assuming patterns that are not really there. For example, the

statistical correlation between the electricity consumption in one UK city with the

suicide rate in another UK city that held true for several years, but was in fact a mere

coincident. Machine-learning algorithms are particularly vulnerable to finding patterns

in data that do not exist in the real world. The reason is that the computer has the ability

to process vast amounts of data and therefore an unlimited capacity to identify potential

patterns.

33. perceptron: A perceptron is essentially a simplistic mathematical simulation of a

biological neuron. First proposed in 1943 (McCulloch and Pitts 1943) the original

model of an artificial neuron (or neurode) was only able to represent OR, AND, and

NOT gates. By adding variable weights to the connections between neurodes

Rosenblatt (1958) showed that a network of neurodes (i.e., neural network) can learn.

The name perceptron was coined due to Rosenblatt’s research focus on perceptual tasks

10 In probability theory, a stochastic model is defined as a set of random variables. It assumes that future states
depend only on the current state and not on any events that occurred before the current state.

11 In an undirected graph all connections between nodes are bidirectional. A graph where the connections between

nodes point in a direction is sometimes referred to as a directed graph.
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such as speech and character recognition. While the perceptron was a major step

forward in AI it was also found to have serious shortcomings, which Minsky and Papert

drew attention to in their book published in 1969 (Minsky and Papert 1969). In

particular, the perceptron was not able to deal with an exclusive-OR function (i.e.,

XOR)
12
.

34. Power Law: (see S-curve).

35. Principal Component Analysis (PCA): A method used in dimensionality reduction to

reduce the number of variables in a corpus of data by representing the data in a

different format. For example, creating a linear graph by plotting non-linear data in a

logarithmic form or changing (i.e., rotating) the axis of a graph to reduce the distance of

data points from the axis (Domingos 2015, 211-214).

36. rationalism: Rationalists believe that the senses can be deceiving and that logical

reasoning is the only sure path to knowledge. Typically, lawyers and mathematicians

are rationalists. Rationalists prefer to plan everything in advance before making the first

move; - in computer science theorists and knowledge engineers are rationalists. Plato

was an early rationalist, followed by Descartes, Spinoza, and Leibnitz in more recent
times.

37. reinforcement learning: Replaces instant gratification with longer term reward

seeking. While most machine-learning algorithms are designed to take advantage of

any immediate rewards in their decision-making process, a reinforced learning

algorithm is typically willing to forego an immediate reward in favor of a potential

future more favorable reward; - even to the extent of sometimes choosing a random

action (Domingos 2015, 218-223). The analogy is with an experienced chess player

who may be willing to sacrifice a piece in favor of a positional advantage that may lead

to a winning game.

38. relational learning: Treats data not as unrelated entities but as a complex network of

related nodes that can be applied from one situation to another similar situation. For

example, having learned how electricity consumption varies with time of day and

season in one city it can be applied to another city with somewhat similar

characteristics. However, whereas in regular learning all cases must adhere to the same

number of attributes, in relational learning the networks can vary in size (Domingos

2015, 227-233).

39. S-curve: Also referred to as the Power Law. Reflects the phase transition of all kinds of

phenomena (e.g., magnetization of iron, electron flipping its spin, ice melting, water

evaporating, developments in technology, rumors, epidemics, etc.). At first the output

increases very slowly with the input. The output then gradually increases more and

more until it reaches a first upward knee where it increases exponentially. It then

reaches a second downward knee where the output rapidly decreases, only to gradually

level out again until the output decreases slowly with the input.

40. Support Vector Machine (SVM): Also known as Support Vector Network. SVM is a

supervised learning model with a learning algorithm that classifies data. Given a

training set that includes two categories of cases, the SVM learning algorithm builds a

12 For example, best customers of Nike sports shoes are teenage boys and middle-aged women. Young is good and

female is good, but young and female is not good.
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model that classifies new cases into either of the two categories in the training data.


