

Prof: Peter Stone

Department of Computer Science The University of Texas at Austin

• Define $A = \mathbb{R} - \{-1\}$, and define $f : A \to \mathbb{R}$ by f(a) = 2a/(a+1). Prove f is injective but not surjective.

Good Morning, Colleagues

Good Morning, Colleagues

Are there any questions?

- Next week has relatively little new material
 - Time for concepts to sink in
 - Test review

- Write the **power set** of $\{A, 1\}$: $P(\{A, 1\}) = ?$
- Write the Cartesian product of $\{A, B\}$ and $\{C, D\}$: $\{A, B\} \times \{C, D\} = ?$
- Which of the pictures on the board is an **injection**?
- Which of the pictures on the board is a **surjection**?
- Which of the pictures on the board is a **bijection**?

• Suppose $f : A \to B$ and $g : B \to C$. Prove that if f and g are injective, then $g \circ f$ is injective.

• Suppose $f : A \to B$ and $g : B \to C$. Prove that if f and g are injective, then $g \circ f$ is injective. 1. Let $(g \circ f)(x) = (g \circ f)(y)$ for $x, y \in A$

• Suppose $f : A \to B$ and $g : B \to C$. Prove that if f and gare injective, then $g \circ f$ is injective. 1. Let $(g \circ f)(x) = (g \circ f)(y)$ for $x, y \in A$ 2. $\equiv g(f(x)) = g(f(y))$ {Def \circ }

• Suppose $f : \overline{A \to B}$ and $g : B \to C$. Prove that if f and gare injective, then $g \circ f$ is injective. 1. Let $(g \circ f)(x) = (g \circ f)(y)$ for $x, y \in A$ $2 \colon \equiv g(f(x)) = g(f(y))$ {Def \circ } $3 \colon \Rightarrow f(x) = f(y)$ {g is injective}

Suppose f : A → B and g : B → C. Prove that if f and g are injective, then g ∘ f is injective.
1. Let (g ∘ f)(x) = (g ∘ f)(y) for x, y ∈ A
2. ≡ g(f(x)) = g(f(y)) {Def ∘}
3. ⇒ f(x) = f(y) {g is injective}
4. ⇒ x = y {f is injective}

Suppose f : A → B and g : B → C. Prove that if f and g are injective, then g ∘ f is injective.
1. Let (g ∘ f)(x) = (g ∘ f)(y) for x, y ∈ A
2. ≡ g(f(x)) = g(f(y)) {Def ∘}
3. ⇒ f(x) = f(y) {g is injective}
4. ⇒ x = y {f is injective}
Therefore g ∘ f is injective.

- Suppose f : A → B and g : B → C. Prove that if f and g are injective, then g ∘ f is injective.
 1. Let (g ∘ f)(x) = (g ∘ f)(y) for x, y ∈ A
 2. ≡ g(f(x)) = g(f(y)) {Def ∘}
 3. ⇒ f(x) = f(y) {g is injective}
 4. ⇒ x = y {f is injective}
 Therefore g ∘ f is injective.
- Suppose $f : A \to B$ and $g : B \to C$. Prove that if f and g are surjective, then $g \circ f$ is surjective.

- Suppose f : A → B and g : B → C. Prove that if f and g are injective, then g ∘ f is injective.
 1. Let (g ∘ f)(x) = (g ∘ f)(y) for x, y ∈ A
 2. ≡ g(f(x)) = g(f(y)) {Def ∘}
 3. ⇒ f(x) = f(y) {g is injective}
 4. ⇒ x = y {f is injective}
 Therefore g ∘ f is injective.
- Suppose $f : A \to B$ and $g : B \to C$. Prove that if f and g are surjective, then $g \circ f$ is surjective. 1. Pick arbitrary $c \in C$.

- Suppose f : A → B and g : B → C. Prove that if f and g are injective, then g ∘ f is injective.
 1. Let (g ∘ f)(x) = (g ∘ f)(y) for x, y ∈ A
 2. ≡ g(f(x)) = g(f(y)) {Def ∘}
 3. ⇒ f(x) = f(y) {g is injective}
 4. ⇒ x = y {f is injective}
 Therefore g ∘ f is injective.
- Suppose $f : A \to B$ and $g : B \to C$. Prove that if f and g are surjective, then $g \circ f$ is surjective. 1. Pick arbitrary $c \in C$.
 - 2. Since g is onto, there is a $b \in B$ s.t. g(b) = c.

