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Probability Recap

Conditional probability P(xzly) = Pla,y)
P(y)
Product rule P(x,y) = P(z|y)P(y)
Chain rule P(X1,X2....Xp) = P(X1)P(X2|X1)P(X3/X1. X2) ...

n
[T POXi X, X))
i=1

X, Y independent if and only if: Ve, y . Ple,y) = P(x)’(y)

X and Y are conditionally independent given Z if and only if:
va,y,z D P(x,ylz) = P(x[z) P(y|2)

X 1Y

Z



Bayes Nets

= A Bayes’ netis an
efficient encoding
of a probabilistic
model of a domain

= Questions we can ask:
= Inference: given a fixed BN, what is P(X | e)?
= Representation: given a BN graph, what kinds of distributions can it encode?

= Modeling: what BN is most appropriate for a given domain?



Bayes Net Semantics

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A collection of distributions over X, one for each combination of

parents’ values ;
P(,\ in]_ === (ln)

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply
all the relevant conditionals together:

n
P(;’E]_,;’U;_), ¢ ;'Un,> — H P(:r,'|parent5(.-’f,:))
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Example: Alarm Network

P(B) E | P(E)
0.001 +e | 0.002 e

0.999 : e | 0.998 L %_g

P(J|A) Al M |PM|A)
B | E| A | PAIBE)
0.9 +a +m 0.7
+b | +e | +a 0.95
0.1 +a | -m 0.3
0.05 a | +m | 001 tb | e | -a 0.05
0.95 a | -m | 0.99 th | e | +a 0.94
+b -e -a 0.06
. 3 -b | +e | +a 0.29
e, +a, —7,+m) =
’ : ‘ b | +e | -a 0.71

-b -e | +a 0.001
-b -e -a 0.999




Example: Alarm Network

+b | 0.001 +e | 0.002 N
G, |
-b | 0.999 l -e | 0.998 e T %— ‘g’

A J | PUIA) A | M |PM|A)
. B| E| A | PA|BE)
+a | 4 0.9 ta | tm 0.7
. +b | +e | +a 0.95
+a | 0.1 +a | -m 0.3
a |+ | 005 0 @ a | +m | 001 th | +e | -3 0.05
a | - | 095 a | -m | 099 th|e|+a] 094
+b | -e | -a 0.06
' : ] b | +e | +a 0.29
P(+b,—e,+a,—j,4+m) =
P " . _— b | +e | -a 0.71
P('*'b)P(_f’,)P(_"‘(Ll + b, _6)}’(_]’ L (L)P(,‘I"’“| + a.) — | b | -e|+a| o001
0.001 x 0.998 x 0.91 x 0.1 x 0.7 b | -e | -a| 0999




Size of a Bayes Net

Both give you the power to calculate

P(Xq, Xo,...Xp)

= How big is a joint distribution over N
Boolean variables?

2N

= BNs: Huge space savings!

= How bigis an N-node net if nodes

have up to k parents? m Also easier to elicit local CPTs

O(N * 2k+1) = Also faster to answer queries (coming)




Bayes Nets

JRepresentation
= Conditional Independences
= Probabilistic Inference

= Learning Bayes’ Nets from Data



Conditional Independence

= Xand Y are independent if

Ve,y P(z,y) = P(z)P(y) -—--> X1Y

= X and Y are conditionally independent given Z

Ve,y,z Pz, ylz) = P(z[z)P(y|z) —-- X LY|Z

= (Conditional) independence is a property of a distribution

= Example: Alarm 1L Fire|Smoke




Bayes Nets: Assumptions

= Assumptions we are required to make to define the Bayes
net when given the graph:

P(xz;|lzy - x;_1) = P(x;|parents(X;))

= Beyond above “chain rule > Bayes net” conditional
independence assumptions:

= Often additional conditional independences

= They can be inferred from the graph structure

= Important for modeling: understand assumptions made

when choosing a Bayes net graph



Example

ORORORC

» Conditional independence assumptions directly from simplifications in chain rule:
Standard chainrule:  p(z,y, z, w) = p(x)p(y|z)p(z|z, y)p(w|z, Y, 2)
Bayes net p(z,y, 2, w) = p(x)p(y|z)p(z|y)p(w|2)
Since: ZA x|y and wix,y|z (cond. indep. given parents)

= Additional implied conditional independence assumptions? w1 x|y

p(x,y) p(x)p(ylx) z -

= ) pwly) = pwly)



D-separation: Outline




D-separation: Outline

= Study independence properties for triples
= Analyze complex cases in terms of member triples

= D-separation: a condition / algorithm for answering such
qgueries



Causal Chains

= This configuration is a “causal chain” = Guaranteed X independentof Z? No!
- - = One example set of CPTs for which X is not
™ Y )/ independent of Z is sufficient to show this
////// ._.! independence is not guaranteed.
AN
= Example:

w = Low pressure causes rain causes traffic,

high pressure causes no rain causes no
traffic

X: Low pressure Y: Rain Z: Traffic
= In numbers:
P(x,y,z) = P(x) P(y|z)P(z[y) P(+y | +x)=1,P(-y | -x)=1,
P(+z | +y)=1,P(-z|-y)=1




Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z given Y?

