

Prof: Peter Stone

Department of Computer Science The University of Texas at Austin

- How many sequences of 7 digits have at least one repeating digit?
- How many ways are there to arrange the letters in the word "SYSTEMS"?
- How many hands of 5 cards have at least 3 aces?

Good Morning, Colleagues

Good Morning, Colleagues

Are there any questions?

• Class survey

- Class survey
 - Don't like 8pm quest deadline

- Class survey
 - Don't like 8pm quest deadline
 - Flipped class

- Class survey
 - Don't like 8pm quest deadlineFlipped class
- Modules C2 and 17 for Tuesday

- Class survey
 - Don't like 8pm quest deadlineFlipped class
- Modules C2 and 17 for Tuesday
- Homework 6 due Thursday (+ Module 18)

- Class survey
 - Don't like 8pm quest deadlineFlipped class
- Modules C2 and 17 for Tuesday
- Homework 6 due Thursday (+ Module 18)
 - Homework 7 due following Tuesday

- Class survey
 - Don't like 8pm quest deadlineFlipped class
- Modules C2 and 17 for Tuesday
- Homework 6 due Thursday (+ Module 18)
 - Homework 7 due following Tuesday
- Midterm on graph theory, counting, recurrences following Thursday

Important counting concepts

Addition rule

- Inclusion/exclusion principle
- Correspondence principle
- Product rule
- Number of subsets of an n element set: 2^n
- Number of permutations of n distinct objects: n!
- Number of subsets of size k from an n-element set: $\binom{n}{k}$ ("n choose k") = $\frac{n!}{k!(n-k)!}$

- How many trees with 4 nodes?
 - unlabeled vs. labeled

- How many trees with 4 nodes?
 - unlabeled vs. labeled
 - 2, 16

- How many trees with 4 nodes?
 - unlabeled vs. labeled
 - 2, 16
- How many labeled graphs on n nodes?

- How many trees with 4 nodes?
 - unlabeled vs. labeled
 - 2, 16
- How many labeled graphs on n nodes?
 - $-2^{\binom{n}{2}}$

- How many trees with 4 nodes?
 - unlabeled vs. labeled
 - 2, 16
- How many labeled graphs on *n* nodes?
 - $-2^{\binom{n}{2}}$
- How many labeled trees on n nodes?

- How many trees with 4 nodes?
 - unlabeled vs. labeled
 - 2, 16
- How many labeled graphs on n nodes? - $2^{\binom{n}{2}}$
- How many labeled trees on n nodes?

$$- n^{n-2}$$

- How many trees with 4 nodes?
 - unlabeled vs. labeled
 - 2, 16
- How many labeled graphs on n nodes? - $2^{\binom{n}{2}}$
- How many labeled trees on n nodes?

$$- n^{n-2}$$

- How many sequences of 7 digits have at least one repeating digit?
- How many ways are there to arrange the letters in the word "SYSTEMS"?
- How many hands of 5 cards have at least 3 aces?

• Each card has 13 possible ranks

- Each card has 13 possible ranks
- AND 4 possible suits

- Each card has 13 possible ranks
- AND 4 possible suits

• a **straight** is a sequence of 5 cards of consecutive rank

- Each card has 13 possible ranks
- AND 4 possible suits

- a **straight** is a sequence of 5 cards of consecutive rank
- a **flush** is a set of 5 cards with the same suit

- Each card has 13 possible ranks
- AND 4 possible suits

- a **straight** is a sequence of 5 cards of consecutive rank
- a **flush** is a set of 5 cards with the same suit

• How many hands total?

- Each card has 13 possible ranks
- AND 4 possible suits

- a **straight** is a sequence of 5 cards of consecutive rank
- a **flush** is a set of 5 cards with the same suit

• How many hands total? $\binom{52}{5} = 2,598,960$

- Straight flush: straight and a flush
- 4 of a kind: 4 cards of the same rank
- full house: 3 cards of one rank, two of another
- flush: a flush but not a straight
- straight: a straight but *not* a flush
- **3 of a kind:** 3 cards of one rank, but not full house or 4 of a kind
- **2 pair:** 2 cards of one rank, 2 of another rank, but *not* 4 of a kind or full house
- **pair:** 2 cards of one rank, but not anything higher

Straight flush:

Straight flush: $\frac{36}{2,598,960} = .0000138 \approx 1$ in 72,193

Straight flush: $\frac{36}{2,598,960} = .0000138 \approx 1$ in 72,193 4 of a kind:

Peter Stone

Straight flush: $\frac{36}{2,598,960} = .0000138 \approx 1$ in 72,193 4 of a kind: $\frac{624}{2,598,960} = .00024 = 1$ in 4165

Straight flush:
$$\frac{36}{2,598,960} = .0000138 \approx 1$$
 in 72,193
4 of a kind: $\frac{624}{2,598,960} = .00024 = 1$ in 4165

full house:

Straight flush:
$$\frac{36}{2,598,960} = .0000138 \approx 1$$
 in 72,193
4 of a kind: $\frac{624}{2,598,960} = .00024 = 1$ in 4165
full house: $\frac{3744}{2,598,960} = .00144 \approx 1$ in 694

