# ghostAgents.py # -------------- # Licensing Information: Please do not distribute or publish solutions to this # project. You are free to use and extend these projects for educational # purposes. The Pacman AI projects were developed at UC Berkeley, primarily by # John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and Pieter # Abbeel in Spring 2013. # For more info, see http://inst.eecs.berkeley.edu/~cs188/pacman/pacman.html from game import Agent from game import Actions from game import Directions import random from util import manhattanDistance import util class GhostAgent( Agent ): def __init__( self, index ): self.index = index def getAction( self, state ): dist = self.getDistribution(state) if len(dist) == 0: return Directions.STOP else: return util.chooseFromDistribution( dist ) def getDistribution(self, state): "Returns a Counter encoding a distribution over actions from the provided state." util.raiseNotDefined() class RandomGhost( GhostAgent ): "A ghost that chooses a legal action uniformly at random." def getDistribution( self, state ): dist = util.Counter() for a in state.getLegalActions( self.index ): dist[a] = 1.0 dist.normalize() return dist class DirectionalGhost( GhostAgent ): "A ghost that prefers to rush Pacman, or flee when scared." def __init__( self, index, prob_attack=0.8, prob_scaredFlee=0.8 ): self.index = index self.prob_attack = prob_attack self.prob_scaredFlee = prob_scaredFlee def getDistribution( self, state ): # Read variables from state ghostState = state.getGhostState( self.index ) legalActions = state.getLegalActions( self.index ) pos = state.getGhostPosition( self.index ) isScared = ghostState.scaredTimer > 0 speed = 1 if isScared: speed = 0.5 actionVectors = [Actions.directionToVector( a, speed ) for a in legalActions] newPositions = [( pos[0]+a[0], pos[1]+a[1] ) for a in actionVectors] pacmanPosition = state.getPacmanPosition() # Select best actions given the state distancesToPacman = [manhattanDistance( pos, pacmanPosition ) for pos in newPositions] if isScared: bestScore = max( distancesToPacman ) bestProb = self.prob_scaredFlee else: bestScore = min( distancesToPacman ) bestProb = self.prob_attack bestActions = [action for action, distance in zip( legalActions, distancesToPacman ) if distance == bestScore] # Construct distribution dist = util.Counter() for a in bestActions: dist[a] = bestProb / len(bestActions) for a in legalActions: dist[a] += ( 1-bestProb ) / len(legalActions) dist.normalize() return dist