L A=a ™ Pz, 2)
[’}’] ////// Pl = P(z,y)
4 J _ P(x)P(ylz)P(z]y)
kﬁ/» @ o P(xz)P(y|x)
X: Low pressure Y: Rain Z: Traffic — P(z|y)
Yes!

P(x,y.z) = P(x) P(y|z) P(z|y)
= Evidence along the chain “blocks” the
influence



Common Cause

= This configuration is a “common cause”

r PpoJ'zd: ‘L‘
Due'-_

Y: Project
due

l

J@ @g
X: Forums [=— " i
o == 1 [@&g 7. Lab full

)

J

P(z,y,z) = P(y)P(2|y) P(z

= Guaranteed X independentof Z? No!

= One example set of CPTs for which X is not
independent of Z is sufficient to show this

independence is not guaranteed.

= Example:

= Project due causes both forums busy
and lab full

= |[n numbers:

P(+x | +y)=1,P(-x|-y)
P(+z | +y)=1,P(-z | -y)

1
1



Common Cause

= This configuration is a “common cause”

Y: Project
due

=% /
-
N
,
g@ @
‘-' S —

>
. 4 Ly -2
X: Forums = Z: Lab full
busy i 2
2 :

P(x,y,z) = P(y)P(xly)P(z|y)

= Guaranteed X and Z independent given Y?

P(xz,y, z)

p(3|:]}’ 'y) — 1)(:1: (_/)

_ PP (xly) P (zly)
P(y)P(x|y)

= P(z|y)

Yes!

= Observing the cause blocks influence
between effects.



Common Effect

= Last configuration: two causes of one = Are X and Y independent?

effect (v-structures
( ) = Yes: the ballgame and the rain cause traffic, but they

are not correlated

X: Raining Y: Ballgame

T[J;{;\ ﬂﬁx = Still need to prove they must be (try it!)
'l L

L \ I—

= Are X and Y independent given Z?

= No: seeing traffic puts the rain and the ballgame in
competition as explanation.

= This is backwards from the other cases

= Observing an effect activates influence between

possible causes.



The General Case




The General Case

= General question: in a given BN, are two variables independent
(given evidence)?

= Solution: analyze the graph

= Any complex example can be broken

into repetitions of the three canonical cases




Reachability

= Recipe: shade evidence nodes, look for
paths in the resulting graph

= Attempt 1: if two nodes are connected e e
by an undirected path not blocked by a
shaded node, they are conditionally
dependent

= Almost works, but not quite
= Where does it break?

= Answer: the v-structure at T doesn’t count
as a link in a path unless “active”




Active / Inactive Paths

= Question: Are X and Y conditionally independent given Active Triples Inactive Triples

evidence variables {Z}?

= Yes, if Xand Y “d-separated” by Z O_’O_’O O_’O_’O
= Consider all (undirected) paths from Xto Y
a0 | o

= No active paths = independence!

= A path is active if each triple is active:

= Causal chain A — B — C where B is unobserved (either direction)
= Common cause A < B — C where B is unobserved O\ /O O\ /O
= Common effect (aka v-structure) @ ‘Cj

A — B <— C where B or one of its descendants is observed

= All it takes to block a path is a single inactive segment




D-Separation

= Query: X, 1l Xj‘{Xkla ,an} ?

= Check all (undirected!) paths between Xiand X;

= |f one or more active, then independence not guaranteed

Xi XX { Xk, ooy Xk, }

= Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

X X { Xkyy ooy Xk, }



Example

Yes

No
No



Example

LILTT  Yes
LI B Yes
L1 B|T No

LU BT No

LUB|T,R Yes



Example

= Variables:
= R: Raining
s T: Traffic
= D: Roof drips
= S: I'm sad

s Questions:

11D No
T DR Yes

T D|R,S No




Structure Implications

= Given a Bayes net structure, can run d-
separation algorithm to build a complete list of
conditional independences that are necessarily
true of the form

X; AL XA {Xny, ooy X, )

= This list determines the set of probability
distributions that can be represented




Computing All Independences

/®\ XIWZ|Y

CoMPUTE ALL THE ® @

| NDEPENDENCES/
§®? XWUZ|Y
Q ; X U Z
f é} None!




Topology Limits Distributions

(X LY, X1 ZY 1 Z,

(X 1L Z|Y)
XUZ|Y,XUY|ZY1LZ|X)

Given some graph topology
G, only certain joint

distributions can be encoded @

The graph structure ® @
guarantees certain @

(conditional) independences

(There might be more
independence) @

Adding arcs increases the set
of distributions, but has

{1
several costs & QS%) 65%)

Full conditioning can encode

any distribution 65?\@ QS%) Q(f)' _@



Bayes Nets Representation Summary

Bayes nets compactly encode joint distributions

Guaranteed independencies of distributions can be deduced
from BN graph structure

D-separation gives precise conditional independence
guarantees from graph alone

A Bayes net’s joint distribution may have further
(conditional) independence that is not detectable until you
inspect its specific distribution



Bayes Nets

JRepresentation
JConditionaI Independences

= Probabilistic Inference
= Enumeration (exact, exponential complexity)
= Variable elimination (exact, worst-case
exponential complexity, often better)
» Probabilistic inference is NP-complete

= Sampling (approximate)

= Learning Bayes’ Nets from Data