Straight flush:
$$\frac{36}{2,598,960} = .0000138 \approx 1$$
 in 72,193
4 of a kind: $\frac{624}{2,598,960} = .00024 = 1$ in 4165
full house: $\frac{3744}{2,598,960} = .00144 \approx 1$ in 694
flush:

Straight flush:
$$\frac{36}{2,598,960} = .0000138 \approx 1 \text{ in } 72,193$$

4 of a kind: $\frac{624}{2,598,960} = .00024 = 1 \text{ in } 4165$
full house: $\frac{3744}{2,598,960} = .00144 \approx 1 \text{ in } 694$
flush: $\frac{5112}{2,598,960} = .0019669 \approx 1 \text{ in } 508$

Straight flush:
$$\frac{36}{2,598,960} = .0000138 \approx 1 \text{ in } 72,193$$

4 of a kind: $\frac{624}{2,598,960} = .00024 = 1 \text{ in } 4165$
full house: $\frac{3744}{2,598,960} = .00144 \approx 1 \text{ in } 694$
flush: $\frac{5112}{2,598,960} = .0019669 \approx 1 \text{ in } 508$
straight:

Straight flush: $\frac{36}{2,598,960} = .0000138 \approx 1 \text{ in } 72,193$ 4 of a kind: $\frac{624}{2,598,960} = .00024 = 1 \text{ in } 4165$ full house: $\frac{3744}{2,598,960} = .00144 \approx 1 \text{ in } 694$ flush: $\frac{5112}{2,598,960} = .0019669 \approx 1 \text{ in } 508$ straight: $\frac{9180}{2,598,960} = .00353 \approx 1 \text{ in } 283$

Straight flush: $\frac{36}{2,598,960} = .0000138 \approx 1 \text{ in } 72,193$ 4 of a kind: $\frac{624}{2,598,960} = .00024 = 1 \text{ in } 4165$ full house: $\frac{3744}{2,598,960} = .00144 \approx 1 \text{ in } 694$ flush: $\frac{5112}{2,598,960} = .0019669 \approx 1 \text{ in } 508$ straight: $\frac{9180}{2,598,960} = .00353 \approx 1 \text{ in } 283$ 3 of a kind:

Straight flush: $\frac{36}{2.598.960} = .0000138 \approx 1$ in 72,193 4 of a kind: $\frac{624}{2.598.960} = .00024 = 1$ in 4165 full house: $\frac{3744}{2.598.960} = .00144 \approx 1$ in 694 flush: $\frac{5112}{2.598.960} = .0019669 \approx 1$ in 508 straight: $\frac{9180}{2.598.960} = .00353 \approx 1$ in 283 **3 of a kind:** $\frac{54,912}{2.598,960} = .0211 \approx 1$ in 47

Straight flush: $\frac{36}{2.598,960} = .0000138 \approx 1$ in 72,193 4 of a kind: $\frac{624}{2.598.960} = .00024 = 1$ in 4165 full house: $\frac{3744}{2.598.960} = .00144 \approx 1$ in 694 flush: $\frac{5112}{2.598.960} = .0019669 \approx 1$ in 508 straight: $\frac{9180}{2.598.960} = .00353 \approx 1$ in 283 **3 of a kind:** $\frac{54,912}{2,598,960} = .0211 \approx 1$ in 47 2 pair:

Straight flush: $\frac{36}{2.598,960} = .0000138 \approx 1$ in 72,193 4 of a kind: $\frac{624}{2.598.960} = .00024 = 1$ in 4165 full house: $\frac{3744}{2.598.960} = .00144 \approx 1$ in 694 flush: $\frac{5112}{2.598.960} = .0019669 \approx 1$ in 508 straight: $\frac{9180}{2.598.960} = .00353 \approx 1$ in 283 **3 of a kind:** $\frac{54,912}{2.598,960} = .0211 \approx 1$ in 47 **2 pair:** $\frac{123,552}{2,598,960} = .0475 \approx 1$ in 21

Straight flush: $\frac{36}{2.598,960} = .0000138 \approx 1$ in 72,193 4 of a kind: $\frac{624}{2.598.960} = .00024 = 1$ in 4165 full house: $\frac{3744}{2.598,960} = .00144 \approx 1$ in 694 flush: $\frac{5112}{2.598.960} = .0019669 \approx 1$ in 508 straight: $\frac{9180}{2.598.960} = .00353 \approx 1$ in 283 **3 of a kind:** $\frac{54,912}{2,598,960} = .0211 \approx 1$ in 47 **2 pair:** $\frac{123,552}{2.598,960} = .0475 \approx 1$ in 21 pair:

Straight flush: $\frac{36}{2.598,960} = .0000138 \approx 1$ in 72,193 4 of a kind: $\frac{624}{2.598.960} = .00024 = 1$ in 4165 full house: $\frac{3744}{2.598,960} = .00144 \approx 1$ in 694 flush: $\frac{5112}{2.598.960} = .0019669 \approx 1$ in 508 straight: $\frac{9180}{2.598.960} = .00353 \approx 1$ in 283 **3 of a kind:** $\frac{54,912}{2,598,960} = .0211 \approx 1$ in 47 **2 pair:** $\frac{123,552}{2,598,960} = .0475 \approx 1$ in 21 **pair:** $\frac{1,098,240}{2,598,960} = .4225 \approx 1$ in 2.4

UTCS