- Suppose f : A → B and g : B → C. Prove that if f and g are injective, then g ∘ f is injective.
 1. Let (g ∘ f)(x) = (g ∘ f)(y) for x, y ∈ A
 2. ≡ g(f(x)) = g(f(y)) {Def ∘}
 3. ⇒ f(x) = f(y) {g is injective}
 4. ⇒ x = y {f is injective}
 Therefore g ∘ f is injective.
- Suppose $f : A \to B$ and $g : B \to C$. Prove that if f and g are surjective, then $g \circ f$ is surjective. 1. Pick arbitrary $c \in C$.
 - 2. Since g is onto, there is a $b \in B$ s.t. g(b) = c.
 - 3. Since $b \in B$, and f is onto, there is an $a \in A$ s.t. f(a) = b.

- Suppose f : A → B and g : B → C. Prove that if f and g are injective, then g ∘ f is injective.
 1. Let (g ∘ f)(x) = (g ∘ f)(y) for x, y ∈ A
 2. ≡ g(f(x)) = g(f(y)) {Def ∘}
 3. ⇒ f(x) = f(y) {g is injective}
 4. ⇒ x = y {f is injective}
 Therefore g ∘ f is injective.
- Suppose $f : A \to B$ and $g : B \to C$. Prove that if f and g are surjective, then $g \circ f$ is surjective. 1. Pick arbitrary $c \in C$.
 - 2. Since g is onto, there is a $b \in B$ s.t. g(b) = c.
 - 3. Since $b \in B$, and f is onto, there is an $a \in A$ s.t. f(a) = b. 4. $(g \circ f)(a) = g(f(a)) = g(b) = c$.

- Suppose f : A → B and g : B → C. Prove that if f and g are injective, then g ∘ f is injective.
 1. Let (g ∘ f)(x) = (g ∘ f)(y) for x, y ∈ A
 2. ≡ g(f(x)) = g(f(y)) {Def ∘}
 3. ⇒ f(x) = f(y) {g is injective}
 4. ⇒ x = y {f is injective}
 Therefore g ∘ f is injective.
- Suppose $f : A \to B$ and $g : B \to C$. Prove that if f and g are surjective, then $g \circ f$ is surjective. 1. Pick arbitrary $c \in C$.
 - 2. Since g is onto, there is a $b \in B$ s.t. g(b) = c.
 - 3. Since $b \in B$, and f is onto, there is an $a \in A$ s.t. f(a) = b. 4. $(g \circ f)(a) = g(f(a)) = g(b) = c$.
 - Therefore $g \circ f$ is surjective.

• Prove that for any non-empty set A, there does not exist a bijective function from A to P(A) where P(A) is power set of A (remember that A could be infinite).

 Prove that for any non-empty set A, there does not exist a bijective function from A to P(A) where P(A) is power set of A (remember that A could be infinite).

• Define $A = \mathbb{R} - \{-1\}$, and define $f : A \to \mathbb{R}$ by f(a) = 2a/(a+1). Prove f is injective (one-to-one) but not surjective (onto).

Prove or disprove

NOTE - 1st is on the homework, and something very related to the 2nd is on the homework. Try to do the 2nd on piazza

• Given $f: A \to B$ and subsets $Y, Z \subseteq A$, is it true that $f(Y \cup Z) = f(Y) \cup f(Z)$? Prove or disprove.

Prove or disprove

NOTE - 1st is on the homework, and something very related to the 2nd is on the homework. Try to do the 2nd on piazza

• Given $f : A \to B$ and subsets $Y, Z \subseteq A$, is it true that $f(Y \cup Z) = f(Y) \cup f(Z)$? Prove or disprove.

• Given $f: A \to B$ and subsets $Y, Z \subseteq A$, is it true that $f(Y \cap Z) = f(Y) \cap f(Z)$? Prove or disprove.

Prove or disprove

NOTE - 1st is on the homework, and something very related to the 2nd is on the homework. Try to do the 2nd on piazza

• Given $f : A \to B$ and subsets $Y, Z \subseteq A$, is it true that $f(Y \cup Z) = f(Y) \cup f(Z)$? Prove or disprove.

• Given $f: A \to B$ and subsets $Y, Z \subseteq A$, is it true that $f(Y \cap Z) = f(Y) \cap f(Z)$? Prove or disprove.

• f(x,y) = (1/2)(x+y-2)(x+y-1)+y

• f(x,y) = (1/2)(x+y-2)(x+y-1)+y

Cantor-Bernstein-Schröder Theorem

• If A and B are sets with $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|.

• $A \times \mathbb{N}$ is countably infinite, where A is a finite set with n > 0 elements.

- $A \times \mathbb{N}$ is countably infinite, where A is a finite set with n > 0 elements.
 - 1. A has n elements: $a_0, ..., a_{n-1}$

- $A \times \mathbb{N}$ is countably infinite, where A is a finite set with n > 0 elements.
 - 1. A has n elements: $a_0, ..., a_{n-1}$ 2. Define $f : \mathbb{N} \to A \times \mathbb{N}$ as $f(x) = (a_r, q+1)$ where (x-1) = qn + r

- $A \times \mathbb{N}$ is countably infinite, where A is a finite set with n > 0 elements.
 - 1. A has n elements: $a_0, ..., a_{n-1}$ 2. Define $f : \mathbb{N} \to A \times \mathbb{N}$ as $f(x) = (a_r, q+1)$ where (x-1) = qn + r3. q and r in f are guaranteed to exist by the Division Algorithm.

- $A \times \mathbb{N}$ is countably infinite, where A is a finite set with n > 0 elements.
 - 1. A has n elements: $a_0, ..., a_{n-1}$ 2. Define $f : \mathbb{N} \to A \times \mathbb{N}$ as $f(x) = (a_r, q+1)$ where (x-1) = qn + r3. q and r in f are guaranteed to exist by the Division Algorithm. 4. Prove f is bijective

- $A \times \mathbb{N}$ is countably infinite, where A is a finite set with n > 0 elements.
 - 1. A has n elements: $a_0, ..., a_{n-1}$ 2. Define $f : \mathbb{N} \to A \times \mathbb{N}$ as $f(x) = (a_r, q+1)$ where (x-1) = qn + r3. q and r in f are guaranteed to exist by the Division Algorithm. 4. Prove f is bijective
 - Prove f is injective

- $A \times \mathbb{N}$ is countably infinite, where A is a finite set with n > 0 elements.
 - 1. A has n elements: $a_0, ..., a_{n-1}$ 2. Define $f : \mathbb{N} \to A \times \mathbb{N}$ as $f(x) = (a_r, q+1)$ where (x-1) = qn + r3. q and r in f are guaranteed to exist by the Division Algorithm. 4. Prove f is bijective
 - Prove f is injective
 - 5. Let f(x) = f(y) where $x, y \in \mathbb{N}$

- $A \times \mathbb{N}$ is countably infinite, where A is a finite set with n > 0 elements.
 - 1. A has n elements: $a_0, ..., a_{n-1}$ 2. Define $f : \mathbb{N} \to A \times \mathbb{N}$ as $f(x) = (a_r, q+1)$ where (x-1) = qn + r3. q and r in f are guaranteed to exist by the Division Algorithm.
 - 4. Prove f is bijective
 - Prove f is injective

5. Let
$$f(x) = f(y)$$
 where $x, y \in \mathbb{N}$
6. Then $(a_{r_1}, q_1 + 1) = (a_{r_2}, q_2 + 1)$ where $(x - 1) = q_1n + r_1$
and $(y - 1) = q_2n + r_2$

8. Also, $q_1 + 1 = q_2 + 1 \rightarrow q_1 = q_2$. Let both equal q

8. Also, $q_1 + 1 = q_2 + 1 \rightarrow q_1 = q_2$. Let both equal q

9. Then $x - 1 = qn + r = y - 1 \to x = y$

- 8. Also, $q_1 + 1 = q_2 + 1 \rightarrow q_1 = q_2$. Let both equal q
- 9. Then $x 1 = qn + r = y 1 \to x = y$

Prove f surjective

- 8. Also, $q_1 + 1 = q_2 + 1 \rightarrow q_1 = q_2$. Let both equal q
- 9. Then $x 1 = qn + r = y 1 \to x = y$

Prove f surjective

10. Let $(a_i, m) \in A \times \mathbb{N}$ ($0 \le i < n$)

- 8. Also, $q_1 + 1 = q_2 + 1 \rightarrow q_1 = q_2$. Let both equal q
- 9. Then $x 1 = qn + r = y 1 \to x = y$

Prove f surjective

10. Let $(a_i, m) \in A \times \mathbb{N}$ ($0 \le i < n$) 11. Define x = (m - 1)n + i + 1, which is a natural number due to closure and the fact that $m - 1 \ge 0$

- 8. Also, $q_1 + 1 = q_2 + 1 \rightarrow q_1 = q_2$. Let both equal q
- 9. Then $x 1 = qn + r = y 1 \to x = y$

Prove f surjective

10. Let $(a_i, m) \in A \times \mathbb{N}$ ($0 \le i < n$) 11. Define x = (m - 1)n + i + 1, which is a natural number due to closure and the fact that $m - 1 \ge 0$ 12. $f(x) = (a_r, q + 1)$ where (x - 1) = qn + r

- 8. Also, $q_1 + 1 = q_2 + 1 \rightarrow q_1 = q_2$. Let both equal q
- 9. Then $x 1 = qn + r = y 1 \to x = y$

Prove f surjective

10. Let $(a_i, m) \in A \times \mathbb{N}$ ($0 \le i < n$) 11. Define x = (m - 1)n + i + 1, which is a natural number due to closure and the fact that $m - 1 \ge 0$ 12. $f(x) = (a_r, q + 1)$ where (x - 1) = qn + r13. $f(x) = (a_r, q + 1)$ where ((m - 1)n + i + 1 - 1) = qn + r

- 8. Also, $q_1 + 1 = q_2 + 1 \rightarrow q_1 = q_2$. Let both equal q
- 9. Then $x 1 = qn + r = y 1 \to x = y$

Prove f surjective

10. Let $(a_i, m) \in A \times \mathbb{N}$ ($0 \le i < n$) 11. Define x = (m - 1)n + i + 1, which is a natural number due to closure and the fact that $m - 1 \ge 0$ 12. $f(x) = (a_r, q + 1)$ where (x - 1) = qn + r13. $f(x) = (a_r, q + 1)$ where ((m - 1)n + i + 1 - 1) = qn + r14. $f(x) = (a_r, q + 1)$ where (m - 1)n + i = qn + r

- 8. Also, $q_1 + 1 = q_2 + 1 \rightarrow q_1 = q_2$. Let both equal q
- 9. Then $x 1 = qn + r = y 1 \to x = y$

Prove f surjective

10. Let $(a_i, m) \in A \times \mathbb{N}$ ($0 \le i < n$) 11. Define x = (m-1)n + i + 1, which is a natural number due to closure and the fact that $m - 1 \ge 0$ 12. $f(x) = (a_r, q + 1)$ where (x - 1) = qn + r13. $f(x) = (a_r, q + 1)$ where ((m - 1)n + i + 1 - 1) = qn + r14. $f(x) = (a_r, q + 1)$ where (m - 1)n + i = qn + r15. Due to the uniqueness of solutions to the Division Algorithm, we know m - 1 = q and i = r

- 8. Also, $q_1 + 1 = q_2 + 1 \rightarrow q_1 = q_2$. Let both equal q
- 9. Then $x 1 = qn + r = y 1 \to x = y$

Prove f surjective

10. Let $(a_i, m) \in A \times \mathbb{N}$ ($0 \le i < n$) 11. Define x = (m-1)n + i + 1, which is a natural number due to closure and the fact that $m - 1 \ge 0$ 12. $f(x) = (a_r, q + 1)$ where (x - 1) = qn + r13. $f(x) = (a_r, q + 1)$ where ((m - 1)n + i + 1 - 1) = qn + r14. $f(x) = (a_r, q + 1)$ where (m - 1)n + i = qn + r15. Due to the uniqueness of solutions to the Division Algorithm, we know m - 1 = q and i = r16. Therefore $f(x) = (a_i, m)$

- Fourth homework due at start of class
- Modules 16.6 with associated readings

