CS343 Artificial Intelligence

Prof: Peter Stone

Department of Computer Science The University of Texas at Austin

Good Morning, Colleagues

Good Morning, Colleagues

Are there any questions?

First weeks: search (BFS, A*, minimax, alpha-beta)
Find an optimal plan (or solution)

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Assume we know transition function and cost (reward) function

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Assume we know transition function and cost (reward) function
 - Either execute complete solution (deterministic) or search again at every step

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Assume we know transition function and cost (reward) function
 - Either execute complete solution (deterministic) or search again at every step
- This week: MDPs —

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Assume we know transition function and cost (reward) function
 - Either execute complete solution (deterministic) or search again at every step
- **This week:** MDPs towards reinforcement learning

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Assume we know transition function and cost (reward) function
 - Either execute complete solution (deterministic) or search again at every step
- This week: MDPs towards reinforcement learning
 - Still know transition and reward function

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Assume we know transition function and cost (reward) function
 - Either execute complete solution (deterministic) or search again at every step
- **This week:** MDPs towards reinforcement learning
 - Still know transition and reward function
 - Looking for a **policy** optimal action from every state

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Assume we know transition function and cost (reward) function
 - Either execute complete solution (deterministic) or search again at every step
- **This week:** MDPs towards reinforcement learning
 - Still know transition and reward function
 - Looking for a **policy** optimal action from every state
- Next week: Reinforcement learning

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Assume we know transition function and cost (reward) function
 - Either execute complete solution (deterministic) or search again at every step
- This week: MDPs towards reinforcement learning
 - Still know transition and reward function
 - Looking for a **policy** optimal action from every state
- Next week: Reinforcement learning
 - Optimal policy without knowing transition or reward function

