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Challenge

• Prove that a graph with exactly two vertices with odd
degree must contain a path between these two vertices.
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Logistics

• Honors modules for next week

• Midterm back at end of class

• Out of 70:

− Max: 67
− Mean: 46
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Some questions

• Why do bipartite graphs not need to be all connected,
but trees do?

• Are all trees 2-colorable?

• Definitions
− Tree: a connected graph with no cycles.
− Leaf: a vertex of degree one.
• Fact: For any tree there exists a leaf
− Problem?
− One node tree has no leaves
− Why not a problem for his proof that tree with n nodes

has n− 1 edges?

Peter Stone



Quiz

• FACT: All finite trees with |V | > 1 have at least one leaf

Peter Stone



Quiz

• FACT: All finite trees with |V | > 1 have at least one leaf

• Prove: Any tree with n vertices has n− 1 edges.
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Definitions

For G = ({a, b, c, d, e}, {(a, b), (e, d), (a, c), (b, c), (e, c), (d, c)})

1. Identify all simple paths from a to e.
(a,c,e), (a,b,c,e), (a,c,d,e), (a,b,c,d,e)

2. Identify all simple circuits starting and ending at a.
(a,b,c,a), (a,c,b,a), (a,b,c,d,e,c,a), (a,b,c,e,d,c,a),
(a,c,e,d,c,b,a), (a,c,d,e,c,b,a)

3. Identify all cycles starting and ending at a.
Subset of the simple circuits: (a,b,c,a), (a,c,b,a)
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Prove
• For a graph G, if MAX-DEGREE(G) = 3, then any simple

circuit is actually a cycle.
Proof by contradiction:
1. Assume the simple circuit (s, ..., s) is not a cycle.
2. Then there must be a repeated vertex v so the circuit is
(s, ..., v, ..., v, ..., s)
3. Since the circuit is "simple", no repeated edges.
4. Therefore the vertices preceding and following v in
each case must be distinct.
5. So the circuit is (s, ..., a, v, b, ..., x, v, y, ..., s) (a or y could
equal s, but not both)
6. Then the degree of v is at least 4.
7. 4 > 3 =MAX-DEGREE(G) is a contradiction.
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Find a Counterexample

Suppose all vertices of a graph G have been colored. Now
suppose that all cycles are found, and it turns out that
for each cycle (v1, v2, ..., vn, v1) that v1, ..., vn all have distinct
colors. In this case, the coloring must be valid.
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Find a Counterexample

Suppose all vertices of a graph G have been colored. Now
suppose that all cycles are found, and it turns out that
for each cycle (v1, v2, ..., vn, v1) that v1, ..., vn all have distinct
colors. In this case, the coloring must be valid.

Create a counterexample using a vertex that doesn’t
appear in ANY cycles. Take the graph
G = ({a, b, c, d}, {(a, b), (b, c), (c, a), (a, d)}).
Then the cycles are (a, b, c, a), (b, c, a, b), (c, a, b, c), none of
which contain d, so assign the colors: a:RED, b:BLUE,
c:GREEN, d:RED. Colors are distinct within each cycle, but
the color of d clashes with a.
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Solve Alone then Pair Up

1. Prove that a graph with exactly two vertices with odd
degree must contain a path between these two vertices.

2. Prove that every graph with vertices that each have
degree at least 2 contains a cycle.

Peter Stone



Assignments for Thursday

• Module 14